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Regular net of optical vortices can be generated by three plane waves interference. Such a net 
has a number of unique properties and its geometry is very sensitive to phase and amplitude dis-
turbances introduced to any of the three interfering waves. The Optical Vortex Interferometer 
(OVI) is a new instrument which takes advantage of special properties of optical vortex net. The 
OVI can be set up in various configurations fitted to specific needs of measurements. The key 
problem for OVI accuracy is localization of vortex points. A number of localization methods, 
which work with subpixel resolution have been proposed and tested. These methods are fast and 
enable real time measurements. In this monograph, the basic physical and technical features of 
OVI are discussed. The possible applications of OVI are: small-angle rotations and small linear 
shift measurement, determination of wavefront geometry, 3-D scanning interferometry, superreso-
lution microscopy. The measurement of small-angle rotations is presented in detail. The mono-
graph contains also an introduction to the theory of optical vortices.  
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1. Introduction 

Singular Optics is a new branch of modern optics. The name was suggested by 
Prof. Marat Soskin from Ukraine and widely accepted. Optical singularities are classi-
fied into three categories [Nye 1999]: ray singularities, phase singularities and polari-
zation singularities. Ray singularities were known in ancient Greece as “caustics”. The 
name “caustic” means the area of burning light; places where the energy of light is 
particularly strong. The ancient Greeks did not think about caustics as singularities – 
pure mathematical objects – but just as the places of very high intensity of light. Con-
temporary physics is written in mathematical language and physical quantities are 
represented by pure mathematical objects. The optical singularities are represented 
by singularities in mapping between two manifolds. The rigorous mathematical defini-
tion of singularity is [Lu 1976]: Let f be a differentiable mapping from M to N, where 
M and N are differentiable manifolds. A point Mx ∈0  is a singular point of f if rank 

, where  is the Jacobian matrix of f at x}dim,dimmin{)( 0 NMxdf < )( 0xdf 0. Other-
wise, x0 is a regular point of f. The results of the singularity theory, although highly 
abstract, describe the intricate phenomena investigated in contemporary physics. For 
example, the classification of singular mappings provides a clear insight into the hid-
den order of the physical phenomena, which were believed to be chaotic before apply-
ing singular theory.  

Theoretically (i.e. according to geometrical optics), the density of light energy at 
caustic is infinite. In practice, the caustics are softened by diffraction. A well known 
caustic is the focus of an ideal focusing lens. A lens with aberrations also produces 
caustics, but of a more complex structure. Even more complex examples are images 
obtained by natural “imaging” systems like a rippling water surface. For a long time, 
such images had been understood as a complicated example of problems that can be 
fully analyzed using ray tracing procedures, with the only limitation being the compu-
tation capacity. The catastrophe theory developed by Thom (1972) and Arnold (1986) 
gives new insight into this problem. With the catastrophe theory, the important group 
of stable and generic caustics can be defined; moreover, such caustics can be classified 
into several classes. Although these classes are defined mathematically, they have a 
non-trivial physical interpretation. Stability means that under a small disturb- 
ance in the optical system (like water surface reflecting sun rays), the given caustic 
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does not change its character and still belongs to the same class. Generic means that 
the object in question occurs without special preparation or conditions. A discussion 
on these terms can be found in many works (see, for example, Nye (1999), Kravtsov 
et al. (1993)). There are a number of books (see, for example, Berry et al. (1980), 
Kravtsov et al. (1990, 1993), Nye (1999)) that can be used in studying the catastrophe 
theory.  

Phase singularities, recognized by Nye et al. (1974), belong to the deeper level of 
optical singularities. For the last twenty years, an increasing number of studies have 
started to contribute to this subject. Phase singularities are points in the phase field 
where the phase is undetermined. Because the complex amplitude function must be 
uniquely defined at such points, the light amplitude must equal zero. In this work, 
special attention is paid to optical vortices (OVs). Optical vortices together with edge 
dislocations belong to the main categories of stable phase singularities. There is 
a connection between ray singularities and phase singularities, which is explained in 
the paper by Berry et al. (1980) and the book by Nye (1999). 

 
 
 
 
 
 
 
 

Fig. 1.1. Polarization ellipse. α  is an azimuth angle 
 

 
 
 
 
 
 
 
 
 

Fig. 1.2 Star pattern of polarization ellipses 
surrounding C-point  

Polarization singularities of different kinds have been widely studied both experi-
mentally and theoretically (see, for example, Nye (1983), Nye et al. (1987), Hajnal 
(1987a), Hajnal (1987b), Nye (1999), Berry et al. (2001), Freund (2001)). A simple 
example of polarization singularity is given here. The distribution of the polarization 
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ellipses (Fig. 1.1) [Meyer-Arendt 1972] can be determined in an observation plane. 
Within such a distribution, there are points (C-points) where light has circular polari-
zation and the azimuth is undefined, and as such, the C-points are polarization singular 
points (Fig. 1.2). Moreover, these points (lines in space) are structurally stable and 
generic structures. The relationship between phase singularities and C-points is dis-
cussed in literature (see, for example, Nye (1999)).  

In modern physics “singularities” became so popular that one can perceive “Singu-
lar Physics” as a new discipline. The Singular Optics can be considered as 
a part of Singular Physics. In fact, optical singularities have a lot in common with 
singular structures existing in other branches of physics. The mathematical description 
is similar; hence it is possible to transfer results directly from one branch to another. 
For example, at the beginning, the optical singularities were described by borrowing 
some concepts from crystallography [Nye et al. 1974], where singularities are known 
as dislocations. Optical singularities are particularly easy to generate and process in 
a fully controlled laboratory experiment. They can give deeper insight into the physics 
of electromagnetic fields or singular structures in other branches of modern physics, 
for example, solid state, quantum mechanics, fluid physics and acoustics. Figure 1.3 
shows the vortex generated in a scattered focused acoustic wave beam. Contrary to 
transversal light waves, the acoustic waves are longitudinal, but the generated phase 
singularities reveal similar features.  

 
Fig. 1.3. Phase map (in grayscale) obtained by ultrasonic microscope working at frequency 5.9 MHz. 

There are two points around which the phase (the gray ratio) changes at 2π rate. These points are singu-
larities in phase distribution. (Figure, courtesy of W. Grill, Leipzig University) 

The other example refers to the works by Whewell, published as early as 1833 
[Whewell 1833, 1836]. Whewell noticed singularities in the cotidal lines distribution. 
Cotidal lines are lines connecting points where the tide is high at particular times. More 
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details on this can also be found in paper by Berry (1981) and book by Nye (1999). 
This monograph is focused on OVs, which are phase singularities. It gives a brief 

overview of OVs properties, generation and applications. It also presents the author’s 
works on this subject. The most important part of this work is a new kind of interfer-
ometer that was invented by the author and named Optical Vortex Interferometer 
(OVI). The OVI is a new promising tool in optical measurements. The monograph 
presents the latest results confirmed by experiment and intensive numerical and theo-
retical modeling.  

Since the OVs are singular objects within the scalar field the light waves are repre-
sented by complex amplitude function (scalar approximation) and therefore, through 
this work, the light intensity is understood as square of modulus of the light complex 
amplitude. 

The monograph is organized as follows: Chapter 2 gives some basic information 
on OVs and more specific on OVs diffraction by half-plane and slit. Chapter 3 de-
scribes the generation and detection of the OVs. Special attention is put on two sub-
jects. The first are holographic techniques that are not only popular, but also used by 
the author. The second is the three plane waves method which is fundamental for OVI 
and was investigated by the author. Chapter 4 is devoted to OVI and presents the re-
sults and ideas by the author and his coworkers. Chapter 5 contains a short summary 
of the whole monograph. Appendix A gives a short overview of Gaussian beam fam-
ily functions, which are used for laser radiation modeling and play an important role in 
Singular Optics. Appendix B contains a list of the most important symbols and abbre-
viations used throughout this work. 

 



2. Optical vortices 

2.1. Introduction 

This chapter focuses on the properties of optical vortices. The OVs are important 
geometric features of the phase distribution of light beam. A complete analysis of 
geometry must include other possible topological phase structures, such as edge dislo-
cations, saddle points, maxima and minima. Within the given wavefront all these 
structures have subtle influence on each other and play an intricate game. A detailed 
study of these dependences can be found in the literature (see, for example, Nye et al. 
(1974), Freund (1995), Nye (1999)).  

The multiplicity of papers devoted to optical vortices as well as the variety of prob-
lems they deal with make a complete presentation of OVs properties impossible. The 
facts given below were selected because they were either fundamental or important for 
further consideration or were a subject of author’s works. More about OVs statistical 
properties can be found in [Berry 1978, Freund 1994, 1995], phase singularities in non-
monochromatic fields [Gbur et al. 2002, Popescu et al. 2002, Berry 2002], phase singu-
larities and quantum mechanics [Barnett et al.1994, Allen et al. 1996, Abramochkin et 
al. 1996, Courtial et al. 1997, Arlt et al. 1999], phase singularities in non-linear media 
[Ackemann et al. 1995, Dholakia et al. 1996, Petrov et al. 1997].  

2.2. Geometrical properties of optical vortices  

The existence of an optical vortex (OV) in a wave field causes the presence of an 
isolated singular point (vortex point) in phase distribution. The simplest expression 
that describes such a wavefront (monochromatic and linearly polarized), which satis-
fies the wave equation is [Freund et al. 1994] 

 . (2.1) )}(exp{)(),,,( zktiysgnixtzyxU m −+= ω

In the xy plane (where z is the axis of propagation of singular point in the local co-
ordinate system) the function (2.1) satisfies Laplace’s equation and can be written as  
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 ,  (2.2) }exp{),()()0,0,,( 0 θmsgniyxUysgnixyxU mm =+=

where 22
0 ),( yxyxU += , θ  is an argument of )( ysgnix + , and sgn equals 1 for 

positive OV and –1 for negative OV, respectively. The integer parameter m indicates 
the value of the topological charge of OV. 

Since formula (2.2) represents the monochromatic wave, the phase factor 
)}(exp{ zkti −ω  is neglected.  

Figure 2.1a shows a plot of equiphase const=θm  lines given by expression (2.2). 
Figures 2.1b, c show this plot for real beams. The equiphase lines converge to a single 
point – the singular point. When the sign of OV is positive 1+=sgn  then the phase 
circulates counterclockwise, otherwise it circulates clockwise. This definition depends 
on the direction along which the optical vortex is observed; however, in the case of 
two-dimensional sections, considered in this monograph, such a definition is unique 
and widely used in the literature. The general three dimensional case has been pre-
sented by Nye (1999). At the singular point the phase is undetermined. Since the com-
plex amplitude function must be single valued, the light amplitude at the position of 
singular point is forced to zero – in equation (2.2) 0)0,0( === yxU . Figures A2, A3, 
in Appendix A, show the intensity distribution of different optical beams carrying 
OVs. The other way to find the positions of a singular point is to plot the lines given 
by the set of equations 

 0)Re( =U , (2.3a) 

 0)Im( =U . (2.3b) 

The OV position is determined by the intersection point of the above lines1 (zero 
lines shown in Fig. 2.2). The other characteristic feature of light beams carrying OV is 
their helical wavefront shape (Fig. 2.3). 

So far wavefronts possessing single (including multi-charge), highly symmetrical 
OV were considered. In practice, OVs are not of perfect symmetry. Moreover, the real 
wavefronts usually contain a number of adjacent OVs. The simplest expression repre-
senting wavefronts with N OVs (in the xy cross section) is [Freund et al. 1993]  

 , (2.4) ∏
=

+=
N

n
nnn YiXyxU

1

)(),( ε

 

                                                      
1 This set of equations can also be written when zero is replaced by some other arbitrary number 

const: Re(U) = const and Im(U) = const. 
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 )]sin()()cos()[(),( nnnnnn yyxxayxX αα −+−= , (2.4a) 

 )]cos()()sin()([),( nnnnnnnn yyxxayxY σασα +−++−−= , (2.4b) 

 

Fig. 2.2. Plot of lines Re(U) = 0 solid lines and Im(U) = 0 dashed lines for wavefront given 
by equation (A.7) a) m =1, sgn = 1; b) m = 3, sgn = –1 

 

Fig. 2.3. Sketch of helical wavefronts [Basisty et al. 1995] of topological charge 
a) m = 1; b) m = 3 

nε  are parameters describing OV anisotropies (Fig. 2.4) – parameter ε  can be nega-
tive and then the OV has negative topological charge,  are amplitude scale factors 
and 

na

nσ  is the skew angle different from zero if the x and y axes are non-orthogonal. 
The OVs with non-unit ε  and/or non-zero σ  will be called anisotropic. The angle nα  
is measured counterclockwise between the internal dislocation x-axis and the labora-
tory x-axis; are coordinates of n-th OVs. Formula (2.4) can be written as fol-
lows 

nn yx ,

 , (2.5) )},(exp{),(exp),(
11

yxiyxUiryxU NN

N

n
n

N

n
n Φ=

⎭
⎬
⎫
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==

ϕ
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where 

 222
nnnn YXr ε+= , (2.5a) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

nn
n X

Yεϕ atan , (2.5b) 

 , (2.5c) ∏
=

=
N

n
nN rU

1

 . (2.5d) ( ) ∑
=

==
N

n
nN U

1

arg ϕΦ

The above formulas show that within a given wavefront, OVs affect each other. 
This interaction is limited by a number of topological constraints, which will be 
briefly discussed below. Another description of general anisotropic OVs can be found 
in papers by Schechner (1996) and Freund et al. (1997). 

 

Fig. 2.4. Equiphase lines of an anisotropic single optical vortex 
a) σ  = 3; b) σ  = 1/3 

It is worth noting that expression (2.4) does not meet Laplace’s equation (but the 
generalized term for single optical vortex yix ε±  does). However, in this section 
general topological features of OVs are considered. Since these features are common 
for various scalar physical fields the non-optical expressions can also be used for their 
representation. In fact, expression (2.4) is the simplest expression that describes vor-
tices and preserves their fundamental topological properties in a scalar field (in xy 
cross section). All properties illustrated with this expression are also present in more 
specific cases (including optical fields). Moreover, as has been shown by Freund et al. 
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(1993), equation (2.4) is an arbitrary close approximation to a valid solution of the 
wave equation (a combination of valid laser modes) over an arbitrary volume of space. 

In general, within a given wavefront, the equiphase lines can form closed curves 
(anisotropic OVs), which end at the phase singularities or at the field boundary. Figure 
2.5a shows two isotropic OVs – one with positive and other with negative topological 
charge and Figure 2.5b shows two isotropic OVs of positive topological charge. The 
equiphase lines resemble electric field lines between two electrical charges; however, 
this analogy is not exact in the case of anisotropic OVs, since there are no anisotropic 
elementary electric charges. 

 

Fig. 2.5. Equiphase lines of two vortices 
a) one negative and one positive vortex; b) two positive vortices 

 
 
 
 
 
 

Fig. 2.6. Two OVs moving along parabola 
and colliding at its vertex x

y

z

 

As was mentioned above formulas (2.4), (2.5) exhibit the mutual influence be-
tween the OVs seeded in the given wavefront. Figures 2.5 illustrate this fact (by anal-
ogy to electrical charges). The interactions between OVs influence their dynamics as 
was studied in a number of papers (see, for example, Nye et al. (1974), Indebetouw 
(1993), Roux (1995), Vaupel et al. (1995), Rozas et al. (1997). Figure 2.6 shows an 
example of the trajectory of two OVs, which can be described by the following equa-
tion [Berry 1981] 
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 . (2.6) )}(exp{)]()([ 22 tzkiyixixkitckU ωβα −+−−−=

The OVs propagate along the parabola and collide at the parabola vortex.  
Mutual relations between OVs are even more rich. The sign principle introduced 

by Freund et al. (1994) gives a deeper insight into the OVs net structure.  
The sign principle. Within a given wavefront the vortices on any given neighbor-

ing crossings of 0)Im(and0)Re( == UU  must be of opposite sign. 
The sign principle has a number of important implications. For example, the sign 

of a single vortex determines the sign of any other vortex within the given wavefront. 
Moreover, the sign of the first optical vortex created during the field evolution will fix 
the signs of all future generated vortices. Although the above formulation is limited to 
OVs of unit topological charge (i.e. generic OVs), it can be easily adopted to a more 
complex situation. The multi-charge vortex is unstable, so by adding a small perturba-
tion to the field it can be separated into a number of single vortices. After separation 
one can apply the sign principle. A similar trick can be applied with respect to isolated 
vortices [Freund et al. 1994]. 

