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APPLICATION OF EXTREME VALUE ANALYSIS 
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1. Introduction

Portfolio analysis is one of the most important areas in modem finance. One the 
one hand, the birth of portfolio theory was one of the very few milestones in the 
scientific history of finance. On the other hand, portfolio theory is the main back
ground of risk analysis and management. There are at least several approaches 
proposed in portfolio theory. The classical approach is well-known Markowitz 
theory, generalized by James Tobin to include risk-free instruments. Of course, the 
non-classical approaches are very often applied as well. Among the most often 
used non-classical approaches it is worth to mention the “safety-first” approaches, 
were the main stress is put on the avoiding large losses in a portfolio. The good 
description of these approaches is given in [1],

In this paper we propose the other possible ways to introduce “safety-first” con
cept in portfolio analysis. These proposals are based on Extreme Value Theory, 
being relative new statistical tool. The conceptual considerations are preceded by a 
synthetic presentation of Extreme Value Theory. In addition, some illustrative ex
amples are given.

2. Extreme value theory -  the most important facts

There are many different approaches that were developed in statistical methods. 
Classical statistical methods can be described as “mean-oriented” methods, aiming 
at the modeling of mean (expected value) of the statistical distribution. However, 
financial risk analysis is often interested in rare events, which lead to exceptionally
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high losses. In this case, the suitable approach is the one, which aims at modeling 
the tails of the distribution -  these models are concentrated on the analysis of “ex
treme” values. This approach is called Extreme Value Theory. It is briefly pre
sented in this chapter. We discuss two cases:
-  univariate extreme value theory;
-  multivariate extreme value theory.

2.1. Univariate extreme value theory

Univariate extreme value theory consists of two types of strongly linked ap
proaches:
-  analysis of distribution of extremum;
-  analysis of conditional excess distribution.

Analysis of distribution of extremum
Analysis of distribution of extremum is the analysis of the random variable, de

fined as maximum (or minimum) of the set of random variables. For simplicity, let 
us concentrate on the distribution of maximum (the distribution of minimum can be 
obtained in the obvious way from the distribution of maximum). The most impor
tant result for the distribution of maximum is given in the so-called Fisher-Tippet 
theorem (see [1]). In this theorem one considers the limiting distribution for the 
normalized (by location and scale parameter) maximum:

lim P
\

<  X =  G ( X ) , ( 1)

X nn =  m ax(X ,,X 2,...,X n). (2)
It can be proved that this limiting distribution belongs to the family of the so- 

called Generalized Extreme Value Distributions (GEVD), where a distribution 
function is given as:

G(x) = exp l +  £
x — jU

(3)

l +  £cr 1 (jc — //)  >  0.
Generalized Extreme Value Distribution has three parameters:

-  location parameter, denoted by fx\

-  scale parameter, denoted by a\
-  shape parameter, denoted by £

Shape parameter reflects the fatness of tails of GEVD distribution -  the higher 
value of this parameter, the fatter tails.

The family of Generalized Extreme Value Distributions contains three types of 
distributions; they differ with respect to the shape parameter, namely:
-  Frechet distribution -  positive value of shape parameter;
-  Weibull distribution -  negative value of shape parameter;
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-  Gumbel distribution -  the value of shape parameter converges to zero.
In financial problems one usually encounters Frechet distribution as limiting 

distribution for maximum. Here the underlying observations come from the fat
tailed distribution, such as Pareto distribution, stable distribution (including 
Cauchy), etc.

Analysis of conditional excess distribution
Here we consider the so-called conditional excess distribution (also called con

ditional tail distribution), given as:
t? / \ D, v  .  iV v  , F(u + y ) - F ( u )Fu(y) =  P{X —u < y \ X  > u) = ----- -— — ----- ,

1 ~F( u)  (4)

0 <  y <*o - w ;*0 =  sup(x: F(x ) <  1).
X

This distribution is given that the underlying random variable takes value from 
the tail. It depends on the choice of threshold u.

It can be proved (see [1]) that the conditional excess distribution can be ap
proximated by the so-called Generalized Pareto Distribution (GPD), linked to Gen
eralized Extreme Value Distribution. The distribution function of GPD is given as:

Fu(y) = \ - ( \  + t y / p r v4, (5)
P  =  a  +  £(u -  //). (6)

This distribution has two parameters, namely:
-  shape parameter, denoted by £ (the same as in GEVD distributions);
-  generalized parameter, denoted by /?.

