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1. Introduction

The simple standard discrete-time model of the insurer’s surplus process 5, as
sumes:

5, = 5,_, +W, , t  = 1, 2,...,
where W,, W2, ... are i.i.d. random variables, claimed to represent yearly premium 
less yearly aggregate claims, and the initial surplus S0 is fixed. Typically it is as
sumed that the premium component of Wt is constant, and the distribution of Wt 
is known.

In real life however, premium is written in advance to cover claims over the 
coming exposure period that are often reported and paid a number of years later. 
The inadequacy is even more obvious in the case of the continuous-time model, 
where the time elapsed between receiving premium and paying (eventually) com
pensations is totally neglected. In order to restore correspondence of the model to 
real life processes, we could change the interpretation of variables involved. The 
variable W, could be interpreted as corresponding to accounting concepts of pre
mium earned and claims occurred (claims paid plus increment of the outstanding 
claims reserve). This leads to interpreting the surplus as the amount of free assets, 
and consequently the ruin as insolvency. Under this interpretation the surplus 
model is meaningful for practice, as in fact focuses on phenomena of crucial im
portance for all involved parties: shareholders, tax authority, policyholders, and in
surance supervision. However, the problem arises when we take into account that:
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• outstanding claims amount is a random variable, and the corresponding reserve is 
in fact its point predictor, based on information available at the accounting date. 
Additional problem that makes predictions complex is that:

• in real life the risk parameter characterising the claim process changes as time 
goes on, and predictions are needed as well for premium setting as for reserving. 
The paper concerns on incorporating the two above mentioned complications

into the model. The incorporation could be read as such reinterpretation of the sur
plus 5, itself and the increment Wt , that leaves classical probabilistic assumptions 
unaffected. So, in a way the paper is focused on “calibrating” the basic model to 
the empirical evidence. However, some more important consequences arise when 
the basic surplus model is generalized by allowing for intervention. Typically, inte
rventions are interpreted as:
• ceding a certain part of risk (and premium) to the reinsurer when the current 

surplus drops down the lower threshold,
• starting dividend payments when the surplus goes beyond the upper threshold.

In terms of the model, interventions are just modifications of the distribution of
the increment Wt , undertaken immediately in response to the current level of the 
surplus S,_,. This leads to the illusion of perfect controllability of the process. The 
illusion is especially apparent in some versions of the model (continuous time, dif
fusion approximation) when such results as zero ruin probability are obtained. Such 
result is in contradiction to the empirical evidence, where bankruptcies of insurers 
do happen, and could not be explained just by stupidity or fraudulent management. 
However, such results are only partially due to simplifications of the probabilistic 
structure of the process. They are rather due to neglecting the time elapsing be
tween the information on the current state of the business and the effects of inter
ventions undertaken.

There are no explicit considerations on the stochastic control issues in the pa
per. However, the basic surplus model is proposed, that allows next for incorporat
ing the intervention mechanisms in a way that is at hand in real life.

Techniques used in the paper resembles in general those used by Scheike [3], 
who introduced the notion of fair premium for the claim process with dependent 
increments, applying to this purpose the Doob-Meyer decomposition for sub- 
martingales. Model assumptions have been chosen so as to enable casting the 
model into the state-space form, which allows for explicit expressions of premium 
and reserves as predictors of respective claim payments. Although using Kalman 
Filter for reserving has been proposed as early as in 1983 [1], its application for re
storing the correspondence of the simple surplus model to real life processes is, to 
my best knowledge, new.
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2. Notations, assumptions, and immediate results

Two sets of assumptions are taken: first set concerns the nature of the claim 
process, whereas the second concerns information on quantities of interest needed 
to define the increment of the insurer surplus process (which quantities are known, 
which of them are observed, and which have to be predicted).

In order to describe the (stylized) real life process, we will use following nota
tions:
• X, j  -  the amount of claims occurred in year t and paid in year t + j ,

j

• OX, = ^  X, . -  the aggregate amount of claims occurred in year t,
j =o
j

• PX, = ^  X,_j j -  the aggregate amount of claims paid in year t,
i =o 

j  j

• LX,  = ^  ̂  X (+1_k j  -  claims outstanding (liabilities) at the end of year t,
*=1 j=k

• J  -  is the maximum delay in claims settlement.
Figures X, . ordered by years of claims occurrence (rows) and years of delay

(columns) are depicted in Table 1. Diagonals represent claims that are paid in the 
same year. The sum of all elements shown on the shadow background can be ex
pressed by two equivalent sums of aggregates:

L X ^ + O X ,  = PX, + L X , .

On the LHS claims are classified by time of occurrence with LX,_, and OX, 
representing claims occurred before and after the beginning of year t. On the RHS 
the same claims are classified by time of payment with PX, and LX, representing 
claims paid before and after the end of year t.

The aggregate claim process is assumed to depend on the underlying process of 
risk parameter fl, . Given the value of this parameter, all components X t J of the

variable OX, are normally distributed, with expectations and covariances equal to:

E (* « .> « ) = A - 0 ’

C °v ( x , j ,  X T i \/l,,/xT) =
a 2 rj when

when

t = T and j  = i, 

t or j  *  i,
j

• r0,r,,...,r7 are non-negative delay coefficients that sum up to unity: ^ r] = 1.
i =o
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Table 1. Aggregate claims by calendar years of claim occurrence and by number of years of delay. 
Shadow area corresponds to amounts paid after the beginning of year t

^ \ E ) e l a y  i n  y e a r s  

o f  o c c u r r e n c e

0 1 J -  1 J

t-J-1 X , - j - \ , o X , - J - X , - J - 1,2 X t - j - \ , j - \ X . - j - u

t-J X , . j ,  o X , - J .  2 X , - j , j - y X ,  , ,

t-J+1 ■ ^ / - . /  + l,0 ^ / - 7 + l , l X  i - J +1,2 X t - j + ) , j - i X t - j + \ , j

t-2 X  i - 2 , 0 X  i - 2 , l X  1 - 2 , 2 X  t - 2 , J - l X  t - 2 , J

t-1 * M . O X , - U X  t -\ ,2 .. . X , - \ j - \ X , - u

t * , , 0 X / , 1 X , 2 X . j - t X , J

As a result the aggregate variables OXt are also normal (given fj.t ) with pa
rameters:

Co v{OXn OXT\M„Mr) =
when
when

t = T, 
t * T.

