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1. Introduction

In the last decades, with deregulation of power markets and introduction of 
competition, electricity price forecasts have become a fundamental input to an en
ergy company's decision-making mechanism [10; 14]. Short-term price forecasts 
(STPF) are of particular interest for participants of auction-type spot electricity 
markets who are requested to express their bids in terms of prices and quantities. In 
such markets buy (sell) orders are accepted in order of increasing (decreasing) 
prices until total demand (supply) is met. Consequently, a generator that is able to 
forecast spot prices can adjust its own production schedule accordingly and hence 
maximize its profits.

It has been long known that financial asset returns are not normally distributed. 
Rather, the empirical observations exhibit excess kurtosis [3; 11; 12]. This heavy- 
-tailed (also called fat-tailed or leptokurtic) character of the distribution of price 
changes has been repeatedly observed in various financial and commodity markets. 
The pertinent questions are whether electricity prices are also heavy-tailed, what 
probability distributions best describe the empirical data and whether models with 
heavy-tailed innovations perform better in terms of forecasting accuracy than their 
Gaussian counterparts.
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This paper is a continuation of our earlier studies on STPF of California elec
tricity prices with time series models [9; 14; 15]. Here we focus on the above raised 
questions. In fact, only on the latter as the answer to the first question is pretty 
straightforward and the second has been already addressed in [2; 8; 13; 14] (and we 
build on these results). Consequently, we limit the range of analyzed models to 
autoregressive time series approaches that have been found to perform well for pre- 
crash California power market data. We expand them by allowing for heavy-tailed 
innovations in the form of a-stable or generalized hyperbolic noise.

800

E  600

o
(0 400 D

£  200

.05 2000.04.02 2000.06.11 
Hours

2000.12.03

199S.07.05 2000.04.02 2000.06.11 2000.12.03
Hours

Fig. 1. Hourly system prices (top panel) and hourly system loads (bottom panel) in California for the 
period July 5, 1999-December 3, 2000. The changing price cap (750 —> 500 —*• 250 USD/MWh) is 

clearly visible in the top panel. The day-ahead load forecasts (i.e. the official forecasts of the system 
operator CAISO) are indistinguishable from the actual loads at this resolution; 

only the latter have been plotted 
Source: own calculates.

Like in the previous papers, an assumption is made that only publicly available 
information is used to predict spot prices, i.e. generation constraints, line capacity 
limits or other fundamental variables are not considered. The available dataset1 
includes hourly system prices, system-wide loads, and day-ahead load forecasts for 
the California market. The time series used in this study are depicted in Figure 1.

1 The dataset CA_hourly.dat is part of the MFE Toolbox, see [14].
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The data from the period July 5, 1999-April 2, 2000 was used for calibration and 
from the period April 3-December 3, 2000 for out-of-sample testing. Since in prac
tice the market-clearing price forecasts for a given day are required on the day be
fore, we used the following testing scheme. To compute price forecasts for hour 1 
to 24 of a given day, data available to all procedures included price and demand 
historical data up to hour 24 of the previous day plus day-ahead load predictions 
for the 24 hours of that day.

The best autoregressive model structure, in terms of forecasting performance for 
the first week of the test period (April 3-9, 2000), was found to be [9; 14; 15]:

mpt was the minimum of the 24 hourly prices on the previous day, z, was the load 
forecast and DMnn, DSal, DSun were the dummy variables (for Monday, Saturday and 
Sunday). In this base model, denoted in the text as ARX, the noise term et is i.i.d. 
Gaussian.

The model’s extensions differ in that the noise term is governed by a different, 
heavy-tailed distribution: hyperbolic, NIG or a-stable. The resulting models are 
denoted by ARX-H, ARX-N and ARX-S, respectively. In addition we study sim
plified versions of all four models without the system load component, i.e. with 
\ffK =0 . The letter ‘X’, which stands for ‘exogenous variable’, is dropped from the 
respective names.

