
 M A T H E M A T I C A L  E C O N O M I C S  

No. 7(14) 2011 

 
Andrzej Wilkowski 

Department of Mathematics, Wrocław University of Economics, Komandorska Street 118/120,         

53-345 Wrocław, Poland.  

E-mail: andrzej.wilkowski@ue.wroc.pl 

 

 

NOTES ON LINE DEPENDENT COEFFICIENT 

AND MULTIAVERAGE 
 

Andrzej Wilkowski 

 

 
Abstract. In this paper we discuss new statistic tools which enable more precise economics 

data analysis. Firstly, we define line dependent coefficientas a cosine of the angle made of 

the cross of regression lines. This is the basis thanks to which we can define other nonlinear 

relation coefficients such as conic dependent coefficient. Just like the classic correlation 

coefficient, line dependent coefficient is also asymptotically normal. The second part of this 

article is about multiaverage, a generalization of the classic expected value of the random 

variable idea. The average may be considered as the root-mean-square average approxima-

tion of the random variable with one point. Multiaverage is an approximation of the random 

variable with more than just one point at the same time (which is important when we talk 

about random variables, whose distributions are mixtures, or about multimodal densities). 

While defining multiaverage, we use the standard moments method and some facts from 

the orthogonal polynomial theory. In this paper we give some numerical examples in which 

we use the aforementioned tools. 

 

Keywords: correlation coefficient, line dependent coefficient, conic dependent coefficient, 

multiaverage. 

 

JEL Classification: C19. 

1. Introduction 

A line dependent coefficient was defined by Antoniewicz (1988) as 

a cosine of an angle made of the cross of regression lines. On the basis of 

this concept, we can define other nonlinear relation coefficients (see 

(Antoniewicz, 2005; Wilkowski, 2009)). Just like the classic correlation 

coefficient, line dependent coefficient is also asymptotically normal 

(Wilkowski, 2009). Next we present multiaverage, a generalization of the 

classic expected value of the random variable idea. The average may be 

considered as root-mean-square average approximation of the random  

variable with one value. Multiaverage is an approximation of the variable 
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with more than just one point at a time (which is important when we talk 

about random variables, which distributions are mixtures, or about multi-

modal densities) (McLachlan, Peel, 2004). While defining multiaverage, we 

use standard moments method (Cramer, 1958) and orthogonal polynomial 

theory (Brandt, 1999; Szego, 1975). 

2. Line dependent coefficient 

Let X, Y be random variables on the same probability space. Classic 

correlation coefficient is then given by the equation (1): 

  
 

   

,
,     

Cov X Y
r X Y

Var X Var Y
 . (1) 

Obviously, –1  r  1, r(X, Y) = r(Y, X), r(X, Y) = r(mX + n, Y) if only m  0. 

It is an important characteristic of random vector (X, Y). 

For regression lines of random variables X and Y, 

y = a1x + b1, 

x = a2y + b2, 

we can easily find correlation coefficient, namely: 

  2

1 2,r X Y a a . (2) 

Line dependent coefficient k, is defined as a cosine of angle between cross-

ing regression lines. It is not very hard to see that k is given by the formula: 

   1 2

2 2

1 2

, cos  ,     
1  1 

a a
k X Y

a a



 

 
 (3) 

where   is an angle made of the cross of regression lines. We have also: 

 

     
    

       2 2
, , .

Var X Var Y r
k Var X Var Y r

Var X r Var Y Var Y r Var X




 
 (4) 

 

One of the most important kinds of convergence in distribution is conver-

gence to normal distribution. Sequence of random variables (Xn) converges 

in distribution to N(m, s
2
), s > 0 if equivalently sequence ((Xn – m)/s) con-
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verges in distribution to N(0, 1). Most generally, we say that the sequence of 

random variables (Xn) is asymptotically normal if 
2 0 ns  for n high enough and 

    0,1  ,   
d

n n

n

X m
N n

s


  .  (5)  

We write it as Xn is AN(mn,
2 ).ns  

Let (X1, Y1), … , (Xn, Yn) be independent, identically distributed obser-

vations of two-dimensional random vector (X, Y). The sample correlation 

coefficient is then: 

 
 

1

2 2

1 1

(  )
ˆ ,

(  ) (  )

n

i ii
n n n

i ii i

X X Y Y
r

X X Y Y



 

 