The risk parameter //, is assumed to follow an autoregressive process of order n:

M, = a\Mi-\ + a2ju, - 2  + -  + + O - a x- a 2 -  an)ju + y , ,

with fixed coefficients a^a2,...,an,/J. and independent normally distributed distur

bances y, = //, - E ( / / , | c h a r a c t e r i z e d  by:

E(y,) = o ,

Co v(y,.yt )
J <f>2 when t = r, 
[ 0 when t ^  r.

It is also assumed that disturbance term yt is independent of all past, current 
and future conditional deviations of the claim process. Denoting these deviations by:

we can thus write:
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Co\ ( y T,e , j )  = 0 for arbitrary r, t, j.

Unless otherwise stated, it is assumed also that both variances <x2 and (j)1 are positive. 
Remark 1
No more assumptions are needed to conclude that conditional moments 

E M v - t - k ’ ■■■’ A - k-n) and Var( /* ,|/* /-f- . M,-k-n) are wel1 defined for 
k =1,2, .. ..  If in addition the process were stationary, then unconditional moments 

lim Ef//, and lim Var(//, |/^_*.....are well defined,k->« k->“
too. In the case of AR(1) process conditional moments are given simply as: 

e {m, K * ) = a^ju.-k + (l -  a,*)//, and Var (m, ) = (l + a] +... + n,2(M )<i>2,

stationarity is ensured for |fl,| < 1, and then unconditional moments equal /j. and 

02/ [  1 -  a f ), respectively.

Throughout the rest of the paper we will assume that the following quantities 
are known:
• parameters av a2.....,a„, fl and <p2 of the process of the risk parameter //,,
• parameters of the delay distribution,

• conditional variance parameter a 2.
Moreover, we will assume that at the end of year t we observe all figures on 

claims paid X , 0, X,_,,,..., X,_j j  during this year. Let us denote the set of observa

tions made at the end of year t and all past years by 3 ,.  As a result we obtain the 
ascending sequence of sets of information ... c  3,_, c 3 , c  3 (+, c  .... Of course, 
some starting conditions for the underlying risk process and for observation 
process X t 0, X,_,,,..., X,_7 , have to be assumed, but this will be considered later. 

Now the ultimate surplus at the end of year t can be defined naturally as:

US, = A, - L X , ,

where A, denotes the value of assets at the end of year t. The notion of ultimate 
surplus makes sense provided writing new business has been stopped and we ask 
about the final balance after settlement of all payments. However, the value of the 
ultimate surplus US, will be known J  years later. When the surplus at the moment t 
is to be assessed just at this moment then its definition must be based on informa
tion available then. So we will use the notion “surplus” for such an assessment:

s , ± e (us , \z ,) = a , - e (l x , \s ,).
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where the expectation operator E serves here as the best unbiased prediction rule. 
Once the surplus is defined, the final balance can be defined too:

FB, = US, -  S , .

Let us assume that the premium c, written at the beginning of year t consists of 
a predictor of the amount of claims that will occur during this year and a fixed 
loading c:

c, = c + E(OX,  |3 ,_ |) .

Under this assumption (supplemented by the assumption that assets are not in
vested) we can define the increment of the surplus as:

AS, = c + E {OX, |3,_,) -  PX, + E(LX,_. |3,_.) -  E{LX,  |3 , ).

First three components of the RHS represent current cash flows (premium less 
claim expenses), whereas last two represent reduction of the surplus by the in
crement of the outstanding claims reserve. Let us notice that obviously 
E(PX, |3 , ) = PX,. This allows for another rearrangement:

AS, = c + E (LX,_, + OX, |3,_,) -  E ( PX, + LX, |3 , )

showing that the increment of the surplus is just a sum of loading c and the differ
ence of expectations of the same random variable (represented either by 
LX(_, + OX, or by PX, + LX, ) conditional on 3 (_, and 3 ,,  respectively.

Some general results could be obtained immediately. First of all, it could be shown 
easily that the surplus process S, is a submartingale with drift c. This is because:

e(z!s,|s,_1) = c + e{e(lx,_1 + ox(|3,_1)|s(_1} - e{e(fx, + lx,|3,)|s,_1},
but information contained in S,_, is included in the set 3 ,_ ,, and of course also in 
the set 3 , ,  so making use of the iterative expectation rule we obtain:

E (AS, |S,_,) = c + E (LX,_, + OX, -  PX, -  LX, |S,_,) = c , 

that finally leads to the conclusion:

E (4S l |5l_1) = c.

The above argument shows that the premium formula is a sum of the constant c 
and a “fair premium” as defined by Scheike [3], Following general ideas of 
Scheike, the Doob-Meyer decomposition for submartingales can be used also to
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show that the final balance FB, and increments AS,, AS,_V AS, a r e  all mutu
ally uncorrelated random variables. The derivation presented below is based on 
more elementary rules of probability calculus. At first let us consider the covari
ance of the final balance with one of the preceding increments of the surplus proc
ess. Using well known formula for decomposition of covariance we obtain:

Cow (FB,, AS,_k) = E{Cov(FB(,zj5(_,,. |3,)} + C ov{e (FB, |3 , ) ,E ( z1S,_j1. |3 , )}.

However, for any k = 0,1, 2,... both components equal zero. The first compo
nent equals zero because AS,_k given 3, is fixed, whereas the second component 

equals zero because E (FB, |3 , ) equals zero. Hence we obtain:

Cow (FB„ AS,_k) = 0.

In order to show that increments of the surplus process are not serially corre
lated, similar decomposition of covariance could be considered:

Cov(zl5f,zl5,_J = E{Cov(zl5„zl5,_,|3,_1)) + C o v { E (^ ,|3 ,_ 1),E (zl5,_,|3,_l)}

In this case for any k = 1, 2, 3,... both components equal zero. The first com
ponent equals zero because AS,_k given 3,_, is fixed, whereas the second compo

nent equals zero because E(zl5, |3,_,) is fixed. Hence we obtained also the result:

Cov(zl5(,zl5(_Jt) = 0.

To the contrary, the attempt to repeat the same argument for the increments of 
the ultimate surplus process US, generally fails.

Remark 2
We have just derived, that reserving and premium setting based on expected 

values (premium supplemented by constant loading) stands for a proper “calibra
tion” of the classical insurer’s surplus model. Several detailed assumptions taken in 
this section have not been necessary to come to the above conclusion (nor linearity 
of the time series process fl, neither normality and constant variances of both de
viations Yi and e, j have been explored so far).