This generalized parameter depends on all three parameters given in GEVD dis
tribution, as well as on the threshold u.

The family of Generalized Pareto Distributions contains three types of distribu
tions; they differ with respect to the shape parameter. These are:
-  Pareto distribution -  positive value of shape parameter;
-  Pareto type II distribution -  negative value of shape parameter;
-  Exponential distribution -  the value of shape parameter converges to zero. 

Therefore, in finance, when the underlying distribution has fat tails, we have
Pareto distribution characterizing behavior in the tail.

2.2. Multivariate extreme value theory

In the multivariate case, we can apply two different approaches:
-  analysis of distribution of vector of maxima;
-  tail dependence analysis.

Both approaches are based on the so-called copula analysis, to be presented firstly. 
Copula analysis
This approach has a crucial importance in multivariate analysis. Its main practi

cal use comes from the fact, that it performs the analysis of multivariate distribu
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tions by separate analysis of marginal univariate distributions and the analysis of 
dependence between components of the random vector. Therefore the analysis of 
dependence is “separated” from the analysis of marginal distributions.

One of the most important facts in copula analysis is the so-called Sklar theo
rem [5], in which the multivariate distribution function is represented as a copula 
function linking the univariate distribution functions, given in the following for
mula (m is the number of variables):

(7)
Here copula function reflects the dependence between the components of a ran

dom vector. There are very many possible copula functions. The popular family 
contains the so-called Archimedean copulas, defined on the base of strictly de
creasing and convex function, called generator. In the bivariate case it is given as:

C{u^u2) = y / \ y f ( u x) + y/{u2)), (8)
^:[0;l]-^[0;oo), (9)

(KD =  0. (10)
Copula functions are used in two approaches presented above.
Analysis of distribution of vector of maxima
This is a direct generalization of univariate case. Here we consider a vector of 

maxima, each maximum taken for single variable. The main result is obtained for 
the limiting distribution of normalized maxima, given as:

lim P X L  ~b\ < x' XL ~b" < x n = G (x \...,xm). (ID

It can be proved (e.g. [3]) that this limiting distribution can be presented in the 
following form:

G(x1 ) =  C(G, (x1),..., Gm (xm)). (12)
Here, the multivariate distribution of maxima, called Multivariate Extreme 

Value Distribution (MEVD), is represented according to Sklar theorem, and:
-  univariate distributions belong to the family of Generalized Extreme Value Dis

tributions, therefore they are Frechet, Weibull or Gumbel distributions;
-  the copula function denoted by, is the so-called Extreme Value Copula (EVC), 

to be presented below.
As one can see, Multivariate Extreme Value Distribution is obtained by apply

ing Extreme Value Copula to univariate Generalized Extreme Value Distributions. 
Extreme Value Copula is the copula satisfying the following relation:

C(ul',...,Um') = C  (M,,...,Mm), ( n )
t>  0 .

In the bivariate case Extreme Value Copula can be represented in the following 
form:
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C(m, ,m2) =  exp (14)log (m,u2)A log M,
log(M,M2)J

Here A is a convex function satisfying the following relations:
A(0) =  A(1) =  1, 

max(w, 1 — w) <  A( w) < 1.
Three often applied bivariate Extreme Value Copulas are:

1. Gumbel copula, where:
C(m, ,m2) =  exp[—(logM,® +  lo g u / ) 1'*],

A(w) =  [v /  + ( l - w ) <?)]l/e,
0e[l;oo).

2. Gumbel II copula, where:
C(M1,u2) =  M,u2exp[^(logM1 logu2)/(logw, + lo g u 2)],

A(w) =  Gw2 — Gw + 1,
0G[O;1].

3. Galambos copula, where:
C(m, , u2) =  uxu2 exp[((log m, )~9 +  (log u2y ey u9],

A(w) =  1 -  [w~9 + (1 -  w Y 9]-'10,
0  € [0;oo).

(15)
(16)

(17)

(18)

(19)

(20)

(21)

(22)

The presented copulas are one parameter functions. This parameter can be in
terpreted as dependence parameter.