 



 
  (6) 

where 
1 1

1 1
 ,   .

n n

i i

i i

X X Y Y
n n 

    

According to (4) and (6), we can see that sample line dependent coeffi-

cient is given by: 
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1

2 2 2 2 2 2

1 1 1

1
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ˆ(  ) (  )  
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ˆ ˆ(  )   (  )   (  ) (  )
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n

i

i

i

X X Y Y r

k

X X r Y Y r X X Y Y



   



 
  

 

     



   


 (7) 

Theorem. Let us assume that vector  

2 2

1 1 1

1 1 1
,   ,   ,    ,  

n n n

i i i i

i i i

V Y X Y X Y
n n n

X
  

 
  
 

  
 

and function         is given by the formula: 

  

 

   
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3 1 4 2
5 1 2 2 2

4 2 3 1

1 2 3 4 5 2 2

2 25 1 2 5 1 2

3 1 4 22 2

3 1 4 2

,  ,  ,  ,   .

z z z z
z z z

z z z z
g z z z z z

z z z z z z
z z z z

z z z z

  
  

  
 

 
   

 

 (8) 

Then sample line coefficient     is AN(k, n
–1

 S 
T
),  where S is covariance 

matrix of random vector (X, Y, X
2
, Y

2
, XY), while vector   
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    
1 5

,   ,  . 
g g

E E
z z

  
    

  
δ z V z V  (9) 

One can find proof of this fact in Szego (1975). 

Example. Conic dependent coefficient. 

Let us assume, that random variables X and Y have positive, finite 

fourth moment (0 < E(X
4
), E(Y

4
) <   ). Let real numbers a1, b1, c1, d1, f1, a2, 

b2, c2, e2, f2 meet equations given below: 

 
 

 

2
2 2

, , , ,

2
2 2

1 1 1 1 1

min

,  

a b c d f R
E aX bXY cY dX Y f

E a X b XY c Y d X Y f


     

     

 (10) 

 
 

2
2 2

, , , ,

2 2 2

2 2 2 2 2

min

( ) ,

a b c e f R
E aX bXY cY X eY f

E a X b XY c Y X e f


     

     

 (11) 

Conic regression related with x is algebraic curve, given by: 

 a1x
2
 + b1xy + c1y

2
 + d1x – y + f1 = 0. (12) 

Conic regression related with y is algebraic curve, given by: 

 a2x
2
 + b2xy + c2y

2
 – x + e2y + f2 = 0. (13) 

The only difference between (12) and (13) is the linear part. It is analogous to 

regression lines. 

Conic regression parameters meet systems of equations given below: 

E(X
 4

)a1 + E(X
 3
Y)b1 + E(X

 2
Y

 2
)c1 + E(X

 3
)d1 + E(X

 2
)f1 = E(X

 2
Y) 

E(X
 3
Y)a1 + E(X

 2
Y 

2
)b1 + E(XY

 3
)c1 + E(X

 2
Y)d1 + E(XY)f1 = E(XY

 2
) 

E(X
 2
Y

 2
)a1 + E(XY

 3
)b1 + E(Y

 4
)c1 + E(XY

 2
)d1 + E(Y

 2
)f1 = E(Y

 3
),   (14) 

E(X
 3

)a1 + E(X
 2
Y)b1 + E(XY

 2
)c1 + E(X

 2
)d1 + E(X)f1 = E(XY) 

E(X 
2
)a1 + E(XY)b1 + E(Y 

2
)c1 + E(X)d1 + f1 = E(Y), 

E(X
 4

)a2 + E(X
 3
Y)b2 + E(X

 2
Y

 2
)c2 + E(X

 2
Y)e2 + E(X

 2
)f2  = E(X

 3
) 

E(X
 3
Y)a2 + E(X

 2
Y

 2
)b2 + E(XY

 3
)c2 + E(XY

 2
)e2 + E(XY)f2 = E(X

 2
Y) 

E(X
 2
Y

 2
)a2 + E(XY

 3
)b2 + E(Y

 4
)c2 + E(Y

 3
)e2 + E(Y

 2
)f2 = (XY

 2
),   (15) 

E(X
 2
Y)a2 + E(XY

 2
)b2 + E(Y

 3
)c2 + E(Y

 2
)e2 + E(Y)f2 = E(XY) 

E(X
 2

)a2 + E(XY)b2 + E(Y
 2

)c2 + E(Y)e2 + f2 = E(X). 
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Conic dependent coefficient ks of random variables X and Y is defined as: 

 ( , ) cos sk X Y  ,    (16) 

where   is an angle between regression lines at their intersection, nearest to 

point (E(X), E(Y)). 