3. Casting the surplus process into the state-space form

In this section the matrix notation is introduced in order to cast the surplus 
process into the state-space form. Kalman filtering technique is used then to derive 
explicit expressions for the premium formula, outstanding claims reserve, variance 
of the increment of the process S, and variance of the final balance FB,.
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Let us take following notations:
X, = [x, 0, A T , _ , X,_j j ]', a column vector of claims paid in the year t,

m, = a column vector of current and past values of risk pa
rameter //,,

Et = [e, 0, j  a vector of deviations of paid-claims figures around 

their conditional expectations,
mllr = E (m, |3 r ) , the best unbiased predictor (BUP) of the vector mt given in

formation collected until the end of year x ;
X llT = E(X, |3 r ) , the BUP of the vector X, given information collected until 

the end of year x  (of course for x > t X, is known, so for this case X l/T = X ,),
VllT = E (mllT -  mt )(ml/t -  m, ) ',  a (7 + 1x7 + l) covariance matrix of errors 

of predictor mllT of the vector m,,
r = [r0,r,,...,rv] ', acolumn vector oflag coefficients,
R = diag(r) , a diagonal (7 +1 x 7 +1) matrix with elements of the vector r on 

the main diagonal.
Now the autoregressive process generating the risk parameter jut could be cast 

in the form of the transition equation:

a2 . ■ a./ aj+1 +... + aJ+l)
1 0 0 0 0 0

m, = 0 1 0 0 + 0 M + 0

0 0 1 0 0 0_

which can be rewritten in the compact form as:

m , =  + b ju  +  7").

The observation equation in turn can be written also in the matrix form:

X, = Rml + Et .

Let us notice that in practice the maximal lag 7 is usually fairly greater than the 
order n sufficient to express the dynamics of the underlying process generating the 
risk parameter //,. Then the lasting elements of the first row of the matrix A equal 
zero. However, if it is not the case, the dimension of the vector r can be enlarged
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enough to satisfy the requirement J +1 > n by adding a respective number of zero 
elements.

The assumptions taken in section 2 can be now expressed in the matrix form:
• both r t and Et are normally distributed and have zero expectations,
• for each t and r  E{Et /"r ') = 0, and for t * t  also E(EtET') = E(/",.Tr ') = 0 ,

• E {E,E,') = e 2R ,

• E ( r ir i ') = 0  , a (7 +  1x7 + 1) matrix containing almost only zeroes except 

the upper-left element that equals <p2.
Best unbiased predictors and their covariance matrices in the state-space model 

are defined recursively. Hence there is a need to supplement the above assumptions 
by starting conditions. For simplicity we assume that the claim process has satis
fied the above assumptions at least since claims that occurred in the period (- J ), 
and that earliest observables are elements of the vector X ,. Thus the vector m, and 
m0 are well defined and satisfy the transition equation, as well as the vector X, 
satisfies the observation equation. Our knowledge about the underlying risk pa
rameter m, prior to any statistical observation is represented by a guess ml/0 and 
some non-singular covariance matrix V./o-

Now one-year-ahead BUP of the vector mt is defined by the prediction equation:

m,n-\ = Am,-i/i-i +bfl> 0 )

whereas this year BUP of this vector by the updating (or filtering) equation:

’" „ ^ V . n ^ X . + V r ^ m , (2)

Covariance matrices of one-year ahead prediction errors and filtering errors are 
given by:

Vl/l_l =AVl_w _lA' + <P, (3)

v,/x =(o-2/? + v,7,,_1)"1. (4)
Additionally, error Ft = X, - X (/(_,of one-year-ahead predictor X(/(_, of X, is 

also considered. The point predictor itself simply equals X)/(_, = . The error
can be decomposed into two uncorrelated components Ft = Et -  -  m,) , so
the covariance matrix equals:

Co v (Fi ) = cf2R + RViIi_1R. (5)
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Especially relevant result is that auto-covariances of vectors Ft are zero:

Cov (Ft, F'_k ) = 0 for k = \, 2...... (6)

However, one has to be aware that lack of serial correlation of prediction errors 
Ft cannot be extended to prediction errors m, , as for k = 1, 2,... the fol
lowing equality holds:

Cov ((in, -  ml/l_i),(ml_k -/n ,.* ,,.* .,) ') =
(7)

= [ a Vi - u ,-\V,-.u , - 2 ) [ a V,- 2/1-2^1-211-3) ■ ■ ■ {AVl_kh_kVl_k/l_k_l 'jVl_k/l_k_\.

The above results come from Kalman and Bucy [2], Despite the literature is 
easily accessible, an outline of the proof is given in the next section. A reader hav
ing no doubts concerning the results can skip section 4 and go straight to section 5.

4. Basic properties of the state-space model

The prediction equation (1) comes from replacing in the transition equation the 
term yt by zero and mf_( by its predictor which is nothing else than re
placing the RHS of the transition equation by its expectation given 3 ,_ ,. This re
placement preserves unbiasedness and minimizes (in the class of unbiased predic
tors) the covariance matrix. The formula (3) for the resulting covariance matrix 

is obvious.
The filtering equation (2) can be justified on the basis of the linear regression mo

del, where last observables and predictor based on past information are cast together:

’ X, ~R E,
— mt + / \

I

where 1 denotes the (J + 1 x J + 1) identity matrix. LHS of the equation represents 
observed dependent variables, first component of RHS represents their expecta
tions given by the known matrix multiplied by the unknown vector m, , treated here 
as a vector of regression coefficients to be estimated, and the last component repre
sents random deviations around expectations. Their covariance matrix Q. equals:

^  ° 2r  0 0.=
L 0 ^ / - . J

Estimation of the vector of unknown regression coefficients by GLS produces 
its best linear unbiased predictor (BLUP) based on information 3 ,,  with clearly
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separated role of older information 3,_, and newest data X t . The filtering equa
tion (2) is just the GLS estimator mlh of the vector of regression coefficients m,, 
and the covariance matrix of the estimator is given by formula (4). Under linear re
gression model with normally distributed disturbances BLUP is of course equiva
lent to BUP.

