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Abstract. We investigate the sum of dependent random variables. The dependent structure 

is modeled by copulas. The risk measures, VaR and ES of such sums, are calculated. We 

present the lower and upper border of VaR. The examples when the marginals have expo-

nential and Pareto distribution are investigated. The influence of the degree of dependence 

on the value of VaR of the sum of dependent random variables is analysed.  

 

Keywords: dependent random variables, copula, Frechet bounds, Value-at-Risk, expected 

shortfall. 

 

JEL Classification: G10. 

1. Introduction 

The paper is devoted to the calculation of the risk measures, mainly 

Value-at-Risk (VaR), of the sum of dependent random variables. The de-

pendent structure between such random variables will be described by the 

copulas. We will investigate the extreme cases: the perfect positive 

(comonotonic) and negative (countermonotonic) dependence, the independ-

ence and the intermediate degrees of dependence modeled by the Clayton 

copula.  

The Value-at-Risk is the most widely used risk measure in financial in-

stitutions. It was recommended by G-30 (an influential international body 

consisting of senior representatives of the private and public sectors and 

academia) and the Basel Accord on Banking Supervision (Basel II) 

(McNeil, Frey, Embrechts, 2005). But it is not a “good” risk measure. The 

VaR is not a superadditive, coherent risk measure. The superadditivity is the 
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base of the risk diversification. So we also investigate the expected shortfall 

(ES), the coherent risk measure. 

Embrechts, Hoing, Puccetti (2005) presented the fallacies connected 

with dependent random variables. Fallacy 3 stated that “the worst case VaR 

(quantile) for a linear portfolio X + Y occurs when ρ(X, Y) (coefficient of 

correlation) is maximal, i.e. X and Y are comonotonic”. We thoroughly 

investigate such a fallacy in our paper. We study cases when the random 

variables have the exponential and Pareto distribution. 

The sum of dependent random variables is investigated in Section 2. 

The lower and upper bounds on the cumulative distribution functions of 

such sums are presented. The risk measures VaR and coherent measure ES 

are studied in Section 3. Finally, in Section 4 we study the examples based 

on the different distributions of marginal random variables, the exponential 

and Pareto distribution. 

2. Sums of random variables 

Now we will study the sums of the dependent random variables 

X1, ..., Xn, with the cumulative distribution functions (cdf.) Fi(x) = P(Xi ≤ x), 

where i = 1, ..., n. The joint distribution of such random variables may be 

described by the copula C in the following way: 

F(x1, ... , xn) = P(X1 ≤ x1, ... , Xn ≤ xn) = C(F1(x1), ... , Fn(xn)). 

A copula is any function C: [0, 1]
n
 → [0, 1] non-decreasing in each argu-

ment, n-increasing, i.e. for all a = (a1, ... , an), b = (b1, ... , bn)  [0, 1]
n
 with 

ai ≤ bi, i = 1, ... , n, we have 

   1

1

1

2 2

1

1 1

1 , , 0n

n

n

j j

j nj

j j

C u u


 

     , 

where ui1 = ai, ui2 = bi for all i = 1, ... , n and satisfying condition: 

C(1, ... , 1, ui, 1, ... , 1) = ui 

for all ui ∊ [0, 1]. The copula can be treated as the cdf. of the n-dimension 

random variable restricted to [0, 1]
n
 having the uniform marginals (Nelsen, 

1999; Heilpern, 2007). 

Any copula C can be bounded by the Frechet lower and upper bounds: 

W(u1, ... , un) ≤ C(u1, ... , un) ≤ M(u1, ... , un), 

where W(u1, ..., un) = max(u1 + ... + un − n + 1, 0) and M(u1, ..., un) = 

min(u1, ..., un). The upper bound M is a copula, but the lower W is not 



Aggregate dependent risks – risk measure calculation 

 

 

109 

a copula for n > 2. But, for any n ≥ 3 and any u  [0, 1]
n
, there is a copula 

C such that C(u1, ... , un) = W(u1, ... , un).  