2.3. The angular momentum 

The light beam can carry non-zero angular momentum [Allen et al. 1999, Allen 
2002]. The mechanical effects of transfer of angular momentum associated with light 
polarization were first measured by Beth (1936) [Allen et al. 1992]. Beth used a half-
wave plate suspended on a fine quartz fiber. The circularly polarized beam passed 
through the plate, which transformed the right-handed circular polarized light into left-
handed circular polarized light. The measured torque of the half-wave plate was evi-
dence of angular momentum transfer and was in good quantitative agreement with the 
theory. The beams carrying OVs also possess non-zero angular momentum. Thus, the 
total angular momentum of light has two components which are called, by analogy to 
the components of total electron angular momentum in atom, the spin and orbital an-
gular momentum. However, in the case when the paraxial approximation is not valid, 
the separation of these two components may be a difficult task [Allen et al. 1999].  

The transfer of orbital angular momentum between light and matter was observed 
for the first time in the experiment reported by He et al. (1995). A vortex beam was 
generated using a special blazed hologram. Then the vortex beam was directed (by 
microscope) into a liquid containing absorptive particles. The particles rotated in the 
direction determined by the sign of OVs topological charge, and rotation was observed 
by microscope.  

The nonzero angular momentum means that OVs in free propagation are stable 
features. However, the vortex free beams can also carry nonzero angular momentum, 
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which was reported by Courtial et al. (1997). This fact makes the relation between 
OVs and light beam angular momentum more complicated, which was illustrated in 
the paper by Soskin et al. (1997), where the propagation of the combination of Gaus-
sian beams with OVs and without OVs is analyzed. 

2.4. Vortex diffraction 

In this section, the fundamental problem in physical optics, i.e. the diffraction phe-
nomenon, will be discussed. The important question is: how do the OVs behave while 
the carrier beam is a subject of diffraction? This question is studied in the most ele-
mentary case of diffraction by half-plane and the slit. The diffraction of pure Gaussian 
beams by half-plane was studied in the paper by Pearson et al. (1969). A more rigor-
ous approach was recently presented by Peterson et al. (2002). Gaussian beam diffrac-
tion was also studied for circular apertures and thin lenses using both numerical and 
analytical methods (see, for example, Krauss (1988), Toker et al. (1993), Gu et al. 
(1997)).  

The simplest diffraction process, i.e. diffraction of Gaussian beams with OVs on 
a half plane and a slit, was studied by Masajada (2000a, b, c). The calculations were 
performed both numerically and analytically. The analytical calculations were based on 
scalar Kirchhoff diffraction integral in Fresnel approximation. The reliability of a simple 
numerical algorithm used for computer calculations is shortly discussed in section 3.2.4. 

The Fresnel diffraction integral for the one dimensional slit with edges at position 
q and h with respect to the x-axis has the form [Goodman 1968] 

 ∫ ∫
∞

∞− ⎭
⎬
⎫

⎩
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⎧

−+−
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=
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h
ii
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Diii dydxyyxx
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kizyxUΩzyxU ])()[(

2
exp),,(),,( 22 , (2.7) 

where: coordinates  refer to the image plane, iii zyx ,,
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i
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zkiΩ }exp{−

= , (2.7a) 

),,( DzyxU  is the complex amplitude of diffracted beam (A.7) in object plane. For 
calculation purposes the binomial  can be expanded and the complex 
amplitude U becomes 
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where  
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In the case of m = 1 the integral (2.7) can be rewritten as 

 ]11[),,( yxyxiii UUsgniUUTzyxU += , (2.9) 

where 
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A is given by formula (A.9) and function erf (z) is defined as [Erdèlyi et al. 1953] 

 ∫ −=
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22)erf(
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. (2.9l) 

In the case of half-plane, ∞→h . The limit ∞→h  can be evaluated under the 
condition α→)arg(H  and |α | < π /4 [Erdèlyi et al. 1953]. The expressions for Uy and 
U1y become 
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In order to calculate the integral (2.7) for the case of higher values of topological 
charge m, the iteration formula, which is briefly derived below, is necessary. First, the 
following expression can be written 
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Finally, the following iteration formula can be written 
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In the case of OV with charge two the integral (2.7) has the solution 
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In the case when h → ∞ the expression for is yU 2
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In the case of optical vortex with charge three the integral (2.7) has the solution 
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Obviously, the above formulas are complicated and it is rather hard to conclude 
about the singular point behaviour under diffraction. Nevertheless, these formulas can 
be used for numerical studies and can be treated as a reference for testing the numeri-
cal procedures. 

2.4.1. Examples 

In this section, a number of numerical examples based on formulas derived in the 
previous paragraph are presented. Numerical calculations were performed in two dif-
ferent ways. In the first, formulas (2.9)–(2.15) were used, in the second, the Fresnel 
diffraction integral (2.7) was computed numerically. An agreement between results 
obtained by both methods showed that formulas and numerical integration were put 
into the program in the right way. Additionally, calculations were made for each of the 
cases, assuming either a wide open slit or a half-plane being shifted down by a large 
distance. Such cases are equivalent to the free space propagation and as expected, the 
calculated diffracted beams were the same as the incident one, but scaled.  

In the first example, the focused Gaussian beam with single OV diffracted by half-
plane is considered. The beam parameters are mm15,mm04.00 == Dzw  (see Appendix 
A); where  is a distance between beam waist plane and half-plane edge. The distance 
between half-plane and image plane is 500 mm. Figure 2.7 shows the Gaussian beam 

Dz
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intensity and the plot of zero lines. Figure 2.8 shows the localization of the OV (in image 
plane) with respect to the position of half-plane edge. The results are not surprising. The 
vortex position in the image is almost central for large negative value of q, when the cen-
tral part of the beam is widely open and the diffraction by edge occurs in area of small 
light intensity of the incident beam. When the edge stops the beam in the area of highest 
intensity (q is equal to about –0.1 mm or less) the vortex shift is larger. The vortex shift 
 

 

Fig. 2.7. The plot of focused Gaussian beam with single OV. The beam is plotted in half-plane plane. 
a) intensity, b) real (solid) and imaginary (dotted) zero lines. Values are given in millimeters 

 

Fig. 2.8. The plot of the OV position in image plane against the edge position of the half-plane 
(measured along y-axis). a) x-coordinate; b) y-coordinate. The distances are given in millimeters 

occurs in both directions x and y, but these shifts differ in character. When q crosses zero 
value the half-plane stops the central beam point, but it does not stop the vortex point. It is 
still reconstructed at the diffraction image, but its shift from the central point increases 
rapidly. The last three points in Figure 2.8 are plotted for q = (0.001, 0.002, 0.003) mm 
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and the y coordinates are y = (–2.4, –2.7, –3.3) mm, respectively. 
This shows that the OV is a global, and not a point (i.e. strictly bounded to the vor-

tex point) phenomenon. Increasing q value beyond the values shown in Figure 2.8 
causes a rapid shift of the vortex point towards negative y-values. This global charac-
ter of the OVs will be illustrated in the last part of this section by analyzing the dif-
fraction by a ring. Geometrically the vortex point shifts into the shadow part of the 
image. Hence, when parameter q becomes zero, localization of the vortex point be-
comes difficult. The shift along the x-axis is due to the beam phase distribution asym-
metry (Fig. 2.7b); i.e. when part of the beam is covered by a half-plane the phase dis-
tribution of the open part of the beam has broken symmetry. As expected, the x-shift is 
great when parameter q is close to zero; where the open beam asymmetry is higher, 
but not exactly for q = 0, when the beam intensity is close to zero.  

 

Fig. 2.9. The plot similar to that of Figure 2.7 but for quasi-plane Gaussian beam 

The next example is a nearly plane Gaussian beam with single OV (Fig. 2.9). The 
beam parameters are mm.3000,mm055.00 == Dzw  The diffracted beam behavior is 
more complicated. When gradually stopping the beam with the half-plane one ob-
serves, in the image plane, a different number of vortex points. For some values of 
parameter q the new vortices are born in pairs of opposite topological charges and for 
some other values of q these extra vortex pairs annihilate. Figure 2.10 shows an ex-
ample of such behavior. The vortex points are exposed by interference images as 
characteristic fork-like structures. The process of vortex creation is particularly strong 
when the half-plane edge covers an area were the light intensity is maximal. In the 
case of a quasi-plane beam such an area is wide and relatively distant from the vortex 
point. The creation and annihilation of new vortex points do not wipe away the origi-
nal vortex point, which moves in a similar way as in the previous case. However, in 
this case the original vortex path is slightly disturbed by the presence of other vortex 
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points. It is worth noting that increasing the distance between half-plane and observa-
tion plane changes the number of vortex points.  

 

Fig. 2.10. Interferometric images of the quasi-plane Gaussian beam with single OV 
diffracted by the half-plane. The distance between half-plane and observation plane is 500 mm. 
The diffraction images were calculated using formulas (2.7)–(2.15) and the off-axis plane wave 

was added numerically to calculate the interference fringes. Characteristic fork-like fringe structures 
(pointed by white circles) indicate the location of OV. a) q = –8; b) q = –5; c) q = –2; d) q = –0.3 

A further observation plane corresponds to a lower number of extra vortex points. 
This shows that the vortex reconstruction process is complicated. The light energy of the 
plane beam is spread over some larger area compared to the focused beam, and it seems 
to be the main reason for its different behavior. The other reason is that for the strongly 
divergent beam, the far field area is closer than for the almost flat phase front. When the 
half-plane edge moves to the beam center (where light intensity is low) the diffraction 
effects that are responsible for the creation of new vortices have smaller influence and 
no new vortices appear. When the half-plane edge goes beyond the vortex point in the 
incident beam the vortex point in the observation plane “flies” rapidly along the y-axis 
into the dark part of the image, as in the case of focused Gaussian beam with OV.  



 23 

 

Fig. 2.11. The plot of OV position in image plane against the slit left edge position (along y-axis). 
The slit width is 1mm. When q = 0.5 the vortex point lies at slit center. The incident beam is shown 

in Figure 2.7. a) x-coordinate; b) y-coordinate. Values are given in millimeters 

 

Fig. 2.12. The plot of OV position in image plane against the slit left edge (along y-axis). 
The slit width is 0.05 mm. When q = 0.025 the vortex point lies at slit center. 
The incident beam is shown in Figure 2.7. a) x-coordinate; b) y-coordinate. 

Values are given in millimeters 

Next example is an image of the focused Gaussian beam with single OV diffracted 
by a slit. The beam parameters are as in the first example. Figures 2.11, which have 
the same form as Figures 2.8, show the OV path in respect of parameter q describing 
the position of the slit left edge. The slit has 1 mm in width and is much wider than the 
beam spot (Fig. 2.7a). That is why diffraction can be considered as two independent 
cases of diffraction by two half-planes. When the parameter q is –0.5 mm, the incident 
beam center (vortex point) coincides with the slit center. When q = 0, the left edge of 
the slit coincides with the vortex point. When q = –1, the right edge of the slit coin-
cides with the vortex point. Comparison between Figures 2.8 and 2.11 shows that the 
dynamics of the vortex point is similar in both cases. It should be kept in mind that the 
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figures are plotted with different ranges of variable q and Figure 2.11 consists of two 
parts representing diffraction by both edges of the slit. In Figure 2.8 negative values of 
coordinate x (for small q) correspond to negative values of coordinate y, while in Fig-
ure 2.11 the negative values of coordinate x correspond to positive values of coordi-
nate y. This is due to different topological charge of the OV carried by the incident 
beam in the first and the third example. Figures 12 show one more interesting case. 
The slit width is 0.05 mm and is smaller than beam radius. Now at the central posi-
tions of the incident beam diffraction occurs on both slit edges. The beam center hits 
the slit center when q = 0.025 mm. The plot looks more smooth when compared to 
that from Figure 2.11. In Figure 2.11 there is a wide area of zero shift when the beam 
goes between slit edges without touching them. In the present case vortex reaction is 
more pronounced in both x and y directions.  

 

Fig. 2.13. Gaussian beam with single OV (Fig. 2.7) diffracted by a slit of 0.05 mm width. 
For q = –0.025 mm the vortex point lies at slit center. For smaller q the vortex point moves towards 

the slit edge. The figures are plotted in such a way that vortex point lies in their center. 
When incident beam moves off the slit center the vortex point moves towards the dark part 
of the diffraction image. The intensity asymmetry in the first figure, when vortex point lies 

at the slit center is due to broken radial symmetry of Gaussian beam which is partially covered 
by the slit. The vortex with opposite sign gives opposite orientation of this asymmetry 

Consider the beam approaching the slit edge from the shadow side. The question 
is: when does the vortex carried by the beam start to interfere with the slit? Theoreti-
cally, a perfect vortex beam interferes with the slit at any distance from the beam cen-
ter. However, this fact has no practical meaning if a vortex point is apart from a slit 
center by a distance a bit larger than half of the slit width. If this happens the vortex 
point is reconstructed by diffraction deeply in the dark part of the diffracted beam and 
cannot be detected. When the beam moves towards the slit center the vortex point 
approaches the optical axis of the image plane. When passing the slit center the vortex 
point goes towards the dark part of the diffraction image, but on the opposite side. In 
the case when the narrow slit center coincides with the vortex point position, the open 
part of the incident beam has lower symmetry. The symmetry is still enough to keep 
the vortex point at the image center, but the intensity distribution of the diffracted 
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beam is no longer symmetrical. Figure 2.13a shows the intensity plot for this case. The 
image is asymmetrical and when changing OV charge to its opposite, the asymmetry 
of the diffraction image has the opposite orientation. Figure 2.13 shows also how the 
vortex point moves towards shadow part of the image, when the slit moves. 

 
Fig. 2.14. Schematic plot showing the reconstruction of the vortex point when the Gaussian beam 

with single OV is diffracted by a ring 

 

Fig. 2.15. The plot of lines Re(0) = 0 (solid line) and Im(0) = 0 (dotted line) 
for the focused Gaussian beam with single OV diffracted by ring. 

a) the circular stop of radius 0.35 mm which covers more than 90% of the incident beam; 
b) ring with inner radius 0.15 mm and external radius 0.2 mm; c) ring with inner radius 0.3 mm 
and external radius 0.35 mm. The cross section of solid and dotted line in the middle of the plot 

shows that the OV is not destroyed by diffraction and preserves its position. 
In the marginal part of the figures the density of equiphase lines is too high to plot it properly 
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Fig. 2.16. The experiment showing the diffraction of a Gaussian like beam with single OV 
generated by synthetic hologram (Fig. 3.1d). a) The intensity distribution at diffraction plane; 

b) diffraction by small radius narrow ring; c) diffraction by large radius narrow ring 

The diffraction of Gaussian beams carrying optical vortices of higher topological 
charges results in more intricate behavior. The multi-charge OV is not stable phe-
nomenon and splits into single OVs when introduced to a small perturbation. A num-
ber of new born vortices are also present in the diffracted beam. This results in com-
plicated dynamics in the diffraction image. Some examples are given in Masajada 
(2000b). For the author the present investigation was an introduction to the more ad-
vanced problem of the diffraction of Gaussian beams with OVs by microstructure 
[Masajada (2000c)]. This in turn has an important practical application in microscopy 
(see, for example, section 4.5).  

The ring or circular stop are objects where the global character of the OVs can be 
illustrated in the simplest way. Figure 2.14 shows that at the central point (in the im-
age plane) the contribution of CAVs having the same amplitude, but phases going 
through full angle adds to zero. Since the whole image can be reconstructed from such 
sums the intensity at the central point is equal to zero and there is a single vortex point 
there. Figures 2.15 and 2.16 show results of calculations (numerical integration) and 
experiment for the Gaussian beam with single OV stopped by ring.  
 



3. Generation and detection of optical vortices 

3.1. Introduction 

Several methods have been developed for generation of optical vortices. Two of 
those of methods are of special interest to the author, i.e. synthetic holograms and the 
three plane waves interference. The most popular method of generating optical vor-
tices uses synthetic holograms. The aforementioned method is very flexible, and in the 
case of low spatial frequency holograms, it is available without special printing 
equipment. The manufacturing of the highest quality synthetic holograms demands an 
advanced and expensive technology. The generation by three plane waves interference 
can also be realized in a simple and inexpensive way; generating a highly controllable 
net of single OVs, which can be used in optical metrology.  