It should be noted however, that the GLS estimator used here is not the most 
standard one. It is because it may happen that the vector r contains some zero ele
ments. Then the matrix R is singular, as well as the whole matrix Cl. Despite that, 
the formula for the GLS estimator still works. However, its derivation requires the 
generalized Penrose-Moore inversion technique to be applied to the matrix Cl, 
yielding as a result:

Cl
a 2R+ 0

where only the left-upper block of this matrix differs from the standard inversion (see 
[4]). The generalized Penrose-Moore inverse R+ of the matrix R is a diagonal matrix 
with elements r~l corresponding to non-zero coefficients r; , and zeros for = 0 .

Thus the product of matrices R and R+ is an idempotent diagonal matrix with ones 
corresponding to r} ^  0 , and zeros corresponding to rj, = 0 . Let us denote this matrix

by IR. Now the formally proper filtering equation should be written as:

mm = ( ° 2R + V.n-,)~‘ (*"2«  + Vf7j_,m,/f_,).

However, each element of the vector X t corresponding to zero of the diagonal 
of the matrix IR has -  according to assumptions taken -  both expectation and vari
ance equal zero, which ensures that Pr(X, = IRX t ) = 1.

Some comment is needed also on non-singularity of covariance matrices Vl/I_l 
and Vlh , obviously presumed in formulas (2), (4) and in the argumentation based 
on the GLS estimation technique. In fact non-singularity of these matrices is en
sured by the assumption that the starting matrix V,/o is nonsingular. This is a quite 
natural assumption, as Vj/0 represents our knowledge on m, prior to any statistical 
observation. Non-singularity of all next matrices Vlh and V(/(_, can be proven then 
by induction. The implication:

nonsingular —» VUt nonsingular
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is ensured, because non-singularity of covariance matrix means that it is a 
positive definite matrix, so its inversion is also positive definite, which means that 
for any non-zero vector y = [y  = y5 yT y7] the quadratic form yV^t_xy > 0

is strictly positive. That implies matrix g ~2R + being also positive definite, 
because:

y(<J-2R + ) /  = a 2yRy + y V ^ y  > y V ^ y ' .

So the matrix g ~2R + VJ,1,, is nonsingular, and thus can be inverted to yield the 
matrix Vl/t as a result, which implies non-singularity of Vlh itself. The proof of the 
implication:

nonsingular —> V(+1/I nonsingular

is more tedious. Let denote by C the difference V,+u, -  <P (for a given t). Of course 
C = AVlhA ' . This ensures that C is positive semidefinite and so has a non-negative 
determinant. Let us denote elements of the matrix C by c( ., where i, j  = 0,1,..., 7. 

Let us also denote by Cf ■ (and similarly, by Vi, ■) the matrix 7 x 7  obtained by de

leting row i and column j  out of C (and respectively out of Vlh ). Consider now the 
determinant of the matrix Vl+lh , calculated by expansion of cofactors in respect of 
the first row:

det(y,+i/,) = (co,o + ^ 2)det(C0,0) + X H ) 7 c0J det(C0J).
7=1

Hence it is clear that det(V’(+1/, ) = det (C) + <f)2 det (C0 0). But inspection of the 

special structure of matrix A shows that CQQ - V j  j . Matrix V, y in turn, being a 

covariance matrix of the sub-vector of the vector mlh (obtained by deleting its last 
element) is non-singular as well as the covariance matrix Vlh of the entire vector 
mlh . Thus we can conclude that:

det (Vl+Ul) = det (C) + </>2 det (V,,v) > </>2 det (VJtJ) > 0, 

which completes the proof of non-singularity of matrices Vlh and Vt+Ul for t = 1, 2 ,...'.

1 In fact non-singularity of V|;(1 has been assumed only for convenience. Without the assumption, 

it still can be shown (after tedious derivation) that Vih and V+|/i are both non-singular at least for t > J.
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As the errors Ft of one-year-ahead prediction of X, are considered, the result 
concerning zero auto-covariances (equation 6) needs justification. In order to do 
that, let us first consider the case, when all (J  + 1) elements of the vector r are 
non-zero. In this case the covariance matrix of the error vector Ft (as well as the 
vector F,_k for an arbitrary positive integer k) is nonsingular. Now the auto
covariance matrix Cov(F,,F'_k) can be expressed as:

E(F,F/_,) = BCo v(F,_k),

where matrix B exists and is unique by the virtue of non-singularity of Co\(Ft_k). 
This virtue ensures also that B is a zero matrix when and only when the auto-co
variance matrix E(FlF'_k) equals zero. Consider now a predictor of the vector X , 
of the form:

X; = X lll_l + BF,_k .

Covariance matrix of that predictor’s errors equals:

Cov( X, -  X *) = Cov(Ft -  BFt_k) = Cov (Ft ) + tfCov(Ft_k) B' -  

-5E (F ,_*F /)-E (F ,F /_ jB ', 

which equals (by definition of the matrix B):

Cov (X, -  X,*) = Cov ( F, ) -  BCov (F„k ) B ' .

However, the matrix BCov(Fl_k)B'  is obviously positive semidefinite, which 
is in contradiction with optimal properties of the predictor X(/(_,, unless 
BCov(Fl_k )B' = 0 . This implies B -  0, and so Cov(Fl,Fl_k) = 0.

The intuitive explanation of the above result is based on the remark, that the 
vector Ft_k contains no more information than 3 ,_ ,, and this information has been 
efficiently used already in the predictor X)/(_,, thus no improvement of the predic
tor X th_x is possible.

The above argumentation extends to the case when some elements of the vector r 
equal zero. In this case all corresponding elements of vectors X T, Xr/r_, and Fr 
equal zero, as well for T = t , as for r  = t -  k . Hence all elements of corresponding 
rows and columns of covariance and auto-covariance matrices equal zero. So it suf
fices to prove that all other elements of the auto-covariance matrix Co\ ( F n F'_k ) 
are also zero. It can be done by repeating the argumentation given above to vectors
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and matrices of reduced dimensions, obtained by the operation of deleting all ele
ments from vectors (and all rows and columns from matrices) that correspond to 
zero elements of the vector r.

In order to derive the formula (7) for auto-covariance matrices of one-year- 
ahead prediction errors of vectors mt it is convenient to express first the prediction 
error of the vector ml+[ as a function of the prediction error of the vector m ,. Mak
ing use of the assumed transition equation and derived prediction and filtering 
equations (1) and (2) we obtain:

= A (m, - V th (cr“2X, +V,;,l_1m,/,_1)) + r , +1.