Let us now briefly recall the basic characteristics of the three heavy-tailed fami
lies (for a more thorough treatment see [12]). The generalized hyperbolic distribu
tion is defined as a normal variance-mean mixture where the mixing distribution is 
the generalized inverse Gaussian law with parameter X, i.e. it is conditionally 
Gaussian. The hyperbolic and NIG (normal inverse Gaussian) laws are special 
cases obtained for X = 1 and X = -0.5, respectively. The PDF of the hyperbolic 
H(a, p, 8, p) law can be written as:

2. The base model and its extensions

<PiB)pt =yrtz,+ dlDMon + d2DSal + d:DSim + e, , 
where the autoregressive part ęKB)pt = pt - a ,p f_24 - a ^ p ^ - a ^ p ^ ^  -a^mp^

l a S K ,  ^ S y ja 2 -  j52)

and of the NIG(a, p, 8, p) distribution as:
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where 5 > 0 and /ieR  are the usual scale and location parameters, while a and p 
determine the shape, with a  being responsible for the steepness and p, |p| < a, for 
the skewness. The normalizing constant K :(r) is the modified Bessel function of the 
third kind with index 1. The tail behavior is often classified as ‘semi-heavy’, i.e. 
the tails are lighter than those of non-Gaussian stable laws, but much heavier than 
Gaussian. It is characterized by the following asymptotic relation:
f ( x )  ~ |x|'1 1 exp((+£* + /?)*). In particular, the hyperbolic log-density forms a
hyperbola -  hence the name of the distribution [1],

The parameter estimation of generalized hyperbolic distributions can be per
formed by the maximum likelihood method, since there exist closed-form formulas 
(although, involving special functions) for the densities of these laws. The compu
tational burden is not as heavy as for a-stable laws, but it still is considerable. The 
main factor for the speed of the estimation is the number of modified Bessel func
tions to compute. For a dataset with n observations we need to evaluate n Bessel 
functions for the NIG distribution and only one for the hyperbolic. The optimiza
tion is also challenging: the likelihood function can be very flat and can have local 
minima.

Stable laws -  also called a-stable, stable Paretian or Levy stable -  require four 
parameters for complete description: the tail exponent ae(0,2], which determines 
the rate at which the tails of the distribution taper off, the skewness parameter 
Pe [-1, 1] and the usual scale, o > 0, and location, /teR, parameters. When a = 2, 
the Gaussian distribution results. When a < 2, the variance is infinite and the tails 
are asymptotically equivalent to a Pareto law, i.e. they exhibit a power-law decay 
of order x~a . In contrast, for a = 2 the decay is exponential. From a practitioner’s 
point of view the crucial drawback of the stable distribution is that, with the excep
tion of three special cases (a = 2, 1,0.5), its probability density function (PDF) and 
cumulative distribution function (CDF) do not have closed form expressions. They 
have to be evaluated numerically, see [12] for details, either by approximating 
complicated integral formulas or by taking the Fourier transform of the characteris
tic function <p(t):

The estimation of stable law parameters is in general severely hampered by the 
lack of known closed-form PDFs. Numerical approximation or direct numerical 
integration are nontrivial and burdensome from a computational point of view. As 
a consequence, the maximum likelihood (ML) estimation algorithm based on such 
approximations is difficult to implement and time consuming for samples encoun

log <p(t) = -
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tered in practice. Yet, the ML estimates are almost always the most accurate, fol
lowed by regression-type estimates and o.uantile methods.

3. Empirical results

To assess the prediction performance of the models, different statistical meas
ures can be utilized. The most widely used measures are those based on absolute
errors, i.e. absolute values of differences between the actual, Ph, and predicted, Ph, 
prices for a given hour, h. The Mean Absolute Percentage Error (MAPE) is a typi
cal example. However, when applied to electricity prices, MAPE values could be 
misleading. In particular, when electricity prices drop to zero, MAPE values be
come very large regardless of the actual absolute differences \Ph-  Ph \. The reason 
for this is the normalization by the current (close to zero, and hence very small) 
price Ph . Alternative normalizations have been proposed in the literature. For in

stance, the absolute error | Ph -  Ph | can be normalized by the average price attained

during the day: P24 = . The resulting measure, also known as the Mean
Daily Error [5; 14], is given by:

MDE= — y  
2 4 ^

\P -P ,

The forecast accuracy was checked afterwards, once the true market prices were 
available. The error statistics for the whole test period (April 3-December 3, 2000) 
and all models -  separately for models with and without the exogenous variable -  
are given in Table 1. Furthermore, to distinguish the rather calm first 10 weeks of 
the test period from the more volatile weeks 11-35 (see Fig. 1), the summary statis
tics are displayed separately for the two periods. These statistics are based on the 
245 Mean Daily Errors. In particular, the number of days a given model was best in 
terms of MDE, the number of times a given heavy-tailed model was better than its 
Gaussian counterpart in terms of MDE, the mean and standard deviation of MDEs, 
and the mean deviation from the best model. The latter statistics is defined as
^ 2 m (MDE(i — M D E modcl (), where i ranges over all evaluated models (i.e. i