Tail dependence analysis
The main goal of tail dependence coefficients is to measure the dependence in 

tails of distribution. These coefficients, defined in the bivariate case, are:
-  lower tail dependence coefficient:

AL = UmP(X2 <G2~ \ u ) \ x i <G~ \ u ) ) ,  (23)

-  upper tail dependence coefficient:
4  =  lim /^ X , > G y l ( u ) \ x i >  G ; \ u )). (24)

The main idea behind tail dependence coefficient is based on the calculation of 
the probability that one variable takes value from the tail (lower or upper) given 
that the other variable takes value from the tail (lower or upper). The value in the 
tail is defined as a (lower or upper) quantile. This probability as taken as limiting 
probability given one goes with the probability in the tail to 0  (lower tail depend
ence) or to 1 (upper tail dependence).

We should notice that the tail dependence coefficients can be treated as the gen
eralization of the approach based on the conditional excess distribution.
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Both tail dependence coefficients can take values from the interval [0;1]. If tail 
dependence coefficient is equal to 0, we call this asymptotic independence. If tail 
dependence coefficient is higher than 0 , we call this asymptotic dependence.

The important property of tail dependence coefficients is that they can be repre
sented through copula functions. This is given in the following formulas:

X, =  lim[C(w,w)/w], (25)u-0
Xy =  lim [(l-2w  +  C(M,w))/(l-w)]. (26)

u—
The bivariate approach can be generalized to multivariate case, by looking at 

the probability that some variables take value from the tail given the other variables 
has taken value from the tail.

3. Applications of Extreme Value Theory in portfolio analysis
-  some proposals

Now we give some proposals how the presented approaches of Extreme Value 
Theory can be applied in portfolio analysis. These proposals will be illustrated by 
some empirical examples. These examples were presented for the first time in Ja- 
juga and Papla [4],

The proposals will be divided into two parts:
-  applications of univariate extreme value theory;
-  applications of multivariate extreme value theory.

Applications of univariate extreme value theory
In the univariate case, one can deal with two possible structures in portfolio 

analysis:
-  distribution of the return of single stock;
-  distribution of the return of a portfolio of stocks -  here return of a portfolio is 

simply weighted average of returns of the individual stocks, where the weights 
are fractions of these stocks in a portfolio.
In each these two structures one can apply two main tools of univariate extreme 

value theory. In the analysis of the distribution of maximum, one looks at the dis
tribution of maximal loss on a single stock or on the portfolio of stocks in the re
spective time period. Here loss is taken as negative return, understood as negative 
rate of return. Since the distribution of single stock return (same for loss) and 
sometimes also the distribution of portfolio return (same for loss) has fat tails, it 
seems that Frechet distribution is likely distribution for maximal loss.

In the analysis of conditional excess distribution, one looks at distribution of 
loss on a single stock or on a portfolio of stocks, given that this loss exceeds some 
threshold. The threshold should be provided by investor, for example: if it set equal 
to 0 , then investor looks at the distribution of loss (on single stock or portfolio of
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stocks), given that loss occurs. Of course, instead of 0, any other number, for ex
ample required rate of return, can be set.

Analysis of conditional excess distribution leads to the calculation of risk 
measure called Expected Shortfall (other names: Conditional Value at Risk, 
Expected Tail Loss). It is defined as:

ES = E ( X - u \ X > u ) .  (27)

Expected Shortfall is the expected value of the conditional excess distribution. 
Example
In this example the logarithmic rate of returns for the following stock market 

indices are considered:
-  indices of Warsaw Stock Exchange: WIG, WIG20, MIDWIG, TechWIG;
-  indices of US market: DJIA, S&P 500;
-  indices of EU market: DAX, FT-SE100.

The financial time series of logarithmic rates of return come from the period 
January 2, 1995-October 3, 2003. The stationarity of each time series was verified 
(positively) by the augmented Dickey-Fuller test.

For each time series Generalized Extreme Value Distributions were estimated 
by using maximum likelihood method. The results of the estimation are given in 
the table 1.

Table 1. The estimates of the parameters of Generalized Extreme Value Distributions

Data Shape parameter Location parameter Scale parameter
WIG 0.374 0.040 0.012
WIG20 0.450 0.037 0.022
MIDWIG 0.604 0.033 0.011
TechWIG 0.147 0.066 0.012
DJIA 0.519 0.027 0.006
S&P 500 0.244 0.027 0.007
FT-SE 100 -0.048 0.031 0.006
DAX -0.084 0.041 0.011

Source: own calculations.