Replacing now X, by E, + Rml we obtain:

™,+> = ^((7 -  v,iyn)-\m, i , - \ ) - (J~2AV,hEl + r (+, .

However, inverting both sides of formula (4) and multiplying both sides from 
the left by Vth we obtain /  = a~2VinR+ VlllV~/ll_x, that justifies the following re
cursive formula:

m,+i ~ m,+v, = A V„yu\-Amt - m , e ~ 2AVlhE, + r , u .

Noticing now, that neither mt nor depend on {£ ,,/ ”(+i}, we come to the 

conclusion that Cov((m,+l -m ,+1/,),(m , — ) ’) = AV’(/,V,J7,,_1Cov(m, - m th_x) .
This leads to the formula (7) for k = 1. Iterating the recursion many times and noticing 
the general lack of dependency of {ml,mth_x\ on [Et, r t+X ’ ^/+i ^ 3 . - }
we come to the conclusion that formula (7) works also for k > 1. Needles to say, it 
works as well for k = 0 , as the RHS reduces then to V(/)_,.

Remark 3
All the results derived so far hold without normality assumption, provided we 

replace the operator E by the operator BLUP denoting Best Linear Unbiased Pre
diction, and stop to interpret lack of correlation as independency.

5. Premium, outstanding claims reserve, and characteristics 
of increments of the surplus and of the final balance

Some additional notations help express the reserves conveniently. Let us de
note by:
• l the (J + 1) -element column vector of ones, and by:
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• p  the (J  + 1) -element column vector of cumulated lag coefficients, so as

Pj = Y u r> for J = J -
<=o

Now the outstanding claims reserve at the end of year t could be expressed as:

E (L X ,|3 ,) = ( / - p ) 'm 1/( (8)

and the expectation of the sum (LX, + PX, ) made at the beginning of the year t as:

E{LX, + PX,\Z,_{) = { l - p  + r)'m,h_{. (9)

Conditional variance of the ultimate surplus US, given information 3, is the 

same as variance of outstanding claims LX, around the reserve E [LX, |3 , ). Con

ditioning LX, by vector of risk parameters m, we obtain:

Var (LX, |3 , ) = Var (E {LX, \m, ) |3 , ) + E ( Var (LX, \m,) |3 , ) =

= V a r ( ( / - p ) 1m,|3,_1) + E ((72( / - p ) 7 ) .

The last result allows to express the variance as a sum of two quadratic forms: 

Var(Ffl,) = Var (US, |3 ,) = Var(LX, |3 ,) = (Z -  p)'Vu, { l - p )  + a2 { l -  p)'l. (10)

Using the same conditioning for the variance of US, given 3 ,^  we obtain: 

V ar(t/5,|3,_1) = V ar(E(PX I + LXI |m,)|3,_1) + E (V ar(PX ,+LX ,|m I)|3,_1) =

= Var((/ -  p + r)'m, |3,_,) + E(<t2(Z -  p + r ) /) .

The variance thus reads:

Var {US, |3,_,) = (/ -  P + ryv , , , ^  (/ -  p + r) + cr2 (l -  p + r)7 . (11)

Variance given by formula (11) is just the variance of the sum of the final bal
ance FB, and last year increment zlS,. As both variables are uncorrelated (see sec
tion 2), the variance of AS, is equal to the difference between variances given by 
(11) and (10):

Var (AS,) = (l -  p + r)'V(/I_, (l -  p + r ) - ( l  -  p)'V,n (l -  p)  + a 2. (12)
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Summarizing results of section 2 and the current section, we could say that the 
variance of the ultimate surplus US, given 3,_, (11) can be decomposed into two 
parts:
• part given by formula (12) that is attributable to the technical result of year t,
• part given by formula (10), representing either the final technical result over 

lasting activity period (provided writing new business is stopped), or contribu
tion to next years technical results (provided the process is continued).
Last but not least, lack of correlation between FB,,AS,,AS,_y,AS,_2,... means 

mutual independence, as these variables are linear functions of disturbance terms 
y; and fluctuations E, that by assumption are normally distributed.

Obtained results help express conveniently also the premium formula. 
According to assumptions taken in section 2, premium for year t equals c, =

= c + E (OX, |3 ,_ |), that can be rewritten as:

c, = c + M,„-i’ ( 13)

where is the first element of the vector rntl,_x.
The obtained premium formula helps also deriving the variance of the incre

ment AUS, of the ultimate surplus process. This is because we can write:

AUS, =c + E(OX,\Z,_t) + LX,_i - P X , - L X ,  = c + E(OX, I 3,_,) —OX,,

and so Var(zl[/5() = Var(0X, I 3,_,). Conditioning OX, by risk parameter fi, we 

obtain Yar(AUS,) = Var(E(OX, I ju,) I 3,_,) + E(Var(OA', I ju,) I 3 ,_ [), that leads 
to the formula:

Var(zlf/5I) = [l 0 ... 0]Vf/l_,[l 0 ... 0]'+cr2. (14)

6. Surplus process of a mature insurer

We need one more step to obtain the classical surplus model as it was declared 
in the introduction. We have obtained already the surplus process with independent 
and normally distributed increments having the same expectation. What remains is 
changing variance. However, when the aim is to model the surplus process of 
the mature insurer, we can replace current values of covariance matrices Vt/, 
and by their limits:

Vq = limV,/, and V, = lim V(/I_ |.
/ —>oo t —»e*s
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The limits can be found by iterating the recursion composed from equations (3) 
and (4):

V,/,., = A ( v i?lll_2 + 0 -2R)~l A' + <P, (15)

and complementing the result V, by V0 = (er 2/? +V, ')  . However, the technical

question arises whether limiting values V, and V0 do exist and are finite. In sim
plest cases an analytical solution could be derived.

Example 1
Let us assume n = 1 and J -  0 , which means all involved vectors and matri

ces are in fact scalars. So R = 1, and the process of the risk parameter is of the 
form + (l -  a)ju + y . Denoting for simplicity Vlh_x by v, we can write
the recursion (15) in a simple form:

v,+l = a2a 2vt/ ( a 2 +v,) + 02. (16)

It is easy to show, that for arbitrary positive a 2 and </>2, and any real number a 
the recursion starting at any non-negative value v0 leads to the following stable 
point:

lim v, = — 02 + cr2 (a2 - 1) + + <r2(a2 - l ) j  +4<j.>2cr2

so the solution exists and is unique regardless stationarity of the process /it .
The next example concerns a generalization that may be especially useful when 

the model is based on quarterly data, the risk parameter follows the auto-regressive 
seasonality, but all claims are reported within one year period.