The Frechet upper bound M is also called the comonotonicity copula. It 

reflects the dependent structure of the perfectly positively dependent ran-

dom variables X1, ..., Xn. For n = 2 the lower bound W is a 

countermonotonicity copula. The random variables X1, X2 are perfectly 

negatively dependent in this case. The independent copula takes the form: 

CI(u1, ... , un) = u1 u2 ... un. 

Let S = X1 + ... + Xn be a sum of random variables with the dependent 

structure described by copula C. We can calculate the cumulative distribu-

tion function of such a sum using the following n-dimension integrals: 

    
 

    1 1 1

( )

, , ( , , ), C n n n

K s A s

F s P S s dC F x F x dC u u         (1) 

where  

K(s) = {(x1, ..., xn): x1 + ... + xn ≤ s} 

and  

A(s) = {(u1, ..., un): 
1

1 1( )F u + ... + 1( )n nF u  ≤ s}. 

First, we want to study the problem concerning the construction of the 

lower and upper bounds of such sums. This problem, attributed to 

A.N. Kolmogorov, was solved by Makarov (1981) for the sum of two ran-

dom variables. We give the solution of the n-dimension version of such 

a problem. 

Theorem 1 (Denuit, Genest, Marceau, 1999). The cumulative distribu-

tion function FC(s) of the sum of random variables S = X1 + ... + Xn satisfies 

the following inequalities: 

Fmin(s) ≤ FC(s) ≤ Fmax(s), 

where 

       min max
Σ( )Σ( ) 1 1

sup max 1, 0 ,   inf min ,1 
n n

i i i i
ss i i

F s F x n F s F x

 

   
      

   
 

xx

, 

Σ(s) = {(x1, ... , xn): x1 + ... + xn = s} and  iF x   P(Xi < x). 
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For fixed marginal cdf. Fi(x) the above inequalities cannot be improved, 

the bounds Fmin(s), and Fmax(s) are point-wise the best possible. For any s, 

there exist copulas C
-
 and C

+
 such that  

 min ( )
C

F s F s

     and    min ( )
C

F s F s . 

We see that the above bounds are not connected with the upper Frechet 

bound in the comonotonic, strictly positive dependent case. They are rather 

weakly related with the lower Frechet bound.  

The above bounds take the following simpler form for the sum of two 

random variables X1, X2: 

      min 1 2supmax 1, 0 ,
x R

F s F x F s x 



     

      max 1 2inf min ,1  .
x R

F s F x F s x


    

If the joint distribution of random variables X1 and X2 is described by copula: 

 
      

 

2
max ,  , , ,1 

,
,                   otherwise

W u v u v
C u v

M u v


  
 


, 

then the value of cumulative distribution function of the sum of such varia-

bles is equal to lower bound (Embrechts, McNeil, Straumann, 2002), i.e. 

   minCF s F s


  . 

The copula Cβ,, treated as the cdf. on [0, 1]
2
, has the density uniformly 

focused on the line v = u for 0 ≤ u ≤ β and on v = 1 +  – u for β < u ≤ 1.  
Now, we present the examples of distributions of marginals for which 

the bounds Fmin and Fmax can be computed explicitly (Denuit, Genest, Mar-

ceau, 1999; Nelsen, 1999). 

a) Shifted exponential distribution: Fi = Ex(λi, θi), i = 1, 2, where 

Fi(x) = 1 − exp(− (x − θi)/λi) for x ≥ θi and Fi(x) = 0 otherwise. Then  

Fmin = Ex(λ1 + λ2, θ1 + θ2 + (λ1 + λ2)ln(λ1 + λ2)   λ1lnλ1   λ2lnλ2) 

and  

Fmax = Ex(max{λ1, λ2}, θ1 + θ2). 

b) Pareto distribution: Fi = Pa(α, λi, θi), where   1 i

i i

F x
x





 