= 4) and T  is the number of days (70, 175) in the sample.
All computations were performed in Matlab 7.0. The AR(X) models were cali

brated using the armax.m function, which minimizes the Final Prediction Error 
criterion [7], The heavy-tailed models were calibrated by numerically maximizing 
the likelihood function with the AR(X) models’ parameters as starting points of the 
unconstrained simplex search routine (fminsearch.m function). Obviously this ap
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proach requires large computational times, as the PDFs have to be evaluated many 
times.

The obtained results are somewhat surprising. In both periods and both catego
ries (with/without the exogenous variable) most often the Gaussian model yielded 
the best point forecasts. And this picture is not blurred by the ‘large’ number of its 
heavy-tailed competitors -  generally they performed inferior rather than superior 
compared to AR(X). The only exceptions are the AR-H model in the volatile pe
riod (88 out of 175 days better than AR) and the ARX-H model in the calm period 
(38 out of 70 days better than ARX). The picture is a bit more favorable to the 
heavy-tailed models if we look at the other statistics. In the calm period, the heavy- 
-tailed models not only yielded lower on average and less dispersed MDEs, but 
also gave lower mean deviation from the best model for a given week. In other 
words, the heavy-tailed models were closer to the ‘optimal model’ composed of the 
best performing model in each week. In particular, the AR-N, ARX-N and ARX-S 
specifications performed particularly well. However, in the volatile period the 
AR(X) models were again the best (except for the standard deviation of MDEs).
Table 1. Error measures for the considered models.
Best results in each category are emphasized in bold

AR AR-H AR-N AR-S
Weeks 1-10 (relatively calm period)

Times best 35 11 10 14
Times better than AR (max. 70) - 27 21 29
Mean MDE 12.57 12.58 12.30 12.41
Standard deviation of MDE 13.18 12.35 11.59 11.79
Mean deviation from the best 1.09 1.10 0.82 0.93

Weeks 11-35 (volatile, atypical period)
Times best 68 31 35 41
Times better than AR (max. 175) - 88 72 81
Mean MDE 18.24 18.29 18.54 18.47
Standard deviation of MDE 23.55 21.92 19.12 19.71
Mean deviation from the best 1.39 1.44 1.69 1.63

ARX ARX-H ARX-N ARX-S
Weeks 1-10 (relatively calm period)

Times best 27 13 20 10
Times better than AR (max. 70) - 38 31 32
Mean MDE 11.98 11.94 11.64 11.63
Standard deviation of MDE 12.71 12.06 11.61 11.66
Mean deviation from the best 1.20 1.16 0.86 0.85

Weeks 11-35 (volatile, atypical period)
Times best 71 26 41 37
Times better than AR (max. 175) - 82 77 77
Mean MDE 17.71 18.01 18.10 18.15
Standard deviation of MDE 21.22 21.24 17.13 17.59
Mean deviation from the best 1.80 2.11 2.20 2.25

Source: own calculations.
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Table 2. Mean percent of exceedances of the 50, 90 and 99% two-sided day-ahead confidence 
intervals (Cl) by the actual system price for the considered models

Weeks 50%
AR
90% 99% 50%

AR-H
90% 99% 50%

AR-N
90% 99% 50%

AR-S
90% 99%

1-10 42.62 14.05 6.01 55.60 14.46 4.17 62.62 15.06 3.27 61.43 16.31 0.60
11-35 43.90 13.52 5.74 56.38 15.88 4.45 64.71 17.60 1.95 62.83 18.45 0.55

ARX ARX-H ARX-N ARX-S
Weeks 50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

1-10 41.96 13.93 5.60 53.69 14.52 4.35 60.95 14.70 3.39 58.57 15.48 0.77
11-35 46.10 13.60 5.52 58.86 16.74 4.26 65.02 18.40 2.05 65.38 19.31 0.60

Source: own calculations.