Example 2
Let us assume that //, = + (1 - aJ+l)ju + y  for some /  > 0 , and all

claims are paid with delay no greater than J  periods (for J = 3 the assumption 
could reflect reality in case of the model based on quarterly data). In this case the 
stable point of the recursion (15) is a diagonal matrix V, of the form:

Vj = diag 2 O  V 2
° J + \  2 *" ^  ’

<T + V
cr2v <r2v <t2v

a 2 + vp0 ’ a 2 + vp, a  + vpj_

with the corresponding matrix V0 being also diagonal:
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V0 = diag
a 2v g 2v a 2v a 2v

G2 + vpQ G2 + vpt G2 + vpj_x ’ G2 + V

where v = — 
2

ł  + ^  («v+i - 1) + (̂<Z>2 + <x2(ay+1- l ) ) 2 + 4<Z>V

Formally, the solution again does not require stationarity of the underlying proc
ess fi: . In the special sub-case when aJ+l = 0 (so that the risk parameter //, just var

ies independently around the mean /J.), the last formula simplifies to v = <p2, and
subsequent diagonal elements of the matrix V0 coincide with well known formulas 
for variances of outstanding claims estimates made for each cohort of claims as the 
weighted average of the Chain-Ladder and Bomhuetter-Fergusson estimates, with 
weights based on credibility theory (and optimal in this sense).

Remark 4
The suspicion that the existence of the solution depends on stationarity of the 

underlying process jut might ensue from the simple remark that predictions are 
functions of this process (disturbed by Et ). However, the suspicion that covari
ances may expand unlimitedly could be dispelled, as the covariance matrix V, 
could be bounded from above. In order to show that, let us remind that V(+l/, is a 
covariance matrix of BUP of ml+1 given information set 3 ,.  Thus the matrix has to 
be smaller than covariance matrix of any other unbiased predictor of m(+1 based on 
a subset of information set 3 ,.  An inferior predictor with covariance matrix easy to 
be assessed analytically can be obtained by iterating the transition equation J  times:

m, = AJ+'m,7 + 1
i = o

J + l ;

Omission of unknown random terms and replacement of each element of m(_, 
by claims occurred in the respective period leads to the following predictor:

+ £ a V
j = o

m t + \  ~  A

7 + 1

OX l - J

o x 1 - 2 7

that is based on information on those cohorts of claims, which have been fully 
compensated before the end of year t. The prediction error of the above predictor 
could be decomposed into two components:
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*  .

"*.+i — "*i+i = A
j+i

’ H - j - O X lj

Mt-2.i ~ 0 X t_2 j

+

both having zero expectations and being mutually independent (the first one 
depends only on vectors En Et_x, £ , _ 2/ , the second one depends only on 
y(+l, yl_J+l). Thus the covariance matrix of prediction errors equals:

Co v (m,+1 -  m,ł+1) = cr V +1 (A,+1) ’+ X  ̂  )’.
i=o

For arbitrary finite number J  the above covariance matrix is finite. The predic
tor m*+1 ignores all information contained in X t_jk for j  = 0,1, J  -1  and 

k < j , that belong to the information set 3 , ,  so cannot be superior to . Usu
ally it is strictly inferior. Both predictors are identical only in the case, when 
r0 = ... = ry_, = 0 and r, = 1, and at the same time a{ = ... = aJ+l = 0 . So we can 
conclude that:

V, < (72AJ+l (AJ+l) '+ Y , A i0 ( A j ) ' ,
i =o

where the symbol “ < ” means that RHS less LHS equals a positive semidefinite 
matrix.

Remark 5
A researcher focused on realism of assumptions should take into account that 

one of them was that the conditional variance a 2 is fixed. The more realistic as
sumption is that the conditional variance is proportional to the conditional expecta
tion jut . Thus the more dispersion in the possible paths of the process jut is al
lowed, the more doubtful is the fixed variance assumption. Hence the problem of 
finite variances of the surplus process under non-stationary risk parameter process 
should be read as interesting technical issue, but not so much relevant for practical 
applications. However, the random walk case a = 1 is still of some practical inter
est. It is because the true parameter is rarely known, and empirical tests of hypothe
sis that a = 1 against the alternative a < 1, are in fact weak. In lights of prudence 
required in actuarial practice, it is safer to assume a = 1 in case when the test is not 
really conclusive.

Now we can simplify formulas for variances concerning the “mature insurer”. 
So the larger t, the better is the following approximation of the variance of the out
standing claims reserve (final balance):
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Var([/S, |3 , ) = Var(LX, |3 , ) = (/ -  p)'V0 (/ -  p) + cr2 (/ -  p )7  . (17)

It is worthwhile to notice, that the second of the two components appearing on 
the RHS is just the product of the conditional variance times the average delay. 
This component is usually recognized and taken into account. The first component 
is due to prediction errors of the risk parameter, and its recognition is less common.

Before presenting next formulas it is worthwhile to explore first the special 
structure of matrix A. Let us denote the first row of this matrix (containing auto
regression parameters fl,,a2,...,a /+1) by a. It is easy to verify through element by 
element calculation, that the following vectors are equal:

( l - p  + r) ' A = ( l - p ) ' + a .

Taking into account the recursion (3) we can conclude also that the upper-left 
element of the matrix V(/(_, equals aV,_v,_,a + </>2.

Now the formula (11) for the variance of the sum of the final balance and last 
year increment and formulas (12) and (14) for variances of increments of the sur
plus and the ultimate surplus processes simplify to:

Var [US, |3,_,) = (/ -  p + a ')'V0 (/ -  p  + a') + <j>2 + a 2 [l -  p + r )7  , (18)

Var(złS,) = aV0a + 2aV0 (/ -  p)  + <p2 + a 2, (19)

Var (AUS, ) = a V0a + </>2 + a 1. (20)

Comparing last two formulas we find that the difference between variances of 
increments of the surplus and the ultimate surplus processes equals 2aV0(l -  p ) . 
Moreover, the following implication holds:

aV0( l - p ) *  0=> Cov(AUSl+k,A U S , )* 0 .  (21)

This means that the difference between variances of increments of the process 
S, and the process US, imply existence of serial correlation in the latter.