 
   

  

for x ≥ θi and Fi(x) = 0 otherwise. Then 
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Fmin = Pa(α, λ0, θ1 + θ2 + λ0   λ1   λ2),  

where  
1/

0 1 2 ,    
1

  
   


  


 and  

Fmax = Pa(α, max{λ1, λ2}, θ1 + θ2). 

c) Uniform distribution: Xi = U(ai, bi), where b1   a1 ≤ b2   a2. Then 

Fmin = U(b1 + a2, b1 + b2) 

and 

Fmax = U(a1 + a2, max{a1 + b2, b1 + a2}). 

d) Normal distribution: Fi = N(μi, σ). Then  

 
1 2

min 1 2
1 2

0                                      

2Φ 1       
2σ

s

F s s
s

 

 
 

 


    
   

 

 

and 

 
1 2

1 2

max

1 2

2Φ        
2σ

1                              

s
s

F s

s

 
 

 

   
   

  
  

 

When Fi = N(μi, σi), where σ1 ≠ σ2, then we have 

  1 2 2 1
min 2 2 2 2

2 1 2 1

Φ Φ 1F s
       

   

     
     

    
 

and 

  1 2 2 1
min 2 2 2 2

2 1 2 1

Φ Φ ,F s
       

   

     
    

    
 

where 

 θ = 1 2s       and   φ = 2 2 2

2 1 2 12( )ln( / ).       

There exist formulas for the Cauchy and Weibull (upper bound only) 

distribution and multidimensional version of such formulas (Denuit, Genest, 

Marceau, 1999; Alsina, 1981). 
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3. Risk measures 

The Value-at-Risk (VaR) is the most widely used risk measure in finan-

cial institutions. It is a very simple risk measure based on quantile: 

VaRα(X) = inf{x: FX(x) ≤ α}, 

where FX is cdf. of risk X and 0 < α < 1. It is the smallest number such that 

the probability of the loss connected with the risk X is no larger than 1 − α. 

In practice, the confidence level α takes the value near one.  

The risk measure VaR has been criticized on the grounds that it has 

poor aggregation properties. Mainly, VaR violates the subadditivity, the 

base of the risk diversification. Artzner et al. (1999) gave the list of axioms 

that a “good” so-called coherent risk measure should satisfy. We present the 

version of axioms done by McNeil, Frey, Embrechts (2005).  

We can treat the risk measure ρ as a function defined on the set of risks, 

almost surely finite random variables (McNeil, Frey, Embrechts, 2005). The 

coherent risk measure should satisfy the following properties: 

a) ρ(X + a) = ρ(X) + a, for any α ∊ R translation invariance, 

b)  ρ(X + Y) ≤ ρ(X) + ρ(Y) for any risks X, Y subadditivity, 

c) ρ(aX) = aρ(X) for any a > 0 positive homogenity, 

d) If X ≤ Y almost surely, then ρ(X) ≤ ρ(Y) monotonicity. 

The VaRα is not a coherent risk measure. It does not satisfy the 

subadditivity. We will study this risk measure for the sum of random varia-

bles S = X1 + ... + Xn, where the dependent structure is described by the 

copula C and we will denote it by symbol VaRα(S; C). It is a known fact that 

the VaR is additive for comonotonic risks (McNeil, Frey, Embrechts, 2005), 

i.e. we have 

VaRα(X1 + ... + Xn; M) = VaRα(X1) + ... + VaRα(Xn). 

So there exist random variables Xi and copula C such that VaR is not 

subadditive and it satisfies inequality: 

VaRα(S; M) = VaRα(X1) + ... + VaRα(Xn) < VaRα(S; C). 

So we obtain the greater value of VaR for such copula than for comonotonic 

case. The VaR for sum of the random variables is bounded by the quantile 

of the lower bound Fmin, i.e. 