Apart from point forecasts, we investigated the ability of the models to provide 
interval forecasts. For all considered models interval forecasts were determined 
analytically; for details on calculation of conditional prediction error variance and 
interval forecasts we refer to [6; 14]. Afterwards, following [4] and [9], we evalu
ated the quality of the interval forecasts by comparing the nominal coverage of the 
models to the true coverage. Thus, for each of the models we calculated confidence 
intervals (CIs) and determined the actual percentage of exceedances of the 50%, 
90% and 99% two sided day-ahead CIs of the models by the actual system price, 
see Table 2. If the model implied interval forecasts were accurate then the percent
age of exceedances should be approximately 50%, 10% and 1%, respectively. Note 
that in the calm period (first 10 weeks) 1680 hourly values were determined and 
compared to the system price for each of the models, while in the volatile period 
(weeks 11-35) -  4200 hourly values.

Examining the exceedances of the 50% interval we note that while the Gaussian 
models yield too wide CIs, all of the heavy-tailed alternatives behave quite the 
opposite. In this respect they exhibit a performance similar to the Markov regime- 
-switching model analyzed in [9], Also, the AR(X)-H model is better than the NIG 
and a-stable competitors, and comparable to AR(X). Looking at the exceedances 
of the 90% interval we see all models performing alike and yielding too narrow 
CIs. Yet, the AR(X) CIs are slightly better (wider) than those of the other models. 
Finally, the exceedances of the 99% interval present a different picture. The a- 
stable innovations lead to the widest (even a bit too wide) and closest to the opti
mal CIs. Next in line are the NIG, hyperbolic and Gaussian models, all of which 
yield too narrow CIs. In this category, ARX-H and ARX-N models behave compa
rably to the nonlinear Threshold ARX (TARX) model analyzed in [9].

4. Conclusions

In this paper we investigated the forecasting power of time series models for 
electricity spot prices. Motivated by the good fit of various heavy-tailed distribu-
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tions to electricity price returns we focused on comparing linear autoregressive 
models with Gaussian and heavy-tailed innovations (hyperbolic, NIG and 
a-stable). The models were tested on a time series of hourly system prices and 
loads from California. We evaluated the quality of the predictions both in terms of 
the Mean Daily Error (for point forecasts) and in terms of the nominal coverage of 
the models to the true coverage (for interval predictions).

The is no unanimous winner of the presented competition. During relatively 
calm weeks the AR-N, ARX-N and ARX-S models led to the best ‘on average’ 
point forecasts, but could not beat the AR(X) models in the number of best fore
casts. Surprisingly, in the volatile period the AR(X) models yielded the best point 
forecasting performance. Regarding interval forecasts the evidence is also mixed. 
Gaussian models behave well for the 50% and 90% intervals, but are worse for the 
99% Cl than the rest. Overall the NIG models seem to be reasonable heavy-tailed 
alternatives to AR(X), but the performance does not fully justify the computational 
burden involved.
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CIĘŻKIE OGONY A CENY ENERGII ELEKTRYCZNEJ:
CZY MODELE SZEREGÓW CZASOWYCH Z SZUMEM  

NIEGAUSSOWSKIM PROWADZĄ DO LEPSZYCH PROGNOZ 
NIŻ MODELE GAUSSOWSKIE?

Streszczenie

Residua modeli szeregów czasowych wykorzystywanych do prognoz procesów 
energetycznych, m.in. cen na giełdach energii elektrycznej, nie mają rozkładu 
gaussowskiego, lecz charakteryzują się znacznie cięższymi ogonami. Jednak, w 
literaturze naukowej wykorzystywano dotąd metody zakładające właśnie gaussow
ski rozkład innowacji. Niniejsza praca ma na celu odpowiedzieć na pytanie, jaki 
wpływ na dopasowanie modeli oraz na jakość prognoz ma zastosowanie modeli z 
szumem ciężkoogonowym (hiperbolicznym, NIG bądź a-stabilnym).

Wyniki analiz przeprowadzonych na danych kalifornijskich nie są jednoznacz
ne. Okazuje się, że modele z szumem NIG oraz a-stabilnym prowadzą do średnio 
dokładniejszych prognoz, ale modele gaussowskie częściej zwracają najlepsze 
wyniki.

http://www.quantlet.com/md-stat/
http://www.quantlet.com/md-stat/
http://www.im.pwr.wroc.pl/~rweron/MFE.html

	HEAVY TAILS AND ELECTRICITY PRICES: DO TIMESERIES MODELS WITH NON-GAUSSIAN NOISE FORECAST BETTER THAN THEIR GAUSSIAN COUNTERPARTS?
	1. Introduction
	2. The base model and its extensions
	3. Empirical results
	4. Conclusions
	References