Apart from the holographic and three plane waves methods, several other ways of 
OVs generation were proposed and tested in experiments. These are: phase converter 
made with cylindrical lenses [Allen et al. 1992, Allen et al. 1999; Courtial et al. 1999, 
O’Neil et al. 2000], generation by spiral phase masks [Khonina et al. 1992, Beijers-
bergen et al. 1994, Turnbull et al. 1996, Allen et al. 1999], laser modes separation 
[Coullet et al. 1989, Brambilla et al. 1991, Coats et al. 1994, Harris et al. 1994a, 
Abramochkin et al. 1997] and light propagation through non-linear media [Indebe-
touw et al. 1994, Ackemann et al. 1995].  

3.2. OVs generation by synthetic holograms 

It is possible to design holograms that produce beams carrying single or multiple 
OVs, while meeting some specific conditions regarding their geometry. There are 
a number of synthetic hologram fabrication methods that can be used for this purpose. 
The low quality holograms can be printed onto foil with a high resolution laser or ink 
printer. Following this method one can get holograms that are sufficient enough for 
simple demonstrations in student laboratories. The highest quality holograms are plot-
ted using electron lithography (see, for example, Turunen et al. (1997)). The literature 
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concerning synthetic holograms is vast (see Soifer (2001) for references). There are 
also a number of works devoted to synthetic holograms that generate phase singulari-
ties (see, for example, Arlt et al. (1998), Vasnetsov et al. (1999)). This subject cannot 
be fully presented in this short monograph. The author has focused on aspects that are 
more widely discussed in the literature or are the subject of his particular interest. 

3.2.1. Theory 

Consider the interference pattern on a screen in the x-y plane when a plane refer-
ence beam  

 )}(exp{ 00 δ++⋅= zzxxpp rkrkiUU  (3.1) 

is incident at an angle )./asin( kkx=ϑ  Here, 0δ  is a relative phase shift between ref-
erence and object beam. The object beam is a Gaussian beam that carries a single OV 
(see Appendix A, eq. (A.8)). The light intensity on a screen at z = 0 will be 
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The last term in equation (3.2a) expresses the interference pattern, which should 
produce the beam carrying OVs. The first two terms can be neglected because they 
produce an amplitude background of the interference pattern. For the same reason, the 
amplitude factor in the interference term can be neglected. To neglect the Gouy phase 
term  [Siegman 1986], the condition for beam curvature GΦ ∞=)(zR  is assumed. 
Now the hologram transmission is [Vasnetsov et al. 1999] 

 ))cos(1(
2
1

0δϕ +−−= xx rkT . (3.3) 

Formula (3.3) describes the fringe pattern to be printed onto the hologram. If such 
a hologram is reconstructed with a Gaussian beam, the field just behind the hologram 
will be 
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(3.4)

 

where A0 is the amplitude of the reconstructing beam and wz is its transverse dimen-
sion. The zero order beam is vortex free; however, the first-order beams contain 
a phase component }exp{ ϕi±  characteristic of helical beams.  

To print the sinusoidal fringes requires high resolution lithography. For most pur-
poses it is enough to produce binarized holograms. The aforementioned binarization 
means here that in areas where light intensity is higher than half of the maximum, its 
value is made equal one, and in other cases, the intensity is put to zero. After binariza-
tion, the transmission of the hologram under consideration can be written as [Hecken-
berg et al. 1992] 
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Fig. 3.1. Holograms plotted using equations (3.3) (cases a, b, c) and (3.5) (case d). 
a) ; b) ; c) ; d)  and the number of terms in sum (3.8) is 9 0=δ 2/πδ = πδ = 2/πδ =0 0 0 0
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Figure 3.1 shows examples of holograms given by equations (3.3) and (3.5). 
In the reconstruction of binarized holograms, numerous beams corresponding to 

subsequent diffraction orders are generated. The n-th order beam can be described as 
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Each term contains the factor }exp{ ϕni , which is characteristic of the helical beam of 
charge n and propagating at an angle )/asin( kkn xn =ϑ . It can be shown that the n-th 
order diffracted beam (3.6) generated by the hologram given in formula (3.5) (under 
Gaussian beam illumination) is closely related to Laguerre–Gauss beams with n-th 
order OVs (A.5) [Heckenberg et al. 1992]. 

To produce the hologram which generates in the first diffraction order the beam 
carrying OV of charge m, the fringe equation (3.3) has to be written as 
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and formula (3.5) becomes 
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Figure 3.2 shows two examples of holograms given by equations (3.7) and (3.8). 

 

Fig. 3.2. Holograms printed using equations (3.7) (case a) and (3.8) (case b). 
The OV charge is m = 5. The other parameters are as in Figures (3.1b) and (3.1d), respectively 

So far, the off-axis holograms have been considered. The corresponding on-axis 
holograms can also be manufactured. Figure 3.3 shows examples of their fringe pat-
tern. Such holograms have all the disadvantages common to on-axis holograms 
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[Goodman 1968] and are not widely used. In the book by Vasnetsov et al. (1999) tran-
sition from the pattern shown in Figure 3.3 to the patterns shown in Figure 3.1 or Fig-
ure 3.2 by the increase of the reference wave angle is studied in detail. 

 a) b) 

 

Fig. 3.3. The on-axis holograms generating optical vortex with a) charge m = 1 and b) m = 5. 
In the case of on-axis holograms even small wavefront curvature has visible influence 

on fringe geometry (contrary to off-axis case). For this reason the extra term  (c < 1) 
was added to the cosine argument in formulas (3.3) and (3.7). If c = 0 one gets 

a star like structure with straight arms. Formulas (3.4) and (3.8) cannot be used if the non-zero 
curvature of object wavefront is to be considered 

)( 22 yxc +

3.2.2. OVs detection with interferometer 

The obvious way to detect the OVs within the given beam is to use an interferome-
ter. The interference pattern of a beam carrying OVs with a plane wave was calculated 
in section 3.2.1 devoted to the synthetic holograms; the hologram is in fact the inter-
ference pattern between the wavefront carrying OVs and plane wave. Figure 3.4 
shows examples of interferograms obtained by the interference between the beams 
generated by the synthetic hologram shown in Figure 3.1d and the plane wave. The 
characteristic spiral (for the coaxial plane wave) and fork-like fringe (for the off-axis 
plane wave) indicates the presence of optical vortices in the reconstructed beam.  

Apart from the interferometric techniques, there are some other methods for the 
OVs detection and analysis; however, they are rarely used. An example of such 
a method is the use of the cylindrical mode converter [Tamm et al. 1990b]. This 
method was used to demonstrate the switching between the states of opposite vortex 
helicity in laser beams. The OVs can also be detected using the correlation technique. 
This method uses the appropriate synthetic hologram for OVs generation as a matched 
filter [Heckenberg et al. 1992, Tang et al. 1994]. In addition to OVs detection, the 
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method supports the way for the vortex charge recognition; however, it fails in OV 
localization. An important advantage of this method is that no reference beam or inter-
ferometric system is necessary. Another example is the use of the Shack–Hartmann 
detecting system, which is described in paper by Aksenov et al. (2002). 

The other question is about the OVs localization in the interference field of three 
plane waves. Such OVs net is a base for a new interferometer presented in Chapter 4. 
In subsection 4.3, several methods are discussed for this purpose.  

a b

c d

e f

 

Fig. 3.4. Reconstruction of the hologram shown in Figure 3.1d. 
a) illumination with expanded laser beam (the beam is wider than diffractive structure). 

The first and the second diffraction orders are visible; b) The first order diffraction beam 
(illumination with narrow Gaussian laser beam); c) The interferogram of the first order 

diffraction beam (Figure b) with coaxial plane wave. The characteristic spiral pattern is present; 
d) The interferogram of the same diffraction beam but with off-axial plane wave. The characteristic fork 

pattern is present; e) The second order diffraction beam. It contains two single OV, 
which get separated while propagating; f) the off-axis interferogram of the second order diffraction beam 
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3.2.3. Experiment 

Standard computer printers were used to print hologram masks in the course of this 
experiment. In our experience [Przerwa-Tetmajer 2002] the best results are achieved 
by using an ink printer in color mode. In this mode, the foil is covered more uniformly 
than in black and white mode used in an ink or laser printer. The holograms that gen-
erate a multi-vortex beam were designed by simply fitting a few holograms generating 
a single OV. The masks were reduced optically twenty times and transferred onto 
a holographic plate with the devoted optical device. In this way, the amplitude holo-
grams were manufactured. If necessary, the holograms were blazed using a bleaching 
technique. The blazed holograms have better diffraction efficiency.  

If high quality holograms were needed one more step was applied. In order to get 
high fringe densities, the image obtained by low density synthetic holograms was used 
as an object in the classical holographic system. In this way, high density amplitude 
holograms were produced, with quasi-sinusoidal fringe geometry. The holograms 
manufactured in this way were sufficient for simple experiments and for demonstra-
tions in student laboratory. Figures 3.4, 3.5 and 3.6 show examples of images obtained 
from such holograms.  

 

Fig. 3.5. a) Fringe pattern of hologram generating four vortices in quadruple geometry 
and its image shown in Figure b. In the image two diffraction orders are visible. In each order four 
dark spots indicate single optical vortices (multi-charge in order higher than first); c) Fringe pattern 

for four vortices generation in non-quadruple geometry and its image shown in Figure d. 
Images (b) and (d) were taken for the same distance between hologram and image plane. 

The non-quadruple geometry of OVs is less stable (they start to overlap) than the quadruple system. 
This shows that in some respect OVs behave like electrical charges [Bazhenov et al. 1992] 
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Fig. 3.6. a) The left side of the image generated by blazed hologram whose fringe pattern 
is shown in Figure 3.1.d. Five diffraction orders are visible; b) The image of hologram that 

was registered from the hologram shown in Figure 3.1d, as is described in the text. 
Weak image of the secondary order beams shows that the obtained hologram is quasi-sinusoidal. 

Contrast of the second order beam was improved for printing 

3.2.4. Image evaluation 

In most cases, the image reconstructed from synthetic holograms cannot be calcu-
lated analytically. Moreover, for the number of cases that can be studied analytically, 
the final formulas are too complicated to give any insight regarding image structure. 
Nevertheless, analytical results can be still useful for testing the numerical methods. In 
paper by Masajada (1999), the testing of a simple numerical procedure for the evalua-
tion of images reconstructed from holograms was reported. The test hologram shown 
in Figure 3.7 was a simplified version of the hologram shown in Figure 3.1d. The 
simplification allows the direct use of the Fresnel diffraction integral (2.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.7. Simplified hologram  

The simplified hologram produces OVs (Fig. 3.8). By comparing the results ob-
tained analytically and by numerical integration, the accuracy of numerical algorithms 
can be investigated for diffractive elements that generate OVs. 
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a b

 

Fig. 3.8. The first order diffraction beam obtained from the simplified hologram shown in Figure 3.7. 
a) the intensity image; b) the off-axis interferogram 

In order to analytically calculate the image from the hologram the latter was di-
vided into rectangular (basic) elements, as shown in Figure 3.7. Each basic element is 
described by a product of two rectangular functions 

 ∏ ∏ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

y

y

x

x

width
centery

width
centerx , (3.9) 

where  are coordinates of mass center of the given basic element along 
x and y axes, respectively, and  are corresponding widths. Calculating 
the integral (2.7) for the j-th basic element leads to the formula (assuming the illumi-
nation by monochromatic coaxial plane wave) 
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Ci, Si are Fresnel cosine and sine integrals [Goodman 1968], πξ /2= , 
are left and right limits of the j-th basic element, sy

jj rxlx ,  

j, dyj are up and down limits of the 
j-th element (Fig. 3.7).  

The total complex amplitude at image point P for the simplified hologram can be 
expressed as 

 , (3.11) ∑
=

+=
N

j
jj UIiURPU

1

)()(

where N is a number of basic elements. 

 

Fig. 3.9. The scheme for numerical calculations 
of the hologram image at the given point P 

The numerical calculations were performed along the scheme illustrated in Figure 
3.9. The real and imaginary parts of light complex amplitude were calculated from the 
formulas [Masajada et al. 1994]  
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Fig. 3.10. Image of hologram shown in Figure 3.7 reconstructed with plane wave 

– analytical calculations. a) General view (zero and first diffraction orders); 
b) The view on first diffraction maximum; c) The plot of lines Re(U) = 0 (solid) 
and Im(U) = 0 (dashed). Intersection points determine the singular point position 

Figure 3.10 shows the result obtained after analytical calculations for the simplified 
hologram shown in Figure 3.7. Figure 3.11 shows the plot of lines Re(U) = 0 and Im(U) 
= 0 obtained for the same hologram after numerical calculations. As expected (see the 
interferogram in Figure 3.8b), two OVs are presented in each figure; their location and 
local line geometry are similar. Small differences are caused by two different ways of 
hologram sampling for numerical and analytical calculations, meaning that the simple 
numerical algorithm preserves the existence, location and local structure of the OVs, at 
least with the same accuracy as calculations performed by the Fresnel diffraction inte-
gral. Figure 3.12 shows the numerical results for the hologram shown in Figure 3.1b. To 
preserve the sinusoidal character of amplitude part of hologram transfer function, formu-
las (3.12) were transformed to the form 
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 , (3.13b) ∑∑
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where  is the pseudoamplitude (i.e. absolute value of the amplitude) at the i, j 
point P in hologram plane multiplied by hologram amplitude transfer function. The 
calculated images of the first order diffraction beams contain single zero amplitude 
points in their centers (Fig. 3.12). There is no image of the second order diffraction 
beam as is expected for such holograms. The light intensity around the single OV has 
an almost circular symmetry; however, the influence of the rectangular geometry of 
the whole hologram is still visible.  

jiA ,

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.11. The plot of lines Re(U ) = 0 (solid) 
and Im(U ) = 0 (dashed). 

The intersection points determined 
the singular point. Numerical calculations 

for hologram shown in Figure 3.7 

 

 

Fig. 3.12. The intensity of hologram shown in Figure 3.1b 
and calculated with formulas 3.13a and 3.13b 
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It was not the author’s aim to consider all aspects of the holographic methods 
used for OVs generation. Although many issues have been omitted, some of them 
should at least be mentioned. Roux (1993a, b) has designed similar structures in the 
search for holograms that perform the rotation transformation. He expanded upon 
Bryngdhal’s work (see, for example Bryngdhal (1974)) devoted to the theory that 
allows the design of holographic elements that perform a desired optical transforma-
tion. An example of such a hologram calculated by Przerwa-Tetmajer (2002) is 
given in Figure (3.13). 

 

Fig. 3.13. Fringe geometry of the hologram performing rotation transformation 
[Roux 1993a,b, Przerwa-Tetmajer 2002] 

Interesting considerations were presented in a paper by Abramochkin et al. (1993), 
where spiral beams with arbitrary intensity distribution and holograms generating such 
beams were studied. The book by Soifer and Golub (1994) completely covers the 
problem of designing holograms, which reproduce the desired laser modes. In 
a series of papers Brand studied (1997, 1998a,b, 1999a,b) the holographic generation, 
detection and properties of wavefronts with phase singularities at millimeter wave-
lengths. At the end of this section, it is worth emphasizing that the holographic 
method is very flexible and many design tools for making synthetic holograms are in 
use. Moreover, the high quality manufacturing technology is readily available. One 
may expect that the interest in holographic methods for generation of phase singulari-
ties will increase in the future and a number of new works in this area can be ex-
pected. 
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3.3. OVs generation by three plane waves interference 

A regular net of OVs can be generated by the interference of plane waves. A brief 
comment on it was given by Rozanov (1993). In the paper by Angelsky et al. (1997), 
the OVs generation by two plane waves (plane waves in particular) is briefly studied. 
The obvious conditions for an isolated zero light amplitude at point P are 

 πϕϕ ±= )()( PP BA , (3.14a) 

 )()( PUPU BA = , (3.14b) 

where BA ϕϕ , ,  are phases and amplitudes of interfering waves A, B, respec-
tively. 

BA UU ,

When both waves are plane, the conditions (3.14) can be met (at an isolated point) 
if the amplitude of one (or two waves) is inhomogeneous. Thus, the method proposed 
by Angelsky requires special filters for amplitude modulations. Masajada et al. (2001) 
studied the generation of OVs net by three homogeneous plane waves interference. 
Such a net is a base for an interferometer in which the optical vortices are used for 
phase determination. This issue is discussed in more detail below. 