Obviously, we have: 

 1 2

2 2

1 2

1

1 1
s

m m
k

m m




 
,    (17) 

where  m1, m2  are slopes of straight lines which are tangents to a curves 

regression. 

Example. Parabola dependent coefficient. 

Cost function in econometric cost analysis has usually a form of pa-

rabola (when we discard random component). Let us assume that parabolas 

are regression conics, and their axes of symmetry are parallel to OY. Data 

for this example are given in the following table: 

 

X 0 1 2 3 4 5 6 7 8 9 10 11 12 

Y 0 11 26 29 32 35 36 35 32 26 18 11 0 

 

 
Fig. 1. Regression parabolas 

Source: author‟s own study. 
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Then regression parabola, in regard to x and y, are described by the follow-

ing equations:  

y = – 0.9958x
2
 + 11.7424x + 1.6392, 

y = –1.0033x
2
 + 10.913x + 7.223. 

 

Correlation coefficient and conic dependence coefficient are consecutively: 

r = – 0.0332, ks = 0.9478. 

The following table shows costs of building works in billions of Polish 

zlotys in the period 1960-1972 (Stanisz, 1993). 

 

X 1 2 3 4 5 6 7 8 9 10 11 12 13 

Y 24.34 47.73 79.72 109 144.5 178.9 215.6 279.2 350 414.2 463.8 540 705 

 

Regression parabolas are of the form: 

y = 3.5394x
2
 + 2.7292x + 31.335, 

y = – 6.8972x
2
 + 157.04x – 391.45. 

 
Fig. 2. Regression parabolas 

Source: author‟s own study. 
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Correlation coefficient and conic dependence coefficient are consecutively: 

r = 0.9619, ks = 0.8832. 

3. Multiaverage 

We treat random variables as real measurable functions on probabilistic 

space ( , ), PF .One can easily find their moments ,..., 21 mm  from: 

 

)()()(  dPXXEm kk

k 


 ,    (18) 

where ,...2,1k , while integrals are unconditionally convergent. 

Combination of first and second moments, defined as (18), is equal to 

variance of a random variable: 

2

12

2

1 ))(()( mmXEXEXV  , 

and is called a variance of random variable. Polynomial )(XEX   mini-

mize root-mean-square norm, which is given below:  

 2 2

1min ( ) ( ( )) ( ).
a R

E X a E X E X V X


     (19) 

It can be said that average is the best one-point approximation of random 

variable. 

Let fX is density of random variable X.  

Maximums of density function fX are quite important. We call them modal 

values of random variable X. They mark concentration points of probability. 

In a unimodal density case, average E(X) is a good modal value approximation. 

Let random variable X have finite moments: 

 
( ) , 1,2,...,2 1.k

kE X m k n    
 

 (20) 

Polynomial pn minimizing norm: 

 

1 2 2 2

, , ...,
min ( ... ) ( ( ))n n n

n
a b c R

E X aX bX c E p X 


        (21) 

is given by equation: 

 
n

nnn

n

n

xx

mmm

mm

Kxp

...1

...

............

...1

)(
121

1



 , (22) 

where 0K , and x is argument of a pn.              
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Normed polynomial pn  is an orthogonal polynamial of order n (Szego, 

1975). Hence: 

 pn(x) = (x – s1) … (x – sn), where  s1 < …< sn.  (23) 

Ordered (s1, …, sn) = Mn(X) is called n-average (multiaverage) of random 

variable X. This vector is an n-point approximation. Variance and standard 

deviation are, in this case, expressions: 

2

1 )))...((()( nn sXsXEXV 
 

       222
1( )  nn

n nV X E X s X s     (24) 

These characteristics measure mean-square deviation of random varia-

ble X from n probability concentration points. 

In data analysis we usually find average, variance, etc. One can though 

go one step further. To do this, it is crucial to find moments of random 

variable X, and then determine 2-average (s1, s2), 3-average (s1, s2, s3), etc. 

Finally, after finding all multiaverages which were needed, one has to find 

 2

212

2

1 )))((()(,))(()( sXsXEXVXEXEXV  , etc. 