We start the proof of implication (21) by comparing two different decomposi
tions of the variance of the difference Var (US,+k -  S, ) .  The first decomposition is 
based on lack of correlation of increments of the surplus process and final balance:

Var(US,+k -  S,) = Var(FB,+k ) + f j Var( AS,+k).
j = i

This means that for t large enough the approximate equality holds:
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Var (US,+k+l -  5,) -  Var (USl+k -  5,) = Var (4Sł+łłl) ,

where the approximation is due to neglecting the difference Var(FBI+Jt+1) -  

-V ar (FB,+k).
The second decomposition:

Var([/5,+t+1 - S , )  = Var{USl+k - S , )  + Var{AUSl+k+l) +

+2Cov (AUS,+k+], USl+k - S t ),

confronted with the first one allows to obtain the result:

Cov (AUS,+k+{,US,+k ~S, )  = -^(Var(/15/+t+1) -  Var(/lf/5l+lt+1) ) .

Making use again of the assumption that t is large we can replace the RHS by 
the constant d. Decomposing the covariance appearing on the LHS we can con
clude that for arbitrary k = 0,1, 2,...

Cov (AUS,+k+t, FB,) + X  Cov (AUS,+k+l, AUS,+J) « d.
i =i

Let us take now the working assumption (contradictory to implication 21) that 
at the same time d 0 and all serial correlations of AUS, are zero. But if this is
so, then Cov(AUS,+k, FB, ) = d , and Var([/S,+/t -U S , )  = kVar(AUS,), and thus 
we obtain:

Var US,t+k ■ US, -  k
Var (FB,)

FB, ~ k V a r (A U S , ) - k 2
Var (FB,)

But for any d & 0 we could find k large enough to assure that the RHS is nega
tive. As variance cannot be negative we have come to the contradiction that dispels 
the working assumption, so the implication (21) has to be true.

Implication (21) raises the question about cases when variances of AUS, and 
AS, are equal, and whether serial correlation of AUS, is present then. Both ques
tions are answered by the two following examples.

Example 3
Let us assume r -  [l 0 ... 0], which means that there are no delays in re

porting claims. So LX, = 0 and US, = S, , thus no serial correlation exist.

Less trivial is the next example.
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Example 4
Let us assume that the vector a equals zero, so that the risk parameter just varies 

around the mean fi, = jU + y . Then aV0 (l -  p)  = 0 , so variance of AUS, equals that 
of AS, . In this case mutual independency of deviations y, suffice to conclude 

that E(OX,  |3 ,-i ) = M , and so Cov(AUS,+k,AUS, ) = Cov(OX,+k,OX , ) = 0 for all 
* = 1,2,....

Conjecture
Most probably examples 3 and 4 illustrate all possible cases when increments 

of the ultimate surplus process AUS, shows no serial correlation. So the conjecture 
reads that the model produces trivial results only in two cases:
• when there are no delays in claims settlement, or:
• when there is no serial correlation in the process driving the risk parameter n , . 

Generally, under simultaneous appearance of both delay and serial correlations
the processes AUS, and AS, are essentially different.

7. Conclusions and their validity under generalizations of the model

Direct conclusions concern explicit results derived in the paper:
• Properties of the surplus process S, defined as E(C/5, |3 , ) are (under assump

tions of the model) analogous to those of the classical surplus process with i.i.d 
increments. However, this is true as long as we assume that the process is con
tinued. Once writing new business is stopped at time t, the question arises 
whether the lasting amount of assets S, + E(LX( |3 , ) will suffice to cover out

standing claims L X , .
• Variances of both the final balance and the increment of the surplus, are derived 

in the paper (for the mature insurer there are given by formulas (17) and (19)).
• The variance of the increment of the process can be a multiple of the condi

tional variance of the aggregate amount of claims occurred in a year given the 
risk parameter ju,. This is just this conditional variance that is usually esti
mated on the basis of exploration of the cross-section dataset on claims oc
curred over a one- or two-year period in all lines of business provided by the 
company.

• The formula for the final balance could be decomposed into the product of the 
conditional variance and the average delay (that is usually taken into account) 
and the other part due to prediction errors of the risk parameter (the explicit 
recognition is less common in that case).
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• The Insurance Supervision Authority has to set the lower bound SL0W that 
triggers the stopping decision, provided the current surplus is lower. The proper 
level of SL0W has to be set on the basis of the assumption, that otherwise (if the 
process is not stopped) the sum of next increment of the process and the final 
balance should cover liabilities with a sufficiently high probability.

• The event of the surplus S, falling below the imposed lower bound SL0W 
could be treated by the insurer as the event of ruin, as it usually means serious 
troubles to managers and shareholders.
Indirect conclusions concern possible interventions into the process and related 

strategies:
• Having the surplus S(_, known at the end of the year t -1  we can consider 

possible interventions in respect of components of the increment over the com
ing year: AS, = c + E (OX, |3,_,) -  PX, +E(LX,_1 |3,_,) -  E(LX,  |3 , ).

• Switching on and off dividend payments poses no problem. However, usually 
reinsurance contracts are written in respect of new business, so that the differ
ence between the amount of outstanding claims LX,_, and the corresponding

reserve ElLX,,, |3,_,) is left uncovered. Of course, only a part of this risk will 
be revealed during the current year, and the other part will be passed to next 
years as a component of the difference LX, -  E [LX,  |3 , ).

• Reinsurance contracts concerning the run-off of claims already occurred are 
known, and sometimes happen in practice. However, the insurer whose surplus 
has fallen down recently to a dangerously low level will have serious problems 
to obtain (or extend) such reinsurance cover at a reasonable price.

8. Advantages and limitations of the model

The model is intended to give answer to the question, how the ever-changing 
economic environment together with delay in information influences the ruin prob
ability and other solvency criteria.
• That is why assumptions about changes in time of the risk parameter /J., are 

quite general. They can reflect as well quite stable, as fairly volatile economies 
or lines of business.