3.3.1. Three plane waves interference – global view 

The interference of three plane waves produces a regular net of single OVs  which 
can be used in optical metrology. The schematic representation of the field produced 
by three plane waves interference is shown in Figure 3.13. There are isolated points 
where CAVs of interfering waves form a triangle, provided their lengths satisfy the 
triangle condition. The  single OV exists at each such point. There are two kinds of 
such triangles, which correspond to two possible signs of OV topological charge. The 
regularity of the OVs net, shown in Figure 3.14, results from the regularity of the in-
terfering waves. 

In Figure 3.14, the wave  propagates perpendicularly to the observation plane, 
so its phase is constant over this plane. The general case (when all waves are tilted 
with respect to the observation plane) can be transformed to this one without changing 
the OVs position. At each point of the observation plane each CAV can be rotated 
through an angle equal to the phase of a tilted wave 

A

A  (Fig. 3.15).  

 aqq φφφ −=′ , (3.15) 

where qφ  is the phase distribution of a given plane wave in the observation plane q ∈ 
. Thus, the wavefront A transforms to wavefront ),,( CBA A′ , which is parallel to the 
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Hence the other waves B and C transform to plane waves B′ and C′ with wave vec-
tors given by 

 ,    axbxbx kkk −=′ aybyby kkk −=′ ,    azbzbz kkk −=′ , (3.16a) 

 ,    axcxcx kkk −=′ aycycy kkk −=′ ,    azczcz kkk −=′ . (3.16b) 

The phase values at the coordinate system origin are 

 000 abb ψψψ −=′ ,    000 ccc ψψψ −=′ , (3.17) 

where  are the coordinates of CAV corresponding to wave q, and ),,( qzqyqxq kkkk

0qψ  is phase value of wave q at the coordinate system origin.  
From formulas (3.16), one can read that the transformation considered changes 

a given plane wave into another one, having a different direction and value of the 
wave vector. This means that by transformation (3.15), three new plane waves with 
different values of the wave vectors (i.e. different wave lengths and spatial frequen-
cies) are obtained. And such waves cannot produce a stable interference pattern. In 
particular, the wave vector of transformed A wave is equal to zero, so that the new set 
of waves cannot be treated as related to possible physical situation. The transforma-
tions (3.15) are only a technical trick, which helps finding the localization of the vor-
tex points in the interference field.  

 

Fig. 3.16. The equiphase lines of OVs net generated by three plane waves interference. 
a) All waves are tilted against observation plane; b) After applying transformation (3.15). 

The distribution of OVs is the same, however the overall phase portrait is changed 

The transformation (3.15) can be applied for a much wider class of problems. Any 
set of any waves can be transformed in this way without changing the OVs distribu-
tion. Moreover, the distribution of the rotation angle over the whole observation plane 
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does not have to meet any condition (such as continuos condition), but the rotation 
angle must be the same for all CAVs seeded at a given point of the observation plane. 
This fact gives more freedom in analyzing the OVs distribution in a field generated by 
waves interference. It should be noted here that the transformation (3.15) changes the 
local phase portrait of each OV (Fig. 3.16). 

Now, using the transformation (3.15) it is easy to find the OVs trajectories. As-
suming that the observation plane is shifted at distance  along the z-axis, formula 
(3.16) becomes  

z∆

  ]})()()()[(exp{ 000 aqazqzayqyaxqxq z∆zkkykkxkkiUU ψψ ′−′++−+−+−−=′ . (3.18) 

For the fixed (x, y) coordinates the CAV of wave Α′  rotates while the observation 
plane shifts by angle . The same shift must occur for the CAVs of waves zkaz ∆′ B′  
and  at the vortex points (otherwise the CAVs would not form triangles). If the 

 coordinate of vortex point will change from the initial position  to the 
final position  then two equations can be written 

C′
),( yx ),( ii yx

),( yx

 0∆)()( =′+′−+′− bzbyibxi kzkyykxx , (3.18b) 

 0∆)()( =′+′−+′− czcyicxi kzkyykxx . (3.18c) 

This set of equations has the solution 
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The OVs propagation is described by a linear function of z, so they propagate 
along straight lines.  

By geometrical consideration, one can derive a number of relations describing the 
OVs distribution in the interference field obtained with three plane waves. This is 
particularly simple if plane wave A is parallel to the observation plane and the y-axis is 
oriented along the equiphase lines of wave B (Fig. 3.14). Using the transformation 
(3.15), these relations can describe any geometry of optical vortices generated by three 
plane waves. There is a list of a few of them shown in Figure 3.14. 

The angle between equiphase lines of wave C and x-axis is 
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The distance between two subsequent equiphase lines of wave B or C is 
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q
kk

d
−

=
π . (3.20b) 

The distance between two different equiphase lines of wave B or C belonging to 
the twins OVs is 

 q
q

q dd
π2

1
∆Ψ

= . (3.20c) 

Here,  is qΨ∆

 |21|∆ qqq Ψ−Ψ=Ψ , (3.20.d) 

where angles q1Ψ  are shown in Figure 3.17 and q2Ψ  are the corresponding angles 
for the twin OV. The mutual relations between these angles and triangle angles 

cba γγγ ,,  are expressed by the formulas: 

 cb γπ −=Ψ1 ,    bc γπ +=Ψ1 , (3.20e) 

 bb 122 Ψ−=Ψ π ,    cc 122 Ψ−=Ψ π . (3.20f) 

 

 
 
 
 
 

Fig. 3.17. The triangle formed 
from CAV vectors (at vortex point) 

The angle between the line joining two twins OVs and the X-axis is 

 ))tan()(cos(
1
1)sign()tan( θθβ −=

b

c
y d

dk . (3.20g) 

3.3.2. Three plane waves interference – local picture 

The phase portrait of a three plane wave interferogram is sensitive to the transfor-
mation (3.15) and it cannot be applied for local analysis. In Figure 3.18a, a small cir-
cle of radius ρ  plotted around the chosen OV is shown. Figure 3.18b shows a plot of 
complex amplitude vector coordinates  of the total field while moving yx vv versus,
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)2()2( 0101 πψψπψψ . (3.22b) 

To derive expressions (3.22), the following formula for the phase value at the ob-
servation plane of the given plane wave (i.e. from plane wave B or C) was used 

 0),( bbybxb kykxyx ψψ +⋅+⋅= , (3.23a) 

 0),( ccycxc kykxyx ψψ +⋅+⋅= , (3.23b) 

where (x, y) are coordinates in the observation plane. 
It is also advisable to use the polar coordinates ),( ϕρ . The formulas for CAV co-

ordinates (of the total wavefront) take the following form 

 

,]))(sin())(cos[(cos

]))sin(())(cos[(cos

]))sin(())cos(cos[(

0

0

0

ccyycxx

bbyybxx

aayyaxxx

kTkTc

kTkTb

kTkTv

ψϕρϕρ

ψϕρϕρ

ψϕρϕρ

++++

+++++

+++++=
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(3.24b)

 

In this chapter, it is assumed that the amplitude of the wave A is normalized to 
unity. Thus, the amplitudes of the other two waves B, C can be recomputed propor-
tionally and the whole phase and amplitude pattern of interfering waves A, B, C will 
not change.  

Now the local structure of phase in the vicinity of a given vortex point is analyzed; 
so that the radius ρ can be made as small as necessary and the following approxima-
tions can be applied 

 αα =sin , (3.25a) 

 1cos =α . (3.25b) 

After expanding the functions sine and cosine, applying the above approximations 
and neglecting terms with  one gets 2ρ
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(3.26a)
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(3.26b)

 

where  

   0aaxxa kTT ψψ += ,    0bbxxb kTT ψψ +=    and   0ccyycxxc kTkTT ψψ ++= . (3.26c) 

Following the interpretation of the translation vector, one gets (3.21, 3.22) 

0coscoscos =++ cba TcTbT ψψψ     and    0sinsinsin =++ cba TcTbT ψψψ  

hence 
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(3.26d)
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(3.26e)
 

The above formulas can be written in the form 

 )sin(2)cos(1 ϕϕ xxx bbv += , (3.27a) 

 )sin(2)cos(1 ϕϕ yyy bbv += , (3.27b) 

where 

 ρψψψ )sinsinsin(1 ccxbbxaaxx TkcTkbTkb −−−= , (3.28a) 

 ρψψψ )sinsinsin(2 ccybbyaayx TkcTkbTkb −−−= , (3.28b) 

 ρψψψ )coscoscos(1 ccxbbxaaxy TkcTkbTkb ++= , (3.28c) 

 ρψψψ )coscoscos(2 ccybbyaayy TkcTkbTkb ++= . (3.28d) 

Let 

 )cos(1 xxx Bb ψ=     and    )sin(2 xxx Bb ψ= , (3.29a) 

 )sin(1 yyy Bb ψ=     and    )cos(2 yyy Bb ψ= . (3.29b) 

The above is true if the following conditions hold 
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 22 21 xxx bbB +=     and    
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x
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1
2)tan( =ψ , (3.30a) 

 22 21 yyy bbB +=     and    
y

y
y b

b
2
1

)tan( =ψ . (3.30b) 

Combining (3.29) and (3.27) gives 

 )cos()sin()sin()cos()cos( xxxxxxx BBBv ψϕϕψϕψ −=+= , (3.31a) 

 )sin()sin()cos()cos()sin( yyyyyyy BBBv ψϕϕψϕψ +=+= . (3.31b) 

This can be written in the form 

 )cos(ϕ⋅= xx Bv , (3.32a) 

 )cos( δϕ +⋅= yy Bv , (3.32b) 

where δ  is described as 

 
2
πψψδ −+= yx . (3.33) 

 

Fig. 3.19. a) Schematic picture of an ellipse representing local phase picture in local coordinate system 
of single vortex point; b) The plot of the ellipse, in the case of the circle shown in Figure 3.18a 

with radius ρ /5 (dotted line). The solid line plot shows an exact plot 

The local representation (3.32) is similar to the light polarization state description 
by polarization ellipse [Azzam 1977] (Fig. 3.19a); however, it was derived in a local 
coordinate system (see the comments following equation (3.24)). Figure 3.19b shows 
a plot of the ellipse for the small radius of circle shown in Figure 3.18b. The relations 
between parameters mx, my, α, β, θ, a, b are the same as for polarization ellipse and 
can be found in most of the publications concerning polarization (see, e.g., Azzam 
(1977), Ratajczyk (2000)). For example, the following formula can be derived 
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 δβϑ sin2sin2sin = . (3.34) 

The above relations contain a number of trigonometric functions in various combi-
nations, meaning that the use of these relations for finding three plane waves that gen-
erates OVs, which have specific local phase geometry may be a hard task. Neverthe-
less, some interesting cases can easily be found. For example, three plane waves 
configuration which produces a locally symmetrical phase distribution can be found. 
In such a case, the ellipse in Figure 3.19 becomes a circle and the following conditions 
must be satisfied 

 yx BB =     and    
2
πδ = . (3.35) 

Combining these conditions with expressions (3.30) and (3.33) gives 

 yx bb 21 =     and    xy bb 21 −= . (3.36) 

The above set of equations is over-determined. Thus, there are infinite combina-
tions of wave parameters which produce the desired phase distribution. To make the 
problem more uniquely defined, the following values are taken arbitrarily: the ampli-
tudes of contributing waves are all equal 1=== CBA UUU  and the wave vector coor-
dinates satisfy three conditions 0=axk , bybxcyby kkkk −== and . It can also be as-
sumed that the phase of wave A at the given vortex point is equal to zero. Using wave 
amplitudes, it is easy to find the phase angles of two other waves B, C; they are 

ππ 34and32  (or vice versa if one wants to consider vortex point of opposite topo-
logical charge). The local phase portrait in the case of plane waves is the same for all 
vortex points of the same sign. The vortex point of opposite vortex sign differs in the 
orientation of phase lines. Thus, it is enough to consider one vortex point. It is reason-
able to assume that this representative vortex point is located at the coordinate system 
origin. Then, from relations (3.26c) we have 
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3)sin(,
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3)sin(,0)sin( =−== cba TTT ψψψ , (3.37a) 

 
2
1)cos(,

2
1)cos(,1)cos( −=−== cba TTT ψψψ . (3.37b) 

Now, the solution of the set of equations (3.36) is 

 bxbyay kkk 3+= . (3.38) 

The solution is still non-unique. Figures 3.20a and 3.20b show two examples of lo-
cal phase distribution generated by waves with parameters which satisfy equation 
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(3.38) with all related conditions. The plotted phase lines are symmetrically distrib-
uted. Figures 3.20c and 3.20d show the same examples with slightly different parame-
ters. As expected, the plotted phase lines have asymmetrical distribution.  

 

Fig. 3.20. Local phase distribution in the neighborhood of vortex point generated by 
three plane waves interference. Image size is 0.1 mm and light wavelength is 632.8 nm. 

a) All waves have unit amplitude. Wave vector coordinates are (in 1/mm) kxa = 0; kya = 0.675; 
kxb = 4.206; kyb = –6.61; kxc = –kxb; kyc = kyb and satisfy equation (3.38); b) Wave amplitudes 

are the same. Wave vector coordinates are kxa = 0; kya = 0.810; kxb = 4.627; kyb = –6.610; 
kxc = –kxb; kyc = kyb and satisfy equation (3.38); c) The same case as (a) but wave amplitudes 

are UA = 1.2, UB = 1, UC = 0.8. This case does not satisfy conditions under which equation (3.38) 
is valid and the phase line distribution is not symmetric; d) The same case as (a) but wave vector 

kya = –0.675 does not solve equation (3.38) and phase distribution is asymmetric. 
Remark: All figures were plotted with the same equal phase separation values 

between subsequent equiphase lines 

In the next chapter, the use of a regular OVs net generated by three plane waves 
interference as an interferometric reference system is discussed. Such interferometer is 
simple in construction and application, and has unique properties.  



4. Optical vortex interferometer 

4.1. Introduction 

The phase singularities, including optical vortices, can be present in interference 
field generated by interferometers. Such objects were treated as a source of additional 
difficulties in phase reconstruction problem (see, for example, Fried et al. (1992), 
Ghiglia et al. (1998)). There were few exceptions. Bryngdhal [Bryngdhal 1973, 
Bryngdhal et al. 1974] proposed the interferometer with reference beam carrying opti-
cal vortices. The specific task for this interferometer was measuring wavefronts of 
radial symmetry. This interferometer did not attract much attention. In the papers by 
Larkin [Larkin et al. 2001, Larkin 2001] the “vortex transform” for phase demodula-
tion is defined. This transformation can be performed physically by specially designed 
synthetic holograms. The holograms proposed in these papers are well known holo-
grams generating OVs (see section 3.2). The vortex transform can be used to support 
phase reconstruction from interferograms.  

Masajada et al. (2001) have proposed the interferometer based upon a regular net 
of optical vortices. Previously, brief notes on such a possibility were published in pa-
per by Masajada et al. (2000) and the first public presentation of the interferometer 
took place at Diffractive Optics Conference in Budapest in 2001 [Masajada 2001]. 
The interferometer was named Optical Vortex Interferometer (OVI). This section is 
devoted to the OVI. The basic OVI optical scheme is presented in subsection 4.2. Sec-
tion 4.3 deals with important problem of localizing vortex points in an OVI interfer-
ence field. The applications are studied in sections 4.4 and 4.5. This is the first such 
complete publication devoted to OVI.  

4.2. Interferometer set up 

The Optical Vortex Interferometer (OVI) can be set up in various configurations. 
A number of measuring procedures can also be applied. Since there is no way to con-
sider all of these possibilities only one of them, namely the simple system based on 
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Mach–Zender configuration, is presented (Fig. 4.1). In this example all problems 
characteristic of OVI interferometry can be discussed.  

 

Fig. 4.1. Optical scheme of the OVI. This is the most extended version of the laboratory system. 
The extra reference beam R reflected from lower mirror M is optional and the simplest measurement 
schemes use only three beams marked as  A, B, C, so the wave X can be removed. In the figure BS 

are the beam splitters, P is the polarizer (used optionally), CCD is the CCD camera 

Figure 4.2 shows the system used in the author’s laboratory. This laboratory setup 
can be easily modified. The OVI dedicated for specific applications can be designed in 
the more compact, movable and stable way.  

