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1. Introduction

In modem mathematical finance continuous time models play a crucial role because 
they allow handling unequally spaced data and even high frequency data, which are real­
istic for liquid data. The probably most famous example is the co-called Black-Scholes 
model, which is build out of Brownian motion and models the logarithm of an asset price 
by the solution to the arithmetic Brownian motion (see [5]). The asset pricing model 
implies that the aggregate returns are normal and independly distributed. But the assump­
tion is unsatisfactory for many observed data. One approach is to replace the Brownian 
motion in Black-Scholes model by a heavier tailed Levy process. This will allow returns 
to the heavy-tailed and skewed and take into account jumps. However, the returns will be 
independent and stationary, since every Levy process has stationary independent incre­
ments. This approach was for example proposed by Brockwell and Marquardt in [2], 
where second order Levy-driven CARMA (continuous time ARMA) processes are re­
viewed. Gaussian CARMA processes are special cases in which the driving Levy proc­
ess is Brownian motion. The use of more general Levy processes permits the specifica­
tion of CARMA processes with a wide variety of marginal distributions, which may be 
asymmetric and heavier tailed than Gaussian. Non-negative CARMA processes are of 
special interest, partly because of the introduction by Bamdorff-Nielsen and Shephard [1] 
of non-negative Ornstein-Uhlenbeck process as model for stochastic volatility [2].

Because many studies have shown that heavy-tailed distributions allow for modelling 
different kinds of phenomena when the assumption of normality for the observations 
seems not to be reasonable, we extend the definition of the second order Levy-driven 
CARMA processes considered in Brockwell and Marquardt [2]. We propose to replace 
the second order process with the symmetric a-stable Levy motion. The role that a-
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-stable Levy motion plays among stable processes is similar to the role that Brownian 
motion plays among Gaussian processes. Moreover the a-stable (stable) distributions 
have found many practical applications, for instance in finance [7], physics [3], electrical 
engineering [12]. The importance of this class of distributions is strongly supported by 
the limit theorems which indicate that the stable distribution is the only possible limiting 
distribution for the normed sum of independent and identically distributed random vari­
ables [10],

On one hand the a-stable CARMA processes are an extension of second order Levy- 
driven CARMA models, on the other hand they are extension of the ARMA time series 
models with a-stable innovations described in Nowicka [8], The discrete ARMA models 
with innovations from the stable distributions are a special case of considered in 
Nowicka-Zagrajek and Wyłomańska [10] PARMA models with a-stable innovations as 
well as ARMA models with time-varying coefficients and a-stable innovations pre­
sented in Nowicka-Zagrajek and Wyłomańska [10]. Additionally, the a-stable CARMA 
processes have similar asymptotic behaviour like the discrete models.

2. CARMA processes

Definition 1. Second-order Levy-driven CARMA process.
A second-order Levy-driven continuous ARMA(p,q) process is defined in terms of 

the following state-space representation of the formal equation
a(D)Y(t) = b(D)L(t), t e R , (1)

in which D denotes differentiation with respect to t, {L(t)} is the background driving 
Levy process defined in Brockwell and Marquardt [2],

a(z) = Z p + alz p~' + ... + ap, 

b(z) = b0 +b,z + ... + bp_iz l’~\ 
and the coefficients ty satisfy^ * 0 and bj = 0 q<j<p-

The form of the bounded solution of equation (1) as well as the main properties of it 
are presented in Brockwell and Marquardt [2],

Definition 1 can be extended to the continuous processes with symmetric a-stable 
Levy process (see [13]). For simplicity in this paper we study the special case of such 
models, i.e. the symmetric a-stable CARMA(1,1) processes:

DY(t) + aY{t) = bDL *(t), t e R ,  (2)
for non-zero a and b parameters. In equation (2) (L*(/)} is an a-stable Levy process 
indexed by R defined in Wyłomańska [ 13]. In this paper we consider the case 1 < a  < 2.

The process (Y(t)} is given by the following equation (see [13]):
t

Y{t) = b Jexp(-s(r-w ))dL*(«) (3)
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and for a > 0 and b = 1 it is called an a-stable Ornstein-Uhlenbeck process (see Example 
3.6.3 in [11]).

Moreover for a > 0 and b * 0 the stochastic process {Y(t)} is stationary (see [13]).

3. Measures of dependence of symmetric a-stable CARMA(1,1) processes

For considered CARMA processes in case a < 2 the covariance is not defined and 
thus other measures of dependence have to be used. The most popular measures are the 
covariation and the codifference defined for a-stable random variables.

Definition 2
Let X and Y be jointly symmetric a-stable. The covariation CV(X, Y) defined for 

1 < a  < 2 is the real number
C V{X,Y)=  J v ^ - 'T U f a , , ^ ) ,  (4)

sz
where r  is the spectral measure of the random vector (X,F), and the signed power is 
given by z<p> =| z |',_l z ■

Definition 3
Let X  and Y be jointly symmetric a-stable. The codifference CD(X,Y) defined for 

0 < a  < 2 is given by
CD(X,Y) = ln £exp(/(X -  Y)) -  ln £exp(/X) -  ln £exp(-iY). (5)

Properties of the considered measures of dependence one can find in [11], Let us only 
mention here that, in contrast to the codifference, the covariation is not symmetric in its 
arguments. Moreover, when a=  2 both measures reduce to the covariance, namely 

C ov(x,y) = C D (x ,y) = 2CV (x,y).
Using results obtained in [13] we present the measures of dependence given in Defi­

nition 2 and 3 for considered symmetric a-stable CARMA(1,1) processes:
Proposition 1
Let {Y(t) } be a solution of CARMA( 1,1) equation (2) with a > 0. Moreover let us as­

sume 1 < a  < 2. In this case we have the following formulas

cv(y(t+» .n ») = l',re,p<~fl*) . i »  oaa
I h la

CD(Y(t + h), Y(t)) = — (l + exp(-aa/i)-11 - exp(-a/i) \a ), h > 0.
a a  v '

As we see the above formulas are not dependent on f, which is not surprising because 
of the stationarity of {Y(t)}.