VaRα(S; C) ≤ inf{x: Fmin(x) ≤ α}. 
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If the random vector (X1, ..., Xn) has the elliptical distribution, e.g. the 

multivariate normal or Student distribution, then the VaR is a subadditive 

risk measure (McNeil, Frey, Embrechts, 2005). But we must remember that 

elliptical marginals Xi do not imply that the joint distribution is elliptical 

too. The copula which determines the dependent structure must be elliptical. 

For instance, there exists a copula such that the joint distribution of the 

normal marginals is focused on the circle (Nelsen, 1999; Heilpern, 2007).  

The expected shortfall defined by formula: 

   
1

1
ES VaR d  

1
uX X u





   

is a coherent risk measure (McNeil, Frey, Embrechts, 2005). For continuous 

random variable X, we obtain the following formulas: 

 
 

  
α

α α

VaR

1
ES ( )    ( |      VaR ( )) VaR   1 d .

1
X

X

X E X X X X F x x




    
   

This risk measure can be interpreted as the expected loss that is in-

curred in the event that VaR is exceeded (McNeil, Frey, Embrechts, 2005). 

The expected shortfall has better properties than the VaR. It is subadditive 

risk measure. But it is the conditional expectation and it is equal infinity for 

the heavy-tailed random variables, e.g. Pareto distribution. For such random 

variables, often used in the catastrophic insurance, we must use another risk 

measure, e.g. VaR. 

The expected shortfall is additive for comonotonic random variables 

too, so we obtain the following inequality: 

ESα(S; C) ≤ ESα(X1) + ... + ESα(Xn) = ESα(S; M). 

We see that the expected shortfall takes the greatest value for the 

comonotonic, perfect positive dependent random variables. 

4. Examples 

Now we will investigate the values of risk measures, mainly Value-at-

Risk, for the sum of two random variables X1 and X2. We will study two 

cases. The random variables have exponential distribution in the first case 

and Pareto, heavy-tailed distribution in the second.  
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a) Exponential distribution 

Let us assume that the random variables X1, X2 have the standard expo-

nential distribution with expected value equal one, i.e. Fi(x) = 1 – e
–x

 for 

x ≥ 0, i = 1, 2. When this random variables are independent, then the sum   

S = X1 + X2 has the gamma distribution Ga(2, 1). For comonotonic random 

variables we have S = 2X1, and the sum has the exponential distribution with 

the expectation equal two, i.e. FM(s) = 1 – e
–s/2

.  

The lower and upper bound of the cdf. of sum S are done by formulas: 

Fmin(s) = 1 – exp(– (s – ln 4)/2), 

Fmax(s) = 1 – exp(–s). 

We see that the lower bound is the cdf. of the shifted exponential distributed 

random variables Ex(2, ln 4) and the upper is the standard exponential with 

expectation equals one. So the VaR of the sum S have the following bounds: 

     min maxVaR ln 1 VaR ;   2ln (1 ) / 2 VaR .S C           

If we want to compute the cdf. for the sum of the random variables 

Xi with the joint distribution described by the copula C, we can use formula 

(1). In this case we obtain: 

       , :    sA s u v v u  , 

where  
1

1
1

s

s u e
u

  


 and the formula (1) takes the form: 

 
0 ( )

0 0

( , )
su u

CF s dC u v



   , 

where u0 is a solution of equation φs(u) = 0. 

For countermonotonic random variables X1, X2, the density of copula W, 

treated as the cumulative distribution function on [0, 1]
2
, is uniformly fo-

cused on the line v = 1   u. So the cumulative distribution function of the 

sum is done by the following formula: 

 
0 ln 4

1 4 ln 4
W s

s
F s

e s


 

 

. 

When the dependence structure of random variables Xi is done by the copula 

Cβ, the distribution of sum S takes the form: 
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 

 

/2

2

1 2ln(1 ) 

     2 ln(1 )   .