The optical elements of the OVI are integrated onto a metal plate, 1100 mm in 
width and 1500 mm in length. The six beam splitters are fixed in a rectangular con-
figuration. The mount of cubic beamsplitters provides high resolution angular and 
linear adjustment. There is some place between the beamsplitters for additional ele-
ments such as light stops, filters, phase shifters, etc. Mirror M allows visualization of 
OVs by interferometric method (see section 3.2.2) and is not necessary in the end user 
system. Optional polarizer P (cubic beamsplitter with polarizing coatings) supports 
linearly polarized output beams. The system is illuminated by stabilized He-Ne laser. 
The collimator with spatial filter gives the plane wave, the quality of which was tested 
by parallel )3(λ  glass plate. Such an integrated optical system is positioned on anti-
vibration table. To measure the interference pattern the CCD camera is used. 
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Fig. 4.2. View of the laboratory setup 

The camera works with resolution of 758 × 560 pixels. It gives 8-bit black and 
white signal, which is binarized by Matrox frame grabber system. The grabbing soft-
ware is supported by Dr Jarosław Jaroński and Dr Tomasz Licznerski from the Insti-
tute of Physics, Wrocław University of Technology. The software records images with 
frequency up to 10 frames per second. The software for image analysis was written by 
the author’s research group and is still under development.  

A sequence of interferograms have to be taken to measure the phase distribution of 
the beam investigated. In this sequence, some of the beams have to be passed and others 
stopped. The switching between beams A, B, C was made by moving a card from left to 
right between rows of beam splitters. With some practice the four measurements neces-
sary in the simplest measurement scheme can be performed in less than two seconds. In 
the future the following improvements of the system will be considered:  

• Electronic shutters which allow full system computerization. 
• Fast, low noise, digital camera (10–12 bit) with one million pixels.  
• New software for the analysis of interferograms. 
With these improvements the system will be faster (at least five times), less sensitive 

to the noise and its resolution will be higher. Finally, the designated software strictly 
bounded with system hardware will support fast and full interferogram analysis.  

Various measuring procedures can be used with this simple OVI system. Two of 
them are briefly described below. 

4.2.1. Scheme I 

In this scheme two plane waves (B, C) are used as reference beams. The wave 
X under investigation is the wave A (Fig. 4.1). Wave X has to be quasi-plane to pre-
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serve the regular form of the generated OVs net. The question of what the quasi-plane 
wave means depends on particular system characteristics.  

 

Fig. 4.3. The set of four interferograms needed in the case 
of the first measurement scheme (experimental results). The first three pictures 

show three two beam interferograms, the last figure (lower right corner) 
shows a three beam interferogram 

To determine the relative phase of wave X the interferograms generated by pairs 
X+B, X+C, B+C and by all waves X+B+C must be taken. Figure 4.3 shows an exam-
ple of such a series. At a vortex point (when the light intensity is zero) the following 
relations hold 

 BXCCXBCBX IIIIII +++ === ,,  (4.1) 

where  are the intensities of single waves and pairs of 
interfering waves, respectively. Hence, at vortex points, the intensities of waves X, B, 
C can be determined by inspecting the values of the X+B, X+C, B+C interferograms. 
The square root of these intensities leads to the absolute values of the corresponding 
amplitudes (pseudo-amplitudes). Since, at vortex points, the corresponding amplitude 
vectors of waves X, B, C form a triangle the angles between them can be calculated. 
By determining triangle orientation – vortex sign – (Fig. 3.17) these angles can be 
directly related to the phase differences between waves X, B, C. In this way, the rela-
tive phase of wave X can be determined. To apply this first measurement scheme as 

),,(,, CBAXRQII RQQ =∈+
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well as the second one described below, the vortex points must be precisely localized. 
The localization problem is a subject matter of section 4.3. 

4.2.2. Scheme II 

In the second scheme three waves A, B, C are used as reference beams. The object 
under investigation is illuminated by the fourth wave X. Using scheme I the phase 
shifts between the reference waves can be found. Then the phase shifting procedure 
can be used [Creath 1998] for finding the relative phase angles between object and 
reference waves. For intensities measured in A+X, B+X, C+X interferograms, the 
following set of equations can be written 

 AXaXAXA IIIII =++ )cos(2 α , (4.2a) 

 BXBaXBXB IIIII =+++ )cos(2 δα , (4.2b) 

 CXCaCAXC IIIII =+++ )cos(2 δα , (4.2c) 

where CB δδ ,  are phase shifts of waves B and C with respect to wave A calculated 
from the first three measurements (A+B, A+C, and B+C); aα  is the phase difference 
between waves A and X. The system of equations (4.2) is over-determined since there 
are three equations in two unknowns (i.e.  and ,XI aα ). Therefore, one equation can 
support error corrections, as used in phase shifting interferometry, or can be used to 
improve the localization of vortex points. The second scheme demands more meas-
urement steps but wave X may have an arbitrary wavefront.  

Measurement schemes I and II can be modified in many ways. For example, in 
scheme II the new measurements of waves A+B+X, A+C+X, B+C+X which are 
equivalent to the measurements –C+X, –B+X, –A+X (where –Q means wave Q shifted 
by π ) can be performed. More measurements require a more stable system but allow 
additional error compensation. Instead of adding new measurements the measure-
ments A+B, A+C, B+C can be replaced by A+B+X, A+C+X, B+C+X, which demand 
a more complicated OVs localization procedure.  

So far the second scheme has not been tested in great detail. However, much atten-
tion was put into studying the first one, which constitutes a part of the second scheme. 
Below the second scheme will not be considered any more. 

It is worth noting that three plane waves which generate the reference OVs net are the 
optimum choice (at least in most of the practical applications of the interferometer). In the 
two beam system described in paper by Angelsky et al. (1997) the amplitude of reference 
wave must be carefully modulated and both detection process and the OVs localization 
procedures are more complicated and less accurate. More than three wave systems are also 
possible. If four reference waves are then used at vortex points the CAVs form a quadri- 
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Fig. 4.4. At vortex points created 
by four waves interference relative wave 

phases cannot be determined in a unique way 

lateral. Such geometry does not allow unique phase determination (Fig. 4.4). When 
more than four reference waves are used the localization of vortex points is even more 
ambiguous. In this work geometries with more than three waves are not studied. 

4.2.3. Numerical simulations 

Although the final evaluation of the OVI should be made in experiment, the nu-
merical simulations are also valuable. In fact, it was the only way to get answer to 
questions when the necessary equipment was not available to the author. Specifically 
the limits of OVI resolution have not been tested experimentally yet. The results of the 
numerical simulations were in sound agreement with the real experiment in every 
case, when the experiment was possible. 

The numerical simulations were performed in three steps. In the first step, the OVI 
interference field was modeled by ideal plane waves. Furthermore the plane waves 
were disturbed by extra plane waves of smaller amplitude (which simulate the reflec-
tions in the system) and some of them were modified by spherical waves with a great 
radius of curvature. The biggest amplitude of disturbing waves were ten times smaller 
than amplitudes of ideal plane waves. Finally, the plane waves were additionally dis-
turbed by small phase and amplitude random factors. The numerical experiments were 
performed in two ways. In the first way, the full arithmetic precision of PC computers 
was taken advantage of. The densities of sampling points were much higher than in 
CCD camera used in experiment. In the second way the values representing measured 
values were binarized with 8-bit resolution characteristic of the camera used in ex-
periment. The density of the simulated measurement points was also similar to the 
density of pixels at the CCD element.  

4.3. Localization of vortex points  

The OVs distribution in the field generated by three plane waves interference is 
very sensitive to disturbances introduced to one or more of interfering waves. Such 
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disturbances can result from passing or reflecting of one or more interfering waves 
from the object under investigation. Tracing the changes in OVs positions the 
physical quantities related to the object investigated can be determined. For this 
reason the precision of OVs localization is of primary importance for the accuracy 
of measurements performed with OVI. Because the problem of localization of 
vortex points did not exist in classical interferometry, it will be discussed carefully 
in this section.  

In this monograph the procedures applicable to the system shown in Figure 4.1 are 
presented. However, in author’s opinion the methods discussed are general enough to 
be applicable in most of OVI systems, because they are based on common features of 
the OVI. The knowledge of specific conditions, characteristic of specific OVI system 
may result in additional methods, but cannot disprove these general ones. 

4.3.1. Minima method 

Since vortex points are points of zero light intensity they can be localized by 
finding isolated points where the light intensity is zero. The regularity of the OVs 
net can support such a procedure. In practice, due to noise, the measured intensities, 
at vortex points, are greater than zero. The highest influence of the detector noise is 
at the points where light intensity is low. So, instead of identifying zero light inten-
sity points, the local light intensity minima are found. Although the OVs net gener-
ated in real experiment is never of perfect symmetry, its regularity is sufficient to 
support the local minima identification and give information on the total number of 
vortex points in the OVs net. This method for localization of vortex points is named 
minima method. The minima method may produce non-unique results. The effects 
of noise, quantization and binarization may cause that the area of local intensity 
minima are spread over few pixels. To extract a single point the center of gravity of 
such area is calculated.  

To find the intensity minima certain threshold level has to be fixed. The simplest 
procedure rejects points at which light intensity exceeds the threshold level. If the 
threshold value is fixed too high a large number of false vortex points are identified. 
If the threshold value is too low some of the vortex points can be omitted. At this 
moment the advantages of OVs net regularity are clearly seen. Due to this regularity 
(although not perfect in real case) the number of vortex points and their approximate 
position is known (with accuracy of few pixels). To improve the minima method 
resolution the A+B+C interferogram may be preprocessed by advanced image proc-
essing routines [Russ 1995]. The author and his coworkers have used the following 
image processing routines: local background analysis and subtraction, interfero-
grams and their histograms scaling, numerical filtering, interpolation with bilinear 
method. 
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In the case of high quality optical and electronics system the minima method 
works with accuracy better than one pixel on average (i.e. most of the vortex points 
should be found at their theoretical localization, less than half should be shifted by one 
pixel, very few by two pixels). 

The resolution of minima method is sufficient for a number of applications. 
When better accuracy is required or the OVI interference field is of poor quality 
more advanced localization methods are necessary. Such methods are described 
below. They require approximate vortex points position, which can be found by 
minima method.  

4.3.2. Zero-crossing method 

The zero-crossing method is based on the fact described in paper by Freund et 
al. (1994). At singular points the lines of Re(U) = 0 and Im(U) = 0 intersect (Fig. 
2.2). The method uses the explicit form of the complex amplitude function de-
scribing the interfering waves and as such can only be used in computer simula-
tions. As computer based method it can be calculated with full PC arithmetic pre-
cision and with high density of sampling points. The zero-crossing method is very 
precise and is treated as reference method in this chapter (in the case of numerical 
simulations).  

4.3.3. Triangle method 

Looking at OVs net phase plot one can see two characteristic features. In the vor-
tex points neighborhood the equiphase lines have a star like geometry and this geome-
try is a dominant factor in the whole phase pattern (Fig 4.5). In such a case the 
neighborhood points should possess some information about the nearest vortex point. 
The concept of advance localization methods is based on this fact. Now the method 
named triangle will be analyzed.  

At vortex point the corresponding CAVs form a triangle. The question is what the 
behavior of the CAVs in neighboring points is (Fig. 4.6a). To answer this question 
a remarkable number of different CAV configurations were studied. The representa-
tive cases were collected into atlas [Jarosławski 2003]. In this way some hypotheses 
were found and tested. Finally the most effective hypotheses were accepted and 
named “triangle method”. There is no space here to present all these considerations, so 
only the final results will be given and evaluated.  
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Fig. 4.5. Phase lines for highly regular OVs net – an example. 
The vortex points are at places where phase lines converge. Around vortex points each phase line 

represents different phase value. The phase is changing continuously from zero to 2π 
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Fig. 4.6. a) Schematic view of the pixel distribution at CCD element. 
At rectangular net each vortex point has eight neighbor points; b) Schematic view of the CAVs 

of A+B+C field around the vortex point. Around the vortex point the CAVs change their orientation 
by 2π. In a real case the phase angle does not change uniformly while going around the vortex point 
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Fig. 4.7. In the neighborhood of the vortex point the CAVs 
do not form a triangle; however, the triangle can be formed from  sides ∗∗∗ cba ,,

Figure 4.6b shows schematically the CAVs geometry at the point close to the vor-
tex point. Although the CAVs do not form a triangle the triangle can be formed with 
a given set of three CAVs. Such triangles will be called “false triangles”. The meas-
ured quantities are  and their square roots can be considered as lengths of 
the false triangle sides (Fig. 4.7). To follow the triangle method the tentative vortex 
points are necessary. The tentative vortex points indicate the area of true vortex points 
localization. They can be found by minima method. Having the tentative vortex points 
one must investigate their neighbourhood. It is enough to consider all points at a dis-
tance of no more than four pixels from each tentative vortex point. For this purpose, 
a set of submatrices representing measured light intensity at CCD pixels in the neigh-
borhood of tentative vortex points is created. At each point belonging to such subma-
trices the false triangle is created. Each false triangle is normalized in such a way that 
length of its longest side is equal to one. Now, the following expressions are calcu-
lated , , |  and the greatest among them is picked up. This 
value will be denoted by BV. The true vortex point has the greatest number of neigh-
bors with BV, that are greater than the BV of the given true vortex point. To complete 
the method the following procedure was written (Fig. 4.8). For each point belonging 

bcacab III ,,

|| ∗∗ − ba || ∗∗ − ca | ∗∗ − cb
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to a given a submatrix (except the border points) the closest points were compared 
with respect to the BV value. If the BV value was greater the corresponding cell was 
filled with zeros, if not the cell was filled with ones. Then the numbers in surrounding 
cells were added and the result was written to the central cell. By repeating this proce-
dure a new submatrix was created. The minimal value in this new submatrix indicates 
the position of true vortex point. The important feature of the triangle method is that 
when the tentative vortex point is a false vortex point the method still shows the posi-
tion of the true vortex point. In Figure 4.8c the tentative vortex point was a true vortex 
point. Figure 4.8d shows the same example, but with shifted tentative vortex point. 
The minima also shift to the true vortex point.  

 

Fig. 4.8. Figures illustrate the algorithm for triangle method. In Figure the submatrix representing 
the pixels around the tentative vortex point is shown; b) at each cell of this submatrix the number 

of BV is written; Figure c shows the resulting submatrix in the case of tentative vortex point 
being in the same place as true vortex point (in the matrix center); Figure d shows the case 

when the tentative vortex point misses the true vortex point by three pixels. The minimal value still 
shows true localization of vortex point. This matrix was calculated for experimental data 

The triangle method can also be applied in a slightly different manner. Instead of 
analyzing the BV value one can study the relations between the longest triangle sides. 
The rest of the procedure is the same. The accuracy of this version is practically the 
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same, but the results between these two versions are slightly different (at the subpixel 
level).  

There has been no sufficient error analysis of this method provided yet. The 
method is sensitive to the amplitude variations across the contributing plane waves. 
However, if these variations are not rapid the method works well. The best results are 
obtained when the component plane waves have the same amplitude. In this case the 
method is also easy to prove. When the amplitudes become different the localization 
accuracy slightly decreases. The errors can rise when one of the waves has remarkably 
lower amplitude, but then the vortex points become close to each other and all local-
ization procedures fail. For this reason the case when one wave has much smaller am-
plitude than two others should be avoided. The numerical and experimental tests of 
the triangle method are presented in section 4.3.5. 

4.3.4. Amplitude method 

The concept of the method named amplitude method is based on the fact that in the 
vortex point neighborhood the phase circulates at 2π. This should affect the intensity 
distribution of A+B, A+C, B+C, A+B+C interferograms in the vortex point neighbor-
hood. Using this hypothesis the method named pseudo-phase method was invented 
[Popiołek-Masajada et al. 2003]. Then the method was improved and named ampli-
tude method [Masajada et al. 2004]. Compared to pseudo-phase method, the ampli-
tude method is simpler, faster, and more accurate. The efficiency of amplitude method 
was not proved in any rigorous way (mathematically), but it was intensively tested. 
The numerical and experimental tests have shown that the amplitude method works 
effectively. Their limits are similar to the triangle method. The best results are ob-
tained when the amplitudes of interfering waves have comparable magnitude. Below, 
a brief description of the amplitude method is given. 