• Also assumptions on distribution of the delay in claims settlement are quite 
general, enable to cover as well portfolios with majority of “short tailed” as 
those with majority of “long tailed” lines of business. They reflect more or less 
the practice of reserve calculation, and so the mechanisms of creation of profit 
and loss account figures.
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• The significant simplification concerns in this respect confounding the process 
of reporting and settlement of claims. It is done to clarify the discrimination be
tween “already known” and “still unknown” figures, and to avoid considering 
the third category of “partly known” information. A realistic model should in
clude the separated process of gradual improvement of prediction of amounts 
of individual claims between the date of first report and the date of final settle
ment. The simplification does not distort basic qualitative results, rather it 
means that the model cannot be directly applied to solve practical problems (as 
setting solvency requirements for instance).
A comment is needed also on the discrete-time character of the model. On the 

one hand, it simplifies the reality evidently. On the other hand, it reflects in a sim
ple manner some fairly complex phenomena:
• It reflects in a simplified manner the fact, that premium is usually written for 

one-year risk exposure period, during which rates cannot be updated even if the 
newest empirical evidence shows that their level is no more adequate.

• The above-mentioned one-year cycle justifies (at least to some extent) neglect
ing the difference between the premium written and premium earned.

• One-year cycle coincides also with the frequency of publishing financial state
ments verified by independent auditor, which has substantial impact on deci
sions made by various agents. In our context the most important are external 
bodies entitled to suppress the company to write new business, and internal 
bodies entitled to set premium rates (provided writing business is continued). 
Also decisions on capital (subdivision of profits into dividends and retained 
part for instance) are made cyclically.
Some comment should be given also on assumption on normality of condi

tional (given //,) distribution of claim figures X t j . This assumption contradicts
the tradition of treating the ruin theory as a tool for analysis of the danger of large 
individual claims (or catastrophes causing enormous number of claims). In this pa
per it is assumed to the contrary that the model describes the situation of an insurer 
prudent enough to be always secured by well suited XL and CAT covers. However, 
even such prudent insurer is still sensitive to the risk of changes of basic parame
ters, enlarged additionally because the information concerning these changes 
comes delayed.

Another simplification is embodied in the assumption that the risk parameter 
changes are described realistically enough by the linear time series model with 
normally distributed innovations. In fact, linearity is just a simplification. On the 
other hand, normality (as well as normality of conditional distribution of claim 
amounts) is not crucial for conclusions drawn from the model. In fact it is needed 
when we insist on obtaining the process with independent increments. This as
sumption is required in standard ruin theory models, where the long term behavior
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of the surplus process stands for the basis of business decisions. However, once we 
restrict our interest to decisions undertaken on the basis of a short horizon, the in
dependency of increments is no more required. Assuming then that both premium 
setting and calculation of reserves is based on Best Linear Unbiased Predictors, we 
come to the same results concerning point predictors and covariances of prediction 
errors.
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MODEL NADWYŻKI UBEZPIECZYCIELA 
ZE ZMIENNYM W CZASIE PAREMETREM RYZYKA 

I OPÓŹNIONYMI REALIZACJAMI

Streszczenie

Typowy model nadwyżki ubezpieczyciela S, z czasem dyskretnym zakłada, że:
5, -  5r_, + W,, r = 1,2....

gdzie Wj, W2,... to zmienne losowe i.i.d. reprezentujące saldo składki i wartości szkód za okres roku. 
Zakłada się też, że nadwyżka początkowa S0 jest ustalona, zaś rozkład W, jest znany. Model służy

uzyskaniu odpowiedzi na pytania o ruinę -  jej prawdopodobieństwo, czas zajścia, deficyt w momen
cie ruiny itd.

W rzeczywistości jednak procesy zgłaszania i likwidacji szkód zachodzących w ciągu roku roz
ciągają się z reguły na lata następne. Związek modelu z rzeczywistością można przywrócić, przyjmu
jąc, że zmienna W, odpowiada pojęciowo temu, co w języku sprawozdań finansowych określamy ja
ko wynik techniczny, a więc różnicy pomiędzy wartością składki zarobionej a wartością szkód wy
płaconych powiększoną o przyrost zobowiązań (rezerw) z tytułu szkód zaszłych i niewypłaconych. 
Nadwyżkę S, możemy wtedy interpretować jako stan środków własnych, zaś ruinę jako utratę wy
płacalności. Taka interpretacja prowadzi jednak do komplikacji, ponieważ wartość szkód zaszłych, 
ale niewypłaconych jest zmienną losową, a odpowiednia rezerwa to w istocie predyktor punktowy tej 
zmiennej oparty na informacji dostępnej w dniu bilansowym.
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W rzeczywistości proces predykcji dodatkowo utrudnia fakt, iż parametry rozkładu łącznej war
tości szkód zachodzących w ciągu roku nie są stale w czasie, toteż kalkulacja tak rezerw, jak i składki 
wymaga predykcji tych parametrów.

W artykule zaprezentowany jest model z wbudowanymi komplikacjami obu rodzajów. Kosztem 
pewnych upraszczających założeń obie komplikacje wprowadzić można w taki sposób, aby zachować 
niezależność i taki sam rozkład zmiennych VP,, W2, ... i otrzymać realistyczne oceny jego parametrów. 
Przy okazji okazało się, że:
• uwzględnienie obu komplikacji jest niezbędne do poprawnej oceny wariancji rocznego przyrostu 

nadwyżki oraz wariancji błędu predykcji zobowiązań z tytułu szkód zaszłych i niewypłaconych,
• model pozwala uzyskać bardziej realistyczny obraz gry toczonej pomiędzy nadzorem, określają

cym reguły stopowania działalności a ubezpieczycielem, pragnącym prowadzić działalność nie
zakłóconą interwencjami nadzoru,

• model pozwala bardziej realistycznie zakreślić granice sterowalności procesem nadwyżki po
przez takie standardowe techniki, jak stopowanie/uruchamianie wypłat dywidend czy zwiększa- 
nie/zmniejszanie stopnia, w jakim ryzyko jest reasekurowane.
Zastosowane w pracy techniki można określić językiem matematyki jako wykorzystanie twier

dzenia Dooba-Meyera o dekompozycji submartyngałów, zaś językiem ekonomii jako wykorzystanie 
teorii racjonalnych oczekiwań. Przyjęto na tyle prostą wersję założeń, aby móc oprzeć predykcję 
(kalkulację rezerw i kalkulację składki) na filtrze Kalmana i aby w rezultacie otrzymać analityczne 
wyniki dotyczące wariancji błędów predykcji. Praca prezentuje więc oryginalnie postawione pytanie, 
jednak techniki użyte w celu uzyskania odpowiedzi na nie są od dawna znane (np. kalkulacja rezerw 
na podstawie filtru Kalmana została zaproponowana w latach osiemdziesiątych).
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