(1 ) 4 2ln( 1 / 2)  

s

C

s

e s

F s s

e s





 

  





    


   


     

 

For β < α, the VaR is a solution of the equation 2(1 ) 4 se     

and equals: 

      2 2
VaR ;  ( 1 / 4)S C ln         , 

but for β = α we obtain: 

      maxVaR ;  2ln 1 lim VaR ;  VaR .S C S C    
 




       

We will model the middle degrees of dependence between the random 

variables X1 and X2 using the Clayton copula: 

Clα(u, v) = (u
-α

 + v
-α

 – 1) 
–1/α

, 

where −1 < α. The parameter α reflects the degree of dependence. For the 

limit case α = −1, we obtain perfect negative dependence, for α = 0 inde-

pendence and for α = ∞ we have perfect positive dependence. This parame-

ter is strictly connected with Kendall coefficient of correlation τ (Nelsen, 

1999; Heilpern, 2007): 

 .
2








 

Figures 1 and 2 contain the graphs of the cumulative distribution func-

tion of the sum S for different cases of the dependent structure between the 

random variables X1 and X2. The graph in Figure 2 is the upper segment of 

the graph from Figure 1. It shows us the values of these cumulative distribu-

tion functions strictly connected with the real values of the confidence levels 

of VaR. 

We see that the graphs of the presented cumulative distribution func-

tions cross each other. But we have some regular situation on the upper 

segment of such graph (see Figure 2). The greater value of degree of de-

pendence gives us the smaller value of cumulative distribution function. Only 

artificial copula C0.94, which does not occur in practice, and Clayton copula 

with the greater value of the degree of dependence damage such regularity. 
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Fig. 1. The graph of the cumulative distribution functions of sum S for different  

dependent structures and exponential marginals  

Source: own elaboration.

 

Fig. 2. The upper segment of the graph from Fig. 1 

Source: own elaboration. 
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Now we derive the Value-at-Risk and expected shortfall at the confidence 

level α = 0.95 of the sum S = X1 + X2 for different dependence structure be-

tween random variables Xi. First, we compute the bound of the VaR: 
min

0.95VaR  = 2.9957,   max

0.95VaR  = 7.3778. 

The values of VaR and ES for countermonotonic, independent, Clayton 

copulas Cl2, Cl18 for α = 2 and α = 18, copula C0.94 and comonotonic cases 

are shown in Table 1. The values of the Clayton copula parameters α corre-

spond with values 0.5 and 0.9 of Kendal τ coefficient of correlation. 

Table 1. The values of VaR and ES for the sum of exponential random variables 

 countermon. independent Cl2 Cl18 C0,94 comonotonic 

VaR 3.7142 4.7439 5.3340 6.0316 7.0413 5.9915 

ES 4.7015 5.9180 6.6083 7.6091 7.7477 7.9915 

Source: own elaboration. 

We see that the greatest value of VaR is obtained for the copula C0.94, not 

for the comonotonic case. We can increase such a value, changing the values of 

parameter β. But we never obtain the maximal value of VaR in this case. For 

C0.95 we have VaR0.95 = 5.9915 (Figure 2). The Clayton copula Cl18 gives us the 

greater value of VaR than for the perfect positive dependence too. The greater 

degree of dependence implies the greater value of expected shortfall, on the 

other hand, and we obtain the greatest value of ES for the comonotonic case. 

 

Fig. 3. The graph of the values of VaR for different values of Kendal τ 

Source: own elaboration. 
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In Figure 3 the graph of values of VaR for sum S and for different val-

ues of Kendal τ coefficient of correlation is given. The dependent structure 

is described by the Clayton copula in this case. We see first that the bigger 

values of degree of dependence gives us the bigger value of VaR. We obtain 

the greatest value for τ = 0.95 and next we observe a little decline of VaR. 

b) Pareto distribution 

We obtain another, more nonregular situation when the random varia-

bles X1 and X2 have heavy-tailed Pareto distribution. First, we assume that 

Fi(x) = 
1

1
x

  for x ≥ 0, i = 1, 2. This is Pa(1,1,1) distribution. Then for the 

independent random variables Xi, the sum S = X1 + X2 has the cdf. done by 

formula: 

 
2

2 2
ln( 1)I

s
F s s

s s


      for   s ≥ 2. 