 

 
 
 
 
 
 
 

Fig. 4.9. The triangle used in amplitude method 

The interferograms should be prepared by preprocessing procedures and the tenta-
tive vortex point must be found. Then small submatrices (7 × 7) covering such areas, 
with tentative vortex points in the center must be chosen. From A+B, A+C, B+C inter-
ferograms the cosines of their relative phase angles are determined. This is a common 
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problem solved in two beam interferometry. In the next step, at each analyzed point 
a triangle is built as is shown in Figure 4.9. Having the triangle sides BC and AC and 
the angle between waves A and B (read from A+B interferogram) the cosine rule is 
used to calculate value of  (Fig. 4.9) and the difference ||C′ ABC −′  is calculated. 
Following the same way the expressions | |ACB −′  and | |BCA −′  are calculated at 
each measurement point under investigation. Then the following sum is calculated 

AB
−′ ABC

AC
ACB

BC
BCA ||||||

+
−′

+
−′  and this value is written down into matrix cell 

corresponding to the measurement point being analyzed. In such a way a new matrix 
is defined and its minimum shows the vortex point position. In the last step the local 
coordinates are recomputed to global coordinates covering the whole measurement 
area. Tests of the amplitude method are presented in the next section. 

4.3.5. Results and discussion 

The localization methods were tested both numerically and experimentally. First, 
the numerical tests will be presented. To be close to experimental conditions the nu-
merically defined plane waves were disturbed by other waves, both plane and spheri-
cal of smaller amplitude. Representative examples of tests are discussed below.  

In the numerical simulations the analyzed area corresponds in the size and pixel 
density to the 8-bit CCD camera used in the experiment (1/3 inch of diameter with 
768/576 pixels). In this area 216 OVs were generated. The reference position of vortex 
points was determined by zero crossing method calculated with full precision of PC 
arithmetic and with higher density of sampling points (four times more than in ex-
periment). To simulate the experimental conditions the interferograms were binarized 
with 8-bit resolution. In the next steps the interferograms were processed in the same 
way as experimental interferograms. Their quality was improved by image processing 
routines. Finally the tentative vortex points were localized with minima method fol-
lowed by the triangle and amplitude methods. Figure 4.10 shows the difference be-
tween results obtained by new methods and reference method, i.e. zero-crossing 
method. Figure 4.10a represents the triangle method and Figure 4.10b the amplitude 
method. The results are shown in three cases: in the case when no interpolation was 
made and in the case of interpolation which increases the measurement point density 
by factor two and four (level 2 and level 4, respectively). Both methods give compa-
rable results when compared with the reference method. For most of the vortex points 
the difference in position is less than the distance between neighboring pixels. Very 
few of them are localized with accuracy higher than the distance between neighboring 
pixels. The interpolation improves the results. The efficiency of interpolation proce-
dures shows that the relative density of measurement points is an important factor, for 
vortex points localization accuracy. Relative density means here the number of CCD 
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pixels per one vortex point. The high accuracy of localizing vortex points yields high 
accuracy of OVI measurements. Thus the OVI accuracy can be improved by applying 
low noise CCD camera with great number of pixels and preserving the total number of 
vortex points over the whole CCD element.  

 

Fig. 4.10. Localization of vortex points – numerical simulations. 
a) amplitude method; b) triangle method 

 

Fig. 4.11. The crosses show the position of vortex points localized in the interference field 
of the OVI (experiment). The vortex points were localized by triangle and amplitude method. 

When the results were different by more than the distance between CCD pixels then the position 
of vortex point was not plotted. The figure is printed in reverse contrast 
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Fig. 4.12. The phase angle between two of the three interfering waves (experiment). 
The two clouds of points correspond to two topological charges of OV. 

The variations of the phase value, within each cloud are small – less than 0.15 radian. 
A few bad points, which lie out of the clouds, can be easily excluded 

Figure 4.11 shows results obtained from the experimental data. At CCD element 
259 vortices were born. This figure shows vortex points, which were localized by both 
methods (amplitude and triangle), with difference not greater than the distance be-
tween neighboring CCD pixels. Only few vortex points have not passed this test, 
meaning that on experimental interferograms both methods give close results.  

When vortex points are localized the relative angles between interfering waves can 
be calculated (3.16). Figure 4.12 shows the phase difference between two of the three 
interfering waves calculated for vortex points localized by triangle method. In the 
experiment three plane waves of a 3 cm diameter were used. The beams were adjusted 
in such a way that they overlap at CCD element (of 1/3 inch diameter) with their most 
regular parts. The beams enter the CCD element directly, i.e. without using objectives. 
In this way a high quality OVs net was obtained. The calculated phase angle between 
these two waves is almost the same for each measurement point, as should be ex-
pected in this case. Except for a few bad points, the difference in phase values is less 
than 0.15 radian. These points can easily be identified and eliminated from further 
investigation. The interferogram area which contains such points has irregularities, so 
by inspection they can be removed. The position of bad points, which was determined 
by triangle and amplitude method differs more than the distance between neighboring 
pixels, so in Figure 4.11 the bad points have already been excluded. 

It should be noted that the differences in phase angle value estimated above cannot 
be treated as an error introduced by the measurement system. The interfering waves A, 
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B, C were not perfect, so the relative phase angle between interfering waves varies 
across the measurement area. The calculated variations of the phase value for different 
vortex points fit very well to the expected values. These results show that the OVI works 
correctly, but the limits on its possible resolution must be determined in another way. 

As was already mentioned the OVI accuracy strongly depends on the precision of 
localizing vortex points. In this work, some general information on OVI resolution is 
given.  

The most important factor for accuracy of vortex points localization is the number of 
the CCD camera pixels per one vortex point (density of CCD pixels). For 8-bit detector 
the maximum useful density is about 3000 pixels per one vortex point. Since the gradient 
of slow varying fringe intensity cannot be registered with sufficient resolution, the higher 
density of CCD pixels does not results in better localization accuracy. Thus, the higher 
density of CCD pixels requires higher level of data binarization (10, 12, 14 bit). On the 
other hand, when the number of measurement points is important the relative density of 
CCD pixels cannot exceed some limit. For each OVI system devoted to specific meas-
urement problem the density of CCD pixels should be optimized according to the parame-
ters of available detectors, electronics and the specific measurement conditions. 

Table 4.1 

The phase between two interfering waves determined for different localizations of the vortex point. 
The central cell (gray cell) represents the true vortex point and reference value of the phase. 
The other cells represent the neighboring pixels at CCD element. The density of CCD pixels 

is 2100 pixels per vortex point. The phase values are given in radians 

1.7993 1.8592 1.9192 1.9790 2.0391 
1.9031 1.9631 2.0230 2.0830 2.1429 
2.0070 2.0669 2.1269 2.1868 2.2467 
2.1108 2.1707 2.2307 2.2906 2.3506 
2.2146 2.2746 2.3345 2.3945 2.4544 

 

Table 4.2 

The phase between two interfering waves determined for different localizations of the vortex point. 
The central cell (gray cell) represents the true vortex point and reference value of the phase. 
The other cells represent the neighboring pixels at CCD element. The density of CCD pixels 

is 8200 pixels per vortex point. The phase values are given in radians 

1.2973 1.4172 1.5371 1.6570 1.7769 
1.5050 1.6249 1.7448 1.8647 1.9846 
1.7127 1.8326 1.9524 2.0723 2.1922 
1.9203 2.0402 2.1601 2.2800 2.3999 
2.1280 2.2479 2.3678 2.4877 2.6075 
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Tables 4.1 and 4.2 show the influence of localization error on the phase difference 
between two waves determined using OVI. The results were obtained by numerical 
modeling. The two cases shown in the table represent two different densities of CCD 
pixels. In the first case this density has value 2100 pixels per vortex point while in the 
second case 8200 pixels per vortex point. In both cases the gray cell shows the phase 
value for the point of true localization of the vortex point. The neighboring cells show 
this value for vortex points localized in the neighboring CCD pixels. The tables show 
that the error in phase value depends on both the value and direction of localization 
error. This second factor can be understood when considering the dynamics of CAVs 
around the vortex point. There is always a direction where CAVs of waves A, B, C 
rotate almost in the same way and their sum is close to zero. In this direction the error 
in phase determination increases slowly. There is also a direction along which the 
rotations of CAVs give fast increase in the total light intensity in the A+B+C inter-
ferogram, which results in fast increasing of the error of phase angle value.  

The simulations were also performed for high quality OVI system working with 12 
bit low noise CCD camera. Applying the localization routines described in this mono-
graph, the optical vortices can be localized with accuracy better than 0.5 of distance 
between neighboring pixels of CCD camera. This results in the relative phase angle 
determined with accuracy better than 0.02 radian. Of course, in real measurements the 
mechanical and thermal effects will cause additional errors lowering the OVI resolu-
tion. The discussion on the influence of these factors on OVI resolution is out of the 
scope of this monograph. 

4.4. OVI features 

The set of three independent plane waves defines a unique plane which will be 
called the “OVI-plane” (Fig. 4.13 ). The orientation of this plane does not depend on 
the interfering waves amplitude and phase, but only on their wave vectors. It is easy to 
prove that vortex points propagate perpendicularly to the OVI-plane. Wave vectors, 
together with a corresponding OVI-plane, form a tetrahedron (Fig. 4.16a). In a real 
situation, when the waves are not perfectly plane, their wave vectors determine “OVI-
surface”, but this case will not be considered here. Let the z-axis of the coordinates 
system be oriented along such tetrahedron height, which is perpendicular to the OVI-
plane. Then the wave vectors  have the same z-coordinate. Thus, when mov-
ing along a line parallel to the tetrahedron height, the CAVs of three interfering waves 
rotate through the same angle. If at the given point of such a line the CAVs form 
a triangle, it is the same at all other points of this line, meaning that this line is 
a trajectory of vortex point. This means that a stable and regular system of OVs lines, 
which is perpendicular to the observation plane can be generated by OVI. Such a sys-

cba kkk ,,
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tem can be used in 3-D scanning interferometry, where the interferograms are taken at 
subsequent observation planes shifted along the z-axis (by shifting CCD element, for 
example). It is important that the phase relations between interfering waves do not 
change along vortex lines and the subsequent interferograms are mutually related. 
This possibility has not been studied yet in detail.  

 

Fig. 4.13. a) Three non-collinear wave vectors define a plane which is called the OVI-plane. 
Wave vectors together with OVI plane form tetrahedron; 

b) Two non-collinear wave vectors correspond to infinite number of possible planes 

 

 
 
 
 
 
 
 
 

Fig. 4.14. Three wave vectors 
which form with OVI-plane a regular tetrahedron 

The influence of the three main wave parameters can be evaluated separately when us-
ing OVI. These parameters are: A, B, C wave vectors, phases and amplitudes. Wave vec-
tors are responsible for the distribution of positive (negative) vortex points. Wave ampli-
tudes define the relative phases between the interfering waves at vortex points and the 
geometrical relations between two subnets of positive and negative vortex points. The 
changes in the phase of interfering waves shift a net of vortex points as a rigid body. Such 
a decomposition is important when considering OVI applications. For example, it allows 
a smart small-angle rotations measurement which will be discussed in the next section.  

Now, an example of a symmetrical vortex points net will be defined. It will be used 
in further considerations as an illustrative example. When solving equations (3.19) un-
der the conditions , one gets the wave vectors based on the equilateral 
triangle (Fig. 4.14). Assuming the z-axis of the coordinate system lies along the corre-
sponding tetrahedron height and  the following relations can be written 

0∆,0∆ == yx

),,0( azay kkak
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In this symmetrical case, all two beam interferograms have fringes of equal density. 
The fringe orientation and phase distribution is also symmetrical (Fig. 4.15 and Fig. 4.16). 

a b c

 

Fig. 4.15. In the case of waves geometry shown in Figure 4.14 the fringes of two beam interferograms 
are of equal density. This figure shows interferograms of waves A+B, A+C, B+C, respectively 

 
Fig. 4.16. Plot of vortex points (circles) distribution and corresponding equiphase lines 

of interfering plane waves A, B, C in the case of the wave geometry as shown in Figure 4.14. 
The reference plane is OVI-plane 
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In the arrangement of interfering waves shown in Figure 3.14, where wave phases 
were determined with respect to the wave A surface, waves B and C have two different 
phase values at vortex points. Presently, when wave phases are determined in respect 
of OVI-plane, waves A, B, C have three phase values at vortex points. This is true in 
a symmetrical case corresponding to the tetrahedron geometry shown in Figure 4.14. 
Generally, interfering waves A, B, C may have an infinite number of different phase 
values at vortex points. These three possible phase values of waves A, B, C, at vortex 
points, can be determined in the following way. 

The net of OVs shown in Figure 4.5 can be transformed using transformation 
(3.15) to the corresponding net with one contributing wave (say A) parallel to the ob-
servation plane. Furthermore, the transformed values are denoted by a prime. Let the 
phase of wave A′  be equal zero in the observation plane (which is a purely technical 
assumption). Having the amplitudes a, b, c of contributing waves the phases of waves 

 with respect to wave  can be found at vortex points (Fig. 3.17). Two possible 
values for each wave are obtained in this way (say 

CB ′′, A′

ccbb 2,1,2,1 ΨΨΨΨ ). At the center 
of the coordinates, let there be a vortex point for which these values are . 
These assumptions are also purely technical and have no influence on the result. To 
answer the question regarding the location of the next vortex point of the same phase 
geometry (topological charge) the set of equations is solved 

)1,1( cb ΨΨ
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The solutions is 
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To calculate the corresponding phases  of original waves (before transformation 
(3.15)) the following equation can be used 

qΨ

 aayvaxv kykx Ψ=+ . (4.6) 

It is enough to solve this equation for wave A (the simplest case) and find the cor-
responding solution for waves B and C directly from the triangle geometry (Fig. 3.17). 
In the given example kax = 0, and equation (4.6) has a particularly simple form 

 aayv ky Ψ= . (4.7) 
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The formula for aΨ  is 

 
cxbycybx
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)(2πΨ , (4.8) 

where relations (4.3) were used. Applying (3.16) we have 

 )(2 aycybxcxbycybx kkkkkkk −=′′−′′ .  (4.9) 

Using relations (4.3) one gets 
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For such regular geometry of waves vectors 2/1/ =aycy kk  and finally 

 )(
3
2 mna +−= πΨ . (4.11) 

This formula gives three possible (modulo 2π ) values of wave A phase at singular 
points. These values are 0, 2/3π, 4/3π. Referring to the triangle geometry, one can find 
that waves B, C may have the same three phase values for both topological charges of 
vortex points.  

4.5. Small-angle rotations measurement 

A new method for measuring small-angle rotations is discussed in this section. The 
method uses OVI and has a number of important advantages compared with other 
interferometric methods that have the same resolution. These advantages will be dis-
cussed briefly in the last part of this section.  

The possible optical scheme of OVI dedicated to small-angle rotations measure-
ment is shown in Figure 4.17. Mirror RM should be mounted on the element under 
rotation. The wave geometry is as shown in Figure 4.14. The symmetrical wave 
geometry produces a symmetrical phase distribution, which is very suitable for the 
presentation of the method. The question of whether this is the best wave geometry 
for performing this kind of measurements with OVI has not been answered yet. Pre-
liminary studies have shown that other wave arrangements result in similar precision 
of measurements. 
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Fig. 4.17. Optical scheme of the OVI designed for measurement of small-angle rotations 

 

 
 
 
 
 
 
 
 
 

Fig. 4.18. Rotation axis orientation 

In present case the reference plane is the OVI-plane, i.e. all phase values are de-
termined in the OVI-plane. Figure 4.18 shows the orientation of the rotation axis – the 
mirror RM can be rotated about two perpendicular axes x and y. If mirror RM rotates 
at a small angle, the interference pattern (A + B + C ) changes. Also, the configuration 
of the vortex point net changes. This shift of vortex points can be measured and its 
magnitude is strictly related to the angle through which mirror RM was rotated. 

When the wave A changes its orientation vortex points move in a specific way. To 
understand this dynamic, the concept of constant angle lines of two waves must be 
introduced. Constant angle lines of two waves are two lines along which phases of 
these waves change at equal rates. This means that when moving along such a line, the 
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relative phase angle between these waves is constant. Figure 4.19 shows how to de-
termine such a line geometrically.  

wave Awave B

 

Fig. 4.19. Geometric way for finding constant angle lines of two interfering plane waves. 
Constant angle lines are the lines along which phases of two given waves A, B change at equal rate. 