Theorem 1 (see Theorem 4.1. in 13])
If {Y(t)} is the solution of equation (2) and a>0, then for 1 < a  < 2 and each t g R the 

following formula holds:
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(6)
,.__CD(Y(t + h \Y (t))  „
l im ---------------------------= cc.
»-*- CV(Y(t + h),Y(t))

The above result can be used for example to the estimation of the unknown in­
dex of stability a  for considered processes described by CARMA( 1,1) equation (2). 
Results similar to this obtained in Theorem 1 we can observe also for discrete sta­
tionary ARMA models (see [8]) as well as for periodic ARMA models with stable 
innovations (see [10]) and ARMA models with time-varying coefficients and 
symmetric a-stable structure (see [9]).

4. Examples

In order to illustrate our theoretical results presented in the previous Section let us 
consider symmetric a-stable CARMA( 1,1) process:

DY(t) + 0.5Y(t) = DL*(t), t e R
for 1 < a  < 2.

We first want to demonstrate how the a  parameter influences the behaviour of the 
process {T(t)}, so we plot 1000 realizations of the considered models for a=  2, 
a=  1-7 and a=  1-4, see Figure 1. It is easy to notice that the smaller a  we take, the 
greater values of the processes can appear (property of heavy-tailed distributions). Next, 
let us illustrate the asymptotic relation between the covariation and the codifference that

CD(Y(t + h),Y(t))is studied in previous Section. On Figure 2 we present the function
aCV(Y(t + h),Y(t))

for h e  [0,25] and a  = 1.7 and a  = 1.4 . According to the theoretical results, the quo­
tient tends to 1 as h increases. Because the covariation is not symmetric we illustrate also

the relation CD (Y{t\Y(t + h)) 
aCV (Y(t),Y(t + h))

. As we see the last quotient tends to 0 as h increases.

As an application to stochastic volatility modelling Bemdorff-Nielsen and Shephard
[1] introduced a model for asset-pricing in which the logarithm of an asset price is the 
solution of the stochastic differential equation:

DY(t) = // + ]3a2(t) + cr (t)DW(t),
where (cr2(f)}, the instantaneous volatility, is a non-negative Levy-driven Om- 
stein-Uhlenbeck process, [W(r)} is standard Brownian-motion and fl and (5 are 
constants (see [2]).
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Fig. 1. The realizations of symmetric a-stable CARMA(1,1) process with a=  2 (top panel), 
a=  1.7 (middle panel) and a=  1.4 (bottom panel)

Source: own calculations.

CD(Y(t + h),Y(t)) CD(Y (t),Y(t + h))
Fig. 2. The plots of the functions-------------------------  (top panel) an d -------------------------  (bottom

aCV(Y(t + h), Y(t)) aCV{Y(t), Y(t + h))
panel) vs h e [0,25] for a -  1.7 (solid line) and a =  1.4 (dotted line)

Source: own calculations.
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Much of the analysis of Bemdorff-Nielsen and Shephard can however be car­
ried out after replacing the Ornstein-Uhlenbeck process by a symmetric a-stable 
CARMA process with a=  2 (second order CARMA process). This has the advan­
tage of allowing the representation of volatility processes with a larger range of 
autocorrelations functions than is possible in the Ornstein-Uhlenbeck framework. 
Brockwell and Marquardt in [2] propose the take CARMA(3,2) process with the 
following parameters

a(z)  = (z  + 0. l)(z + 0.5 -  in i 2)(z + 0.5 + in !  2), 

b(z)  = 2.792 + 5z + z2.
In this case the solution process (T(f)} has the following form

Y (t)= ]g (t-u )d L (u ) ,

where (L(r)} is the background driving Levy process and the function

g(t) = 0.8762exp(-0. It) + O.1238cos— + 2.5780sin—
2 2 )

exp(-0.5r), r>0 .

Fig. 3. The realizations of CARMA(3,2) process 
Source: own calculations.

On Figure 3 we present the realizations of the process {Y(t)}.
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STABILNE PROCESY CARMA JAKO NARZĘDZIE 
DO MODELOWANIA ZMIENNOŚCI STOCHASTYCZNEJ

Streszczenie

W artykule zbadano nową klasę procesów stochastycznych wykorzystywanych 
w matematyce finansowej, a mianowicie procesy CARMA (ciągłe modele ARMA) 
z symetrycznymi stabilnymi innowacjami, które są naturalnym rozszerzeniem roz­
patrywanych w [2] procesów CARMA o skończonych drugich momentach (zob.
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również [6]). Są one także rozszerzeniem opisanych w [8] modeli ARMA z syme­
trycznymi or-stabilnymi innowacjami. Dla rozpatrywanych modeli funkcja kowa­
riancji nie jest zdefiniowana, dlatego też rozpatruje się inne miary zależności.

W artykule podano postać rozwiązania rozpatrywanych modeli ciągłych, a także 
przestudiowano kodyferencję i kowariację -  dwie najpopularniejsze miary zależno­
ści zdefiniowane dla symetrycznych procesów a-stabilnych. Pokazano także, iż 
rozpatrywane miary są asymptotycznie proporcjonalne ze współczynnikiemi pro­
porcjonalności równym a. Otrzymane rezultaty są analogiczne z wynikami uzy­
skanymi w przypadku dyskretnych modeli rozpatrywanych w [8; 10]. Rozpatrywa­
ne procesy zastosowano do modelowania zmienności stochastycznej.
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