The comonotonic random variables give us the sum with the Pareto distribu-

tion Pa(1; 2; 2): 

 
2

1MF s
s

     for   s ≥ 2, 

and the sum with counter monotonic marginals has the cumulative distribu-

tion function: 

 
4

W

s
F s

s


    for   s ≥ 4. 

The lower and upper bound of the cdf. of sum S have Pareto distribu-

tions: Pa(1; 4; 4) and Pa(1; 1; 2), i.e. we have 

 min

4
1F s

s
     for   s ≥ 4, 

 max

1
1

1
F s

s
 


   for   s ≥ 2. 

The graphs of the cumulative distribution functions of sum S for differ-

ent dependence structure are shown in Figures 4 and 5. We see that the cdf. 

of the sum for comonotonic case takes greater values than the 

countermonotonic and independent cases. We have 

FW(s) < FM(s) and FI(s) < FM(s), 
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for every s > 0. The graphs of the cdf. of the countermonotonic and inde-

pendent cases cross each other. For s > 5.995 we obtain FI(s) < FW(s). 

Table 2. The values of VaR and ES for the sum of Pa(1,1,1) distributed marginals 

 upper comonotonic countermonot. independent Cl 2 lower 

VaR 21 40 41.025 43.451 45.677 80 

Source: own elaboration. 

The values of VaR of the sum S of the marginal with the Pareto distri-

bution for different dependence structure are shown in Table 2. We cannot 

compute the expected shortfall in this case because the expected value of 

marginals are equal infinity. We see that the independent case gives us the 

greater value of VaR than perfect dependence cases. The values of VaR of 

the sum for the different dependent structure done by Clayton copula are 

shown in Figure 6. 

 

Fig. 4. The graph of the cumulative distribution functions of sum S  

for different dependent structures and Pa(1,1,1) marginals 

Source: own elaboration. 
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Fig. 5. The upper segment of the graph from Fig. 4 

Source: own elaboration. 

 
Fig. 6. The graph of the values of VaR for different values of Kendal τ  

and Pa(1,1,1) marginals 

Source: own elaboration. 

We see first that the values of VaR slowly increases when the Kendal 

τ increases. They obtain the maximum for τ = 0.82 and rapidly decrease for 

the greater degrees of dependence.  
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Fig. 7. The graph of the cumulative distribution functions of sum S  

for different dependent structures and Pa(2,1,1) marginals 

Source: own elaboration.  

 

Fig. 8. The graph of the cumulative distribution functions of sum S 

for different dependent structures and Pa(2,1,1) marginals for greater values of arguments s 

Source: own elaboration. 

We obtain the more regular case when the margins Xi have Pa(2,1,1) dis-

tribution, i.e. Fi(x) = 1 1/ x  for x ≥ 0. The tail of such distribution is more 
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heavy than in the former case. We see that the cumulative distribution functions 

presented in Figures 7 and 8 do not cross each other. The countermonotonic 

case gives us the greatest value of VaR, but the differences between the inde-

pendent, countermonotonic and Clayton Cl-0.5 and Cl2 cases are small. The 

copula C0.94 and lower border Fmin give us the considerably greater value of 

VaR. The Clayton copula C-0.5 reflects the negative dependence: τ = −1/3.  

5. Conclusion 

In this paper we study the risk measure, mainly VaR, of the sum of de-

pendent random variables. We investigate two cases when the marginals 

have the exponential and Pareto distribution. We show that the most value 

of VaR is not obtained for extreme, perfect dependent cases. The value of 

VaR of such sums depends on the distribution of marginals and on the 

degree of dependence of them.  
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