The analysis of the results in the table 1 leads to the following conclusions:
-  in most cases we obtained Frechet distribution (estimate of shape parameter is 

positive), which suggests that underlying returns are characterized by fat-tailed 
distribution;

-  for FTSE-100 and DAX the estimate of shape parameter is negative but close to 
zero, which suggests either Weibull distribution or Gumbel distribution;

-  in most cases, the Warsaw Stock Exchange indices have fatter tails than the 
other indices;

-  the Warsaw Stock Exchange indices have larger estimates of location (related to 
expected return) and larger estimates of scale parameter (related to risk).
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Applications of multivariate extreme value theory
In multivariate case, one considers vector of returns on many (or several) 

stocks. Similarly, one can consider vector of returns on portfolios of stocks (market 
indices). One can here apply both presented tools of multivariate extreme value 
theory. In the analysis of distribution of vector of maxima, one looks at the distri
bution of maximal losses of all considered stocks, where loss is taken as negative 
return, understood as negative rate of return. Here the limiting distributions for the 
components are univariate Generalized Extreme Value Distributions and the rela
tion between the maxima is reflected through Extreme Value Copula.

In tail dependence distribution, performed for bivariate case, one looks at the 
probability (in limit) that one stock faces large losses, given that the other stock 
faces large losses. It is very often useful to study this for market indices rather than 
for individual stocks. This allows detecting the so-called contagion effect.

Example
We consider different pairs of stock market indices, where each pair is com

posed of WIG index and another index, studied in the previous example. In the first 
step we estimated the parameters of Generalized Extreme Value Distributions. In 
the second step we used empirical distribution functions obtained in the first step 
and estimated three copulas belonging to Extreme Value Copulas family: Gumbel, 
Gumbel II and Galambos. The best fit was obtained for Gumbel copula. The results 
are presented in the table 2 .

Table 2. The estimates of Gumbel copula for stock indices

Bivariate data Value of dependence parameter
WIG and WIG20 21.345
WIG and DJIA 14.862
WIG and FTSE-100 2.275
WIG and DAX 5.562

Source: own calculations.

As we know, the dependence parameter for Gumbel copula takes values higher 
or equal to 1. The higher value of this parameter, the stronger dependence between 
maximal losses of respective variables. The results given in this table indicate the 
strong dependence (it could have been expected) between stock indices of Warsaw 
Stock Exchange. It also shows stronger extreme dependence between Warsaw 
Stock Exchange and New York Stock Exchange than between Warsaw Stock Ex
change and two large European exchanges.

Then for each pair we calculated the approximation of tail dependence by taking 
level of u (probability) close to 0 (for lower tail) or close to 1 (for upper tail). We 
present the results in the case of Frank copula, belonging to the family of Archi
medean copulas. Due to the symmetry of Frank copula, we present the results for 
upper tail dependence. They are given in the table 3.
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T ab le  3. U p p e r tail d ep en d e n ce  fo r s to ck  in d ices (F ra n k  co p u la )

Probability WIG and WIG20 WIG and DJIA WIG and FTSE-100 WIG and DAX
0.9 0.546 0.200 0.195 0.198
0.95 0.368 0.147 0.106 0.108
0.99 0.103 0.086 0.023 0.023
0.999 0.011 0.072 0.002 0.002

Source: own calculations.

As we can see, one can suspect that only in the case of two pairs, WIG and 
WIG20, as well as WIG and DJIA, there are some indications of small asymptotic 
tail dependence.

These illustrative examples shows some usefulness of Extreme Value Theory in 
portfolio analysis.
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ZASTOSOWANIE ANALIZY WARTOŚCI EKSTREMALNYCH 
W ANALIZIE PORTFELOWEJ

Streszczenie

W artykule podano kilka propozycji zastosowania teorii wartości ekstremalnych 
w analizie portfelowej. Rozpatrzono dwa przypadki: przypadek jednowymiarowy i 
przypadek wielowymiarowy. Artykuł rozpoczyna syntetyczna prezentacja teorii 
wartości ekstremalnych, a w dalszej części zaprezentowano zastosowania prak
tyczne ilustrowane przykładami z rynku finansowego.
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