It allows for a more precise data analysis. 

Example. Two-modal Weber distribution. 

Let random variable X have a density function of this form (we write 

X ~ )),,( W  

 

42 )()(

,, ),(

1
)( 

 
 xxe

z
xg ; Rx , ;  ,  > 0.   (25) 

The integration constant ),( z  can be found by special Weber functions 

(Wilkowski, 2008; Bateman, Erdelyi, 1953) and is equal to: 

 



 dxez xx 42

),(  )
2

(
2

)
8

exp(
2

1
4

2














D ,  (26) 

where D  is a special Weber function.  

Obviously, function g has two modal values in: 

 




2
1 Mo  +  ,  





2
2 Mo  +  ,  (27) 
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while expectation of random variable X is: 

 )(XE . (28) 

Moments of higher rank are given by confluent hypergeometric functions. 

Let us then assume that E(X) = 0. We then have: 

 0)( 12 nXE ,    (29) 

 
   

   

2

2

1
(3 2 )

2 4 1 1 1
4 2 4 2 2 4

3 3 3
4 2 4 2 2 4

1
( ) , ,

2 ( , )

, , ,

n
n n n

n n

E X H
z

H







 
 




  


 


 

 

 (30) 

where n = 1, 2, …, and H denote confluent hypergeometric function (Bate-

man, Erdelyi, 1953). 

The following picture shows density function of W(2,1,1) distribution: 

 

Fig. 3. Density function of W(2,1,1) distribution 

Source: author‟s own study. 

Modal values are: 2,0 21  MoMo , while expectation 1)( XE  is be-

coming “unexpected value” in this case (probability mass is concentrated 

around modal values). Polynomial p2  from (23) is here given by: 

 p2(x) = x
2
 + ax + b = (x – s1)(x – s2),   (31) 
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where 

 

3 2

1

( ) ( ) ( )
,

( )

E X E X E X
a

V X


 

      

2 2 3

1

( ) ( ) ( )
,

( )

E X E X E X
b

V X


 

 

 s1 = – 0.08746,    s2 = 1.91254.   (32) 

Ordered pair (s1, s2) = (– 0.08746; 1.91253) is 2-average M2(X) of random 

variable X of distribution function W(2,1,1). We also have: 

 
2

1( ) ( ( )) 0.83274,V X E X E X    (33) 

 
2

2 1 2( ) [( )( )] 0.38928.V X E X s X s     (34) 

We can see that 2-average is a better approximation of modal values than 

expectation and V2< V1, which could be expected. What is interesting is 

finding that another n-average will not improve approximation quality (in 

square-root sense). We have: M3(X) = (s1, s2, s3) = (–0.76371; 0.82532; 

2.69894) and V3(X) = E[(X – s1)(X – s2 )(X – s3)]
2
 = 6.66794 . 

Remark 1. If E(X) = 0, E(X
2
) = 1, then  

  
       3 2 3 3 2 3

2

4  4 
 ,    . 

2 2

E X E X E X E X
M X

    
 
 
 

 (35) 

The equation (35) follows from the fact that the polynomial p2 from (31) has 

form given by: 

 p2(x) = x
2 

– E(X
3
)x – 1.  (36) 

Remark 2. Let X, Y be independent random variables, and E(X) = E(Y) = 0, 

E(X 
2
) = E(Y 

2
) = 1. If M2(X) = (s1, s2), M2(Y) = (t1, t2), then M2(X + Y) = (k1, k2), 

where 

 
 1 2 1 2 1 2 1 2 1 2 1 2

1,2

16
 . 

4

s s t t s s t t s s t t
k

        
   (37) 

In this case polynomial p2 from the formula (31) has form: 

  
   3 3

2

2 2.
2

E X E Y
p x x x


     (38) 
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4. Summary 

To sum up, the aforementioned heuristic procedure allows for a more 

precise data analysis than before. Its base is the Pearson‟s moments method. 

The main advantage of moments is the fact that they can easily be calculated 

from a simple sample. Only combinations of moments, for instance vari-

ance, have a practical value. Line dependent coefficient (and others, which 

can be defined thanks to it) and multiaverage are such moments functions. 

Let us hope that line dependent coefficient and multiaverage will soon 

become practical tools in statistics and taxonomy.  
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