Two segments are plotted perpendicularly to equiphase lines of waves A and B in such a way 
that their ends meet. The ratio of their length is equal to the ratio of the period of waves A, B 

measured in observation plane. Any two plane waves have two constant angle lines, 
which corresponds to two possible topological charges of optical vortices. 

Arrows show the direction in which A, B wave phases increase 

Figures 4.20 and 4.21 show schematically the vortex points shifting under mirror 
RM rotation about the x and y axes, respectively. Figure 4.22 shows the vortex point 
shift when the mirror RM rotates about both axes. If the mirror RM rotates about the 
x-axis, then the distance between two equiphase lines of wave A decreases or in-
creases, and their orientation remains the same. 

If the mirror RM rotates about the y-axis, then the distance between two equiphase 
lines of wave A, measured along the y-axis, remains the same, but the lines rotate in 
the OVI-plane. When wave A is reflected from mirror RM the relative phases between 
waves B and C remain unchanged. Hence, under mirror RM rotation, the vortex points 
must move along constant angle lines of waves B and C. The angle of mirror RM rota-
tion can be determined by measuring the shift of vortex points. Since this shift differs 
in character when the mirror RM rotates about x or y axis, the two different rotation 
angles can be determined simultaneously in a single measurement.  

When mirror RM undergoes the linear shift, due to vibration, for example, then the 
vortex point net moves as a rigid body. This additional shift can be subtracted, and in 
fact it is subtracted automatically when using the procedures described below. Thus, 
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the system presented is resistant to vibrations, which is one more of its important ad-
vantages.  

 

Fig. 4.20. Equiphase lines of three waves A, B, C forming OVI vortices net – an example. 
The waves have equal amplitudes and their wave vectors are: 

, ),,0( kkk azaya ),2/,3( kkk azayazbk , ),2/,3( kkk −−

)

azayazck . 

Vortex points are denoted by circles. Dash-dotted lines are constant angle lines of waves B, C. 
Dashed lines show the equiphase lines of wave A after mirror rotation. 

Rotation around x-axis causes that the density of the equiphase lines of wave A decreases or increases, 
but their orientation remains the same. Vortex points move along constant angle lines of waves B and C. 

The rotation of mirror RM changes the coordinates of the wave vector ka by 
, which are related to the rotation angles about the y and x axis, respec-

tively. They can be determined by solving the following system of equations: 
)∆,∆( yaxa kk

 ∆(1∆)∆(1∆1∆1∆ yaybxaxbybxb kkynkkxnkykx −′+−′=′+′ , (4.12a) 

 )∆(2∆)∆(2∆2∆2∆ yaybxaxbybxb kkynkkxnkykx −′+−′=′+′ , (4.12b) 
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where relations (3.16) were used. These equations require the position of three vortex 
points (say, VP1, VP2, VP3, which will be named the vortex triplet). In the OVI sys-
tem under consideration, many vortex points are generated. This result in thousands of 
vortex triplets and the advanced statistical method can be applied to increase the 
measurement resolution. The difference in the x and y coordinate between VP2 and 
VP1 vortex points before rotation is denoted by , while  is such 
a difference between VP3 and VP1 vortex points. The values  and 

 are such differences between the same pairs of points but shifted due to 
rotation.  

)1∆,1∆( yx )2∆,2∆( yx
)1∆,1∆( ynxn

)2∆,2∆( ynxn

 

Fig. 4.21. The same case as in Figure 4.19 but the mirror RM rotates about the y-axis. 
In this case, the equiphase lines of wave A preserve their density along y-axis but change 

their orientation. For the same reason as above the vortex points 
move along constant angle lines of waves B and C 
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Fig. 4.22. Circles show the position of the vortex points before rotation, 
while crosses show their position after rotation. Dashed lines show the constant  angle lines 

of reference waves. Rotation angles are: 2 arc second about x-axis and –4 arc second about y-axis. 
The plot has size 200×200 pixels with density corresponding to standard CCD camera resolution. 

Wave vector coordinates of interfering waves are: 
, k , k . 

The plot was calculated by computer and all values were binarized with 8-bit resolution 
)10929.9,44.4,0( 4⋅−k )10929.9,22.2,846.3( 4⋅ )10929.9,22.2,846.3( 4⋅−a b c

This set of equations has the solution: 
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In order to use solutions (4.13), the values of ),( ybxb kk ′′  must be known. If the in-
terferograms (A+B, A+C, B+C) are taken, then quantities ),( ybxb kk ′′  can be determined 
by inspecting the corresponding fringe density along the x and y axes, respectively. 
This is a standard procedure in interferometry (finding the relative angles between two 
interfering waves) and will not be discussed here. One more procedure is described 
below.  

Before calculations are made, it is advisable to change the coordinate system in 
such a way that one axis, say the y-axis, is parallel to constant angle line of waves 
B and C. Figure 4.23 shows a part of the vortex point net shown in Figure 4.21. For 
calculation purposes a vortex triplet must be chosen. In Figure 4.23, the points belong-
ing to vortex triplet are denoted by P1, P2, P3. One of these points (point P1) will be 
treated as a reference point of the triplet. Now, the relative angles between the interfer-
ing waves can be calculated (Fig. 3.17). Because the relative angles are necessary, one 
can assume that the CAV of wave A at the reference point P1 has a phase angle equal-
ing zero. Figure 4.23 shows how the angles of interfering waves change when moving 
between vortex triplet points. It must be noted that the closest neighbors of given vor-
tex points have opposite topological charges.  

0

3
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3
2 π

3
2 π

3
4 π

0

0

3
2 π- 3 2π

-

P1

P2

P3

 

Fig. 4.23. An example of the vortex triplet geometry. This is a fragment of Figure 4.21. 
In this example points belonging to vortex triplet are neighbors, 

but they can be separated by many other vortex points 

While moving from point P1 to P3, the phase of wave B does not change 
013∆ =Bϕ  and the phase of wave A changes by πϕ 3/213∆ −=A . Thus, the phase 

difference between waves B and A changes by 

 πϕϕϕ
3
213∆13∆13∆ =−= ABBA . (4.14a) 
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While moving from point P1 to P2, the phase of wave A does not change 
012∆ =Aϕ  and the phase of wave B changes by πϕ 3/212∆ −=B . Thus, the phase 

difference between waves A and B changes by  

 πϕϕϕ
3
212∆12∆12∆ −=−= ABBA . (4.14b) 

Knowing the relative phase change while going from one vortex point to another, 
the following set of equations can be written  

 nykxkykxk BAyaxaybxb πϕ 213∆1∆1∆1∆1∆ +=−−+ , (4.15a) 

 mykxkykxk BAyaxaybxb πϕ 212∆2∆2∆2∆2∆ +=−−+ . (4.15b) 

This can be rewritten as 

 nykxk BAybxb πϕ 213∆1∆1∆ +=′+′ , (4.16a) 

 mykxk BAybxb πϕ 212∆2∆2∆ +=′+′ . (4.16b) 

The above set of equations has the solution 
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where 2,1,2,1 yyxx ∆∆∆∆  are distances measured along axes x and y between points 
P1–P3 and P1–P2, respectively.  

Solutions (4.17) show that there is a condition concerning vortex triplet that has to 
be observed 

 01212 ≠∆∆−∆∆ yxxy . (4.18) 

By solving the set of equations (4.12) for 2,1 ynyn ∆∆ , one can explore one more 
condition. The solution is 
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It is still assumed that the y-axis of the coordinate system is oriented along a con-
stant angle line. The y-axis rotation changes the orientation of equiphase lines of wave 
A (Fig. 4.21), but not its density measured along the constant angle line. This conclu-
sion can be drawn from basic geometry of parallel lines in a plane. Hence, the y-axis 
rotation will not cause the problems described above. However, now the problem of 
identifying the corresponding vortex triplets, before and after rotation, occurs. Figure 
4.25 shows an example of such a problem, i.e. the set of vortex points before and after 
the larger rotation about the y-axis. In the example shown in Figure 4.25, the 
x-coordinate of A wave vector has changed from zero to yayaxa kk ==k  and its 
y-coordinate remains the same. Because the x and y coordinates of A wave vector are 
the same (after rotation) its equiphase lines are now inclined at angle π/4 against the 
x-axis. The vortex pattern must change by the same angle. This example shows how to 
find the corresponding vortex points in general case.  

P1

P1

P2

P2

 
Fig. 4.25. Under rotation about y-axis the vortex points geometry is rotated at the same rate 

as wave A equiphase lines. Vortex points move along the constant angle lines (which are vertical 
in this figure). These two facts allow the corresponding vortex points to be found. In the figure 
two pairs of corresponding vortex points )2P,2P(and)1P,1P(  are pointed. The characteristic 
vortex point geometry (after rotation) related to this interfering waves geometry is also outlined 
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Because of the forbidden area shown in Figure 4.23, not all angles can be meas-
ured by OVI. The range of measured angles depends on the relative angles between 
waves. The bigger these angles are, the wider range of angles can be measured. On the 
other hand, bigger angles mean more dense vortex points and less accurate measure-
ments. In “micro-” and “nano-” science and technology (MEMS, for example [Trim-
mer et al. 2001]), many angles to be measured are very small. The OVI can be easily 
adapted for measuring the rotation of micro-elements. The simplest way is to add 
a microscopic objective at the position shown in Figure 4.17. In such a case, the limi-
tations discussed here have no meaning. In other cases, a few solutions are possible.  

One can read additional information from (A+B, A+C, B+C) interferograms. 
Studying these interferograms does not allow measuring small angles of rotation. But 
for the given system the rotation angles that are close to forbidden area are not small, 
so this method can work.  

One more reference wave can be used. If the rotation angles come close to the for-
bidden area, then the system can be switched to other references with a different for-
bidden area. This makes the system more complicated, but solves the problem.  

The rotated wave A can be split into two waves which meet two different sets of 
reference waves (having different forbidden areas). Such a two head interferometer is 
even more complicated, but the two separate measurements can be made simultane-
ously and no switching between waves is necessary.  

Summarizing the following step is necessary to determine the small-angle rotations 
with OVI: The four interferograms (A+B, B+C, A+C, A+B+C) must be taken. Then, by 
applying localization procedures as described in section 4.3, the vortex points at 
A+B+C interferogram must be localized. After mirror RM rotation this measurement 
must be repeated. However, if the measurement system is stable and waves A, B, C are 
of high quality, then the A+B+C interferogram is sufficient. Using relations (4.13) the 
rotation angles can be determined.  

The method presented was illustrated in the case of symmetrical interfering waves 
geometry; however, they can also be applied in general cases. In particular, the axis of 
the coordinate system does not have to be fixed as shown in Figure 4.18; however, this 
choice gives the clearest insight into the problem and can be easily found in experi-
ment. It shows that there are two axes of rotation such that the equiphase lines shift 
differs in character when rotating around one or another. In effect, two independent 
angles of rotation can be determined. Since the system possibilities do not depend on 
the coordinate system, the same can be done in any x and y axis orientation.  

4.5.1. Numerical examples 

The qualitative experiment shows that vortex points move along constant angle lines 
of two reference waves when one of the mirrors is slightly tilted, which is in agreement 
with the theory presented above. The experimental test of the resolution of the method 
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presented requires a mirror which can be precisely rotated with resolution of an arc second 
or below; however, such a system has not been available to the author yet.  

OVI for small-angle rotations measurement was tested numerically under various 
conditions. First, the plane waves were used with and without 8-bit binarization. In the 
next step, the contributing waves were disturbed to simulate experimental conditions. In 
the examples presented, only quantities which can be measured in experiment (i.e. light 
intensities in interferograms) were used as input data. The calculations of angles of rota-
tion were based on the procedures presented in the previous subsection. No statistics, 
except simple arithmetic averaging, were used. The calculations were based on two 
waves – rotated wave A, and one of the reference waves denoted by B. Calculations with 
wave pairs A, C were not performed. The amplitude of real plane waves are non-
uniform. Fortunately, at each vortex point, they can be determined separately. This fact 
was used to increase the accuracy of the analysis performed. The simulations were per-
formed for 8-bit black and white CCD camera having about 0.5 million of pixels.  

In the numerical test presented, the system parameters are as follows: Before rota-
tion: wave vector  1/mm. After rotation, these coordinates 
become 

)18.9929,44.4,0( −Ak
)18.9929,54.4,496.0( − 1/mm. The light wavelength is 632.8 nm. Rotation 

angles are: –10.08 arc second about the y-axis and 2.016 arc second about the x-axis. 
Table 4.3 shows the results obtained for a few vortex triplets. The necessary quantities 

 are extracted from formulas (4.17) after arithmetic averaging of the num-
ber of single results; they are 

ybxb kk ′∆′∆ ,
778.3−=′xbk  1/mm, 840.6=′ybk  1/mm. The real values 

(defined numerically) were –3.846 1/mm and 6.661 1/mm, respectively. The average 
values of ybxa kk ∆∆ ,  calculated with the values from the last five rows in Table 4.3 are 
0.502 1/mm and –0.111 1/mm, respectively. The true numerical values are 0.496 1/mm 
and –0.1 1/mm, respectively. In this case, errors are –0.006 1/mm and 0.012 1/mm, re-
spectively. In this case, the change of wave vector coordinate by 0.25 1/mm means the 
rotation angle equal to 0.5 arc second. So the errors given in arc measure are 0.012 and 
0.25 arc second, respectively. Other numerical examples including different interfer-
ing waves geometry – not necessarily as regular as in Figure 4.14 – give similar 
results. Generally, the simulations (for small angles) give results with an accuracy of 
0.5 arc second or better for each axis.  

Table 4.3 shows one more problem which was found by numerical simulations. 
The localization errors (of sub-pixel range) create additional calculation errors when 
using formulas (4.13). These errors can be large for some vortex triplets. Fortunately, 
it is easy to eliminate such wrong triplets. The expressions 1221 ynxnynxn ∆∆−∆∆  and 

2121 yxnxny ∆∆−∆∆  should be greater than 5. Number 5 is a safety threshold and it 
was found in simulations by studying a number of numerical examples.  

Numerical simulations show that the OVI can be used for measuring the small-
angle rotations with accuracy better than arc second. This resolution can be improved 
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using the higher resolution digital CCD camera. According to simulations, the CCD 
12-bit camera which has one million pixels at 2/3 inch CCD element, enables the 
measurement of the rotation angle with a resolution of 0.05 arc second.  

Table 4.3 

Examples of  values determined in numerical experiment. 

Expression named “check 1” equals 
ybxa kk ∆∆ and

1221 ynxnynxn ∆∆−∆∆  and expression named “check 2” 
equals 2121 yxnxny ∆∆−∆∆ . The results for which both check1 and check 2 are greater 
than 5 are valid (last five rows in this table). The arithmetic average of valid values for 

 are 0.502 and –0.112, respectively. The real values are 0.496 and –0.099, respectively ybxa kk ∆∆ and

No. xak∆  
[1/mm] 

yak∆  

[1/mm] 

Check 1 
[mm2] 

Check 2 
[mm2] 

1 0.516 –0.294 1.5 –5.6 
2 0.460 –0.074 3.0 –3.0 
3 0.502 –0.100 2.3 –2.4 
4 0.530 –0.110 9.1 –9.12 
5 0.505 –0.121 7.1 –7.2 
6 0.505 –0.122 6.1 –6.2 
7 0.487 –0.113 6.0 –6.1 
8 0.485 –0.093 7.0 –7.2 

In conclusions the OVI dedicated for small-angle rotations measurement enables 
the determination of two independent angles of rotation. The effects of the system 
vibration can be subtracted. The system has simple and flexible construction, which 
can be adopted to meet various user requirements. The interferograms analysis is 
based on relatively simple and fast calculation procedures and strong statistical meth-
ods can be applied to improve the system resolution.  

4.5.2. Other OVI applications 

In the previous section, the discussion on OVI application for small rotation angles 
measurement was given. The possibility of 3-D interferometry was also  mentioned. 
There are two more topics that are considered by the author and his coworkers. The 
first is OVI application for small wave front geometry reconstruction. This is one of 
the primary aims for the interferometry. The standard reconstruction is obvious and 
one example was presented in Figure 4.12. Standard here means that the wavefront 
geometry of the investigated waves is related to the wavefront of the reference wave. 
Thus, in order to know what is the wave geometry of the investigated wave, one must 
know what is the wave geometry of the reference wave. But to judge the quality of the 
reference wave with high accuracy is a hard task. The available methods (like parallel 
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glass plates) require additional optical elements to be put into interferometer. This 
takes time and disturbs the gentle configuration of interfering waves. OVI allows the 
geometry of “on line” reference waves to be evaluated. The question of accuracy is 
still under investigation, but it seems that λ /10 is available in the simplest optical sys-
tem without any additional measurements (the four interferogram procedure is 
enough). Thus, both reference waves B and C can be tested during standard measure-
ments. Obviously, such measurement does not introduce any disturbance to the system 
and with computerized OVI can be very fast. To measure the reference waves geome-
try one has to compare the ideal distribution of vortex points with the real one. The 
shifts between this two nets and additional information from (A+B, A+C, B+C) inter-
ferograms are sufficient to evaluate reference waves phase disturbances. This is the 
most current research topic on OVI at the time when the monograph were submitted 
for publication. The other subject is superresolution. There are a few ideas how to win 
superresolution imaging with OVI. The simplest idea is directly based on the small-
angle rotations measurement described above. If the incident A beam is focused onto 
a sample (here imaging in reflected light is considered) with a surface that is not flat, 
then a different area of this surface can be treated as a set of mirrors rotated at differ-
ent angles. By moving the sample (or objective) and observing the dynamics of the 
vortex points in the OVs net, one can reconstruct the sample morphology.  

Aksenov (Aksenov et al. 2004) has proposed a system based on OVI for turbulent 
atmosphere inspection. So far, Aksenov’s work has been available for the author as 
a short communication and will not be discussed here. The author hopes that more 
independent research groups will start to work on OVI development and find more 
interesting applications.  

4.6. Other optical vortices applications 

At the moment the optical instruments based on the optical vortices are young and 
must work for success. One exception are optical manipulators, a devices used for small 
bio-molecules manipulations and trapping [Padgett & Allen 1997, Curtis et al. 2002]. 
The molecules are caught by laser beam possessing OVs and then they can be moved or 
rotated. Such manipulators seems to be well developed and practically tested. 

The concept of superresolution microscopy using phase defects was introduced by 
Tychynsky [Tychynsky 1989, Tychynsky et al. 1989, 1994]. 

When the focused laser light scans the sample a number of phase defects (includ-
ing optical vortices) are born in the reflected (or transmitted beam). A part of these 
defects propagate within zero order diffraction component and can be detected in im-
age plane. The detected defects bring information about the object and can be used for 
the object geometry reconstruction.  
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Fig. 4.27. OVSM – optical scheme 

The SUPHIM setup, the scheme of which is shown in Figure 4.26, was also inves-
tigated by the author [Velzel et al. 1999]. However, the results obtained were ambi- 
guous (see also [Totzeck et al. 1997]). As a consequence the author has decided to 
switch to the new project which is described below. The system is named Optical Vor-
tex Scanning Microscope (OVSM). The simplest scheme for such a microscope is 
shown in Figure 4.27. The optical vortex generator (an appropriate hologram for in-
stance) introduce to the scanning Gaussian beam an optical vortex. It can be single 
valued or multi-charge vortex. At the CCD the dynamics of the optical vortex in the 
diffracted beam is traced. Beams with star like structures are more sensitive to the 
sample morphology than the standard Gaussian beams. The vortex point is easy to 
trace by using the extra reference beam. While sample moves the characteristic fork 
like fringe also moves at the image plane. This movement is due to surfaces rough-
ness. Thus the information on surface geometry can be retrieved from the vortex point 
(or points) dynamics analysis. This dynamics was studied in case of micro-step by 
applying calculations presented in section 2.4 [Masajada 2000c]. Results of more rig-
orous calculations will be presented in separate paper. Theoretical and numerical in-
vestigations show that such instrument could work with the resolution exceeding the 
classical limits. The simple experiments confirm the characteristic dynamics of vortex 
point, when the beam is diffracted by small rows. But the final conclusions can be 
drawn on the basis of well prepared experiment and this has not been performed yet. 
There are also some possibilities of combining the advantages of the OVI and OVSM 
in one single instrument, which is a subject of further investigations.  



5. Summary 

The author of this monograph works on the applications of optical vortices to optical 
measurements. The first works were devoted to superresolution microscopy – SUPHIM 
project [Velzel 1999]. The SUPHIM was a commercial project and it was stopped be-
fore introducing the new microscope into the market. The author has proposed a simpler 
version of the microscope working with optical vortices – OVSM. In the OVSM the 
sample is scanned with focused laser beam carrying OV. Under disturbances introduced 
by the sample, the vortex points, in the reflected beam move in a characteristic way. 
Thus, at least simple morphological structures of submicron size (like grooves, holes), 
can be identified by observing the behavior of a vortex point in focused Gaussian beam. 
The numerical tests have shown that the OVSM resolution goes beyond the classical 
limits. Simultaneously, the author has worked on simple technology for manufacturing 
synthetic holograms generating optical vortices (see section 3.2).  

While studying OVSM a new concept concerning new kind of interferometer – 
namely OVI – was born, resulting in the discontinuation of investigations on OVSM, 
and all efforts were focused on developing  OVI.  

It should be emphasized that OVI represents a new kind of interferometry. Al-
though the regular net of vortex points is generated by a three plane waves interfer-
ence, the OVI is not a simple extension of two beam interferometry. The three plane 
waves method is used because it is technically simple and gives a natural decomposi-
tion of a vortex points net into three plane waves. This decomposition allows vortex 
points to be localized fast and accurately, as was shown in section 4.3. The relative 
phases between interfering waves can also be determined.  

The most interesting option is to use the vortex point net dynamics for optical 
measurements. Instead of determining the relative phases between interfering waves, 
the changes in vortex points positions are traced. Tracing the movement of vortex 
points in a vortex point net is a new problem in interferometry. Since vortex points are 
stable and well localized objects in the OVI interference field, the changes in their 
position can be determined with high accuracy. This in turn gives a high measurement 
precision. 

Both possibilities – i.e. relative angles and vortex points’ movement determination 
– can be used simultaneously. For example, information on relative phases between 
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interfering waves was used to compensate for the amplitude errors in small-angle rota-
tions measurement.  

The measurement of small-angle rotations, as presented in section 4.5, reveals the 
great potential of OVI. Using simple optical arrangements the rotation angles about 
two perpendicular axes can be determined with high accuracy. In other interferometric 
systems designed for this purpose and working with comparable resolution, the simul-
taneous measurement of two angles means that the optical system needs the second 
measurement channel. This results in a more complicated optical and electronic sys-
tem. The physical concept of small-angle rotations measurement with OVI is simple 
and free of ambiguities contrary to some of the classical interferometric systems. 
Moreover, the influence of rotating element vibration is subtracted automatically, 
which is not the case in classical interferometric systems. 

The OVI is open for further development in many possible directions. While fin-
ishing this work some new OVI properties were discovered. For example it is now 
known that the geometry of positive vortex points net (or negative vortex points net) 
does not depend on interfering waves amplitudes. Here positive (negative) vortex 
points net means all vortex points of positive (negative) topological charge. Ampli-
tudes of interfering waves define the relative orientation of these two vortex points 
nets. This fact is important when considering OVI application for the wavefront ge-
ometry reconstruction. These new results are not explored in this monograph.  

 



Apendix A 

A.1. Introduction 

The simplest solutions of the wave equation are plane and spherical waves. Both of 
these solutions are often used for modeling in geometrical and physical optics. How-
ever, for many physical problems, including the modeling of light emitted by laser, 
they are not sufficient. Contrary to plane waves lasers beams are confined to a well 
defined region. The divergence or convergence of laser beams are also specific and 
generally cannot be described by spherical waves. To represent laser beams Kogelnik 
used so called Gaussian beams. Gaussian beams are circularly symmetric beams, 
which meet the wave equation in parabolic approximation. In fact, one can define 
a family of functions which are the solutions of wave equation (in parabolic approxi-
mation) and characterize some aspects of laser beams. The family members share 
some core structures. 

A.2. Basic Gaussian beam 

The basic Gaussian beam is the simplest member of the whole family of beams 
representing intricate structure of laser radiation. In cylindrical coordinates ),,( zϕρ  
it can be given as 
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where E0 is the beam amplitude, w0 is the waist parameter, 

 )/1( 22
0 Rz zzww += , (A1a) 

is the transversal beam dimension in z plane. This value gives the radial distance 
where the light pseudo-amplitude (i.e. the square root of light intensity )0I  has 

dropped from the maximum value 0I  in the center )0( =ρ  to eI /0  for zw=ρ . 
For  one gets , i.e. the beam waist is the transverse beam dimension at 0=z 0wwz =
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position where beam wavefront is flat (waist plane) and by convenience the origin of 
the coordinate system is in this plane. In the beam waist plane the beam energy has the 
narrowest distribution. 

 )  (A1b) /1( 22 zzzR Rz +=

is the wavefront curvature and 

 2  (A1c) /2
0wkzR =

is the Rayleigh range. It describes the point where the intensity on axis has dropped to 
half the value in the waist plane and the waist enlarges by the factor 2  (Fig. A1). 
The beam waist can be treated as focus point of the beam and the value  is fre-
quently described as the depth of focus or as the confocal parameter. The 

 is called the Gouy phase, which changes from 0 for 

Rz2

)/atan( Rzz− 0=z  to 2/π−  for 
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Fig. A1. The solid line shows the pseudo- 
amplitude of Gaussian beam in the waist plane. 

The dotted line shows its pseudoamplitude 
in Rayleigh plane. The dotted lone shows 

the beam intensity in Rayleigh plane 

The beam (A1) has a Gaussian like transverse intensity distribution, hence the 
beam name. The Gaussian beam (A1) has variable wavefront curvature (A1b). For 
z = 0 one gets , i.e. the wavefront is flat. For  the wavefront becomes 
spherical like and the beam transversal size w

∞=R zz >>z R

z depends linearly on z. The beam has 
a constant divergence angle of  
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Under propagation through the optical system with axially symmetric components 
that can be described in parabolic approximation the Gaussian beams remain Gaus-
sian. This means that the beam emerging from the system will be Gaussian again, 
however, now with a new position of the waist.  



 91 

There are many detailed studies devoted to the different aspects of Gaussian 
beams. One can find an example of such studies in [Siegman 1986, Bachor 1998]. An 
interesting discussion on the validity of paraxial approximation can be found in a pa-
per by Lax [Lax 1975]. 

A.3. Hermite–Gauss modes 

The Gaussian beam (A1) is not the only stable solution of paraxial wave equation. 
There are many other spatial solutions which are physical real, i.e. they can be emitted 
by laser and propagate without change in shape. The well known set of such solutions 
are the Hermite–Gauss (HG) beams. They have the same paraboloidal wavefront cur-
vature as the Gaussian beam. Their intensity distribution is fixed and scales with Rz. 
However, they have non-Gaussian intensity distribution. These solutions can be repre-
sented as a product of two Hermite functions [Byron et al. 1972], one in the x, and 
other in the y direction.  
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where  is a normalization constant, HH
nmA n are Hermite polynomials of order n. In 

particular,  and  is the pure Gaussian beam described above.  1)(0 =xH Hu 0,0

The HG mode rotated by π /4 can be expanded into the set of non-rotated HG 
modes [Allen et al. 1999]: 
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This relation is important when analyzing a transformation of HG modes into LG 
modes.  

The HG modes form a complete basis set in function space and any arbitrary field 
distribution can be described by superposition of these modes. The Hermite polynomials 
have rectangular symmetry and the laser system has usually circular symmetry. How-
ever, small asymmetries in the laser cavity give rise to the rectangular symmetry in the 
output field. This makes the HG modes an effective way to represent the intricate struc-
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ture of laser radiation (Fig. A.2). It is worth noting here that by special cavity attenuation 
one can obtain from the laser the desired pure HG mode [Oron et al. 2001]. 

 

Fig. A2. Light intensity distribution in HG modes in the beam waist plane. 
a) n = 1, m = 1; b) n = 2, m = 1; c) n = 3, m = 1; d) n = 2, m = 3. The plots have different z-scales 

A.4. Laguerre–Gauss modes 

The other modes that form a complete basis set are Laguerre–Gauss (LG) modes. 
Their field amplitude can be given as: 
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where  is the normalization constant,  is the generalized Laguerre polyno-
mial [Byron et al. 1979], 

L
lmA )(xLl

p

nml −= , and ),min( mnp = . It is more usual to use the 
indices  instead of  when describing LG modes, so in formula (A5) we could 
write  instead of . The characteristic feature for these modes is the azimuthal 
phase term 

pl, mn,
LG
lpu LG

mnu
}exp{ ϕli− , which gives rise to the helical wavefronts and non-zero or-

bital angular momentum of the beam.  
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As each of the HG and LG modes form the complete basis set in function space 
any LG modes can be expressed in terms of HG modes as follows [Allen et al. 1999]: 
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Fig. A3. Light intensity distribution in LG modes in the beam waist plane. 
a) p = 1, l = 0; b) p = 0, l = 1; c) p = 0, l = 3; d) p = 1, l = 2. The plots have different z-scales 

A.5. “Helical–Gaussian” beam 

Apart from the beams with OVs, which are well known in laser physics, in many 
papers “helical Gaussian” beams are introduced. These beams are the simplest beams 
with Gaussian envelope and fundamental properties characteristic of beams with sin-
gle or multicharge OV satisfying the wave equation in parabolic approximation. In the 
case of topological charge value m = 1 and topological charge sign sgn = ±1, the beam 
is Laguerre–Gaussian beam with parameters p = 0 and l = 1. The beam can be de-
scribed by the formula  
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In cylindrical coordinates formula (A7) transforms into: 
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In this monograph, the following definition is used: 
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Appendix B 

List of symbols and abbreviations 

In this appendix a list of most frequently used symbols is given. The symbols are 
valid throughout the whole monograph and are never redefined. Together with sym-
bols, a list of abbreviations and definitions introduced by the author is included. The 
abbreviations and definitions are explained explicitly or by referring to the proper 
page in the monograph.  

A One of the waves generating OVI vortex net. 
B One of the waves generating OVI vortex net. 
BV See page 60 
C One of the waves generating OVI vortex net. 
CAV Complex amplitude vector. 

GΦ  The Gouy phase shift, see Appendix A.  
k, k Wave vector, wave vector magnitude. 
m Value of topological charge of optical vortex. 
OV Optical vortex. 
OVI Optical Vortex Interferometer/Interferometry. 
OVI-plane See page 72 
OVs Optical vortices. 
OVSM Optical Vortex Scanning Microscope. 
sgn The sign of topological charge of optical vortex. 
SUPHIM Superresolution Phase Image Microscope. 
U Complex amplitude representing light wave in scalar approxima-

tion. 
U0 Amplitude of light wave. 
Vortex triplet See page 75 
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Wiry optyczne 
i ich zastosowanie w interferometrii 

Regularna sieć wirów optycznych może powstać w wyniku interferencji trzech fal płaskich. Sieć taka 
charakteryzuje się unikatowymi własnościami i jest bardzo wrażliwa na zaburzenia wprowadzone do 
jednej z interferujących fal. Własności sieci wirów optycznych wykorzystano w interferometrze, którego 
działanie jest oparte na wirach optycznych. Interferometr można skonfigurować na wiele sposobów. Jest 
więc on instrumentem, którego budowę można przystosować do specyficznych warunków pomiarowych. 
Kluczowym zagadnieniem decydującym o dokładności tego interferometru jest lokalizacja wirów 
optycznych. Aby rozwiązać ten problem, zaproponowano i przetestowano kilka metod ich lokalizacji. 
Metody te zapewniają rozdzielczość większą niż odległość między punktami pomiarowymi (pikselami) 
i są jednocześnie wystarczająco szybkie, aby umożliwić pomiar w czasie rzeczywistym. Przedstawiono 
też podstawowe własności fizyczne i zagadnienia techniczne związane z interferometrem opartym na 
wirach optycznych. Omówiono jego możliwe zastosowania, w tym: pomiar małych kątów obrotu, pomiar 
małych przesuwów liniowych, rekonstrukcję geometrii frontu falowego, interferometrię 3-D, zastosowa-
nia w mikroskopii nadrozdzielczej. Zagadnieniu pomiaru małych kątów obrotu poświęcono szczególną 
uwagę. Monografia zawiera również krótkie wprowadzenie do teorii wirów optycznych.   
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