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This research focuses on the analysis of the free propagation of Hermite–Gaussian beams diffracted 
by a symmetrical annular aperture placed at the beam waist plane. The propagation is studied ana-
lytically and numerically using the angular spectrum method and the 2D fast Fourier transformation. 
Numerical simulation examples illustrate the propagation characteristics of the Hermite–Gaussian 
beams diffracted by an annular aperture. The beam truncation parameters and obscuration ratio in-
fluence Hermite–Gaussian beam diffraction properties. 
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1. Introduction 

Hermite–Gaussian beams (HGBs) may be treated as a physical form of eigenfunctions 
of the light diffraction process. The closed-form HGBs expression, which solves the 
paraxial Helmholtz equation regarding Cartesian coordinates and system border con-
ditions, was first introduced by SIEGMAN [1,2]. Since then, an interest in studying such 
beams has increased. LAABS studied the propagation properties of HGBs beyond the 
paraxial approximation [3]. SAGHAFI and SHEPPARD introduced the characteristics of 
standard and elegant HGBs and Laguerre–Gaussian beams (LGBs) [4]. WEN and  
BREAZEALE studied the diffraction beam field expressed through the complex Gaussian 
beam function as a base function set [5]. From then on, the technique of expansion 
hard-aperture functions into a finite sum of complex Gaussian functions, using the gen-
eralized diffraction integral formula has been used by many authors [6-9]. Diffraction 
through equilateral and isosceles right triangular apertures was also studied [10,11]. 
The angular plane wave spectrum method (ASM) has been applied to calculate the 
propagation properties of the fundamental Gaussian mode (FGM) [12,13], as well as to 
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model the propagation of the optical vortex beam (OVB) [14-19]. KIM and LEE have de-
rived the exact electric field vector formulas for the higher order HGBs and LGBs [20]. 
AGRAWAL and PATTANAYAK obtained the corrections to the scalar and vector Gaussian 
beams  (GBs)  by using the ASM [21]. DUAN et al. obtained the vectorial Rayleigh 
–Sommerfeld diffraction formulas to study the propagation of HGBs and LGBs beyond 
the paraxial approximation [22]. ZHENG et al. studied the propagation of vectorial 
Gaussian beams behind a circular aperture by using the vectorial Rayleigh diffraction 
integral and the hard-edge aperture function expanded as the sum of finite-term com-
plex Gaussian functions [23]. DUAN and LÜ presented the nonparaxial analysis of far-
field properties of GBs diffracted at a circular aperture [24]. ZHOU studied the vectorial 
structure of the far-field of an elegant HGB by using the ASM and the method of sta-
tionary phase [25]. Recently, GU et al. have presented the azimuthal variant vector 
fields diffracted by an annular aperture based on the vectorial Rayleigh–Sommerfeld 
integrals under nonparaxial approximation [26]. 

In our presentation, the ASM algorithm is applied to the calculation of the free prop-
agation of HGBs obstructed by an annular aperture placed centrally at the beam waist. 
The two-dimensional Fourier transformation (2D FT) which is applied to the ASM al-
gorithm twice: firstly, at the stage of the initial wave field decomposition with Fourier 
spectrum amplitudes (then those amplitudes are multiplied by using the distance z de-
pending on the propagation factors) and finally the 2D inverse Fourier transformation 
(2D IFT), which yields the wave field distribution in the observation plane. By discrete 
calculations of N×N fields, the AS method has been proved to be effective numerically, 
since both 2D FTs can be performed with the application of the fast Fourier transfor-
mation (FFT) algorithm, so in our computing the 2D FFT is combined with the AS anal-
ysis. The whole numerical procedure will be called further AS FFT method and will 
be applied to solve numerically the diffraction problem of various HGBs passing 
through annular apertures. 

2. Modeling the propagation of HGBs passing through 
an annular aperture 

Let us assume that a light beam illuminates an aperture located at z = 0 and then prop-
agates in free space towards the observation plane, that is parallel to the first one and 
is located at z > 0, as shown in Fig. 1. The wave field distribution appearing behind 
the diffracting aperture can be calculated using the angular spectrum procedure [27]. 
Therefore, the wave field distribution in the observation plane is obtained by an inverse 
Fourier transformation of the 2D angular spectrum of the initial wave modified by the 
respective distance functions: 

+ + t x  yE0vx vy; z = 0H v x vy; z  

x yE   ; z =  


 
 dvxdvy (1) z  

– –  exp  
 

2πi v x x v+ y y 
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    Fig. 1. Propagation of light between two parallel planes z = 0  and  z > 0.  

where E0(νx , νy ; z = 0) is the initial complex amplitude spectrum defined by 
E0(νx , νy ; z = 0) =  F2D{E0(x, y ; z = 0)},  and  k = 2π/λ is the wave number, λ is  the  
wavelength of light, t (x, y) is the aperture transmittance, z is the propagation distance, 
νx , νy are the spatial frequencies in Fourier domain. The distance z dependent transfer 
function H (νx, νy ; z) can be expressed as 

H v x vy; z = exp ik z 1 – λvx
2 – λvy

2 (2) 

In numerical calculations, formula (1) is converted to discrete form and all above 
mentioned 2D distributions are represented through respective complex valued arrays. 
In addition, the area of integration is not infinite, but limited to the respective squares. 
The calculation width of both initial and final diffraction field is D, the sampling num-
ber is Nx × Ny and the discretized spatial frequencies are (νx , νy) = (  p∆νx , q∆νy), where 
p and q are integers. Therefore, the discrete form of the Eq. (2) can be expressed as 

H p q; z =  exp ik z 1 – λ2 pΔvx
2

– λ2qΔvy
2 

(3) 

The discretized ASM is expressed by the following equation: 

E  p q = FFT 2
–1FFT2 E0 i j   t p q H p q (4)    z 

In the Cartesian coordinate system, the hard annular aperture function is written as 

2 2 2 R2
1, r  x + y  

t x  y =  (5)
2 2 20, r  x + y  R2 

where R and r are the outer and inner radius of the annular aperture, respectively. As-
sume that, as shown in Fig. 1, an annular aperture, located at the plane z = 0 is illumi-
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nated from the left by a HGB that is symmetric and with a waist plane also at z = 0.  It  
is assumed that the beam is well oriented with respect to the coordinate system and 
can be described at z = 0  by  H  function. The complex amplitude distribution of themn 
wave field just behind the annular aperture (z = 0) is given then by 

2 2 2 y   x + y 2 x   
0 x y z  0 = E0 t x y  H -- -- -- H -- -- -- --- exp – -- -- -- -- --  (6)E     =   ---- -- -- -  -- -- -- --  -- -- -- -- ---m n 2W W 0   0   W 0 

Here, H and H are the Hermite polynomials of orders m and n in the x and y directions,m n 
respectively, W0 is the radius at the beam waist, and E0 is the electric field amplitude. 

The FT of E HG x y  z = 0 has the expression  ;0 

2 2 2 y   x + y  2 x  
+ +E0 H --------------- H --------------- exp– ------------------- m n 2 

E0vx  vy; z = 0 =  

  W0   W0   W 0  dx dy 

– –
  exp 2  x v+– π  i vx y y  

(7) 

The complex amplitude distribution at the observation plane, derived from (1) can be 
written in the form 

t x yE v  v ; z =  0 0 x y  
+ +  

 
E x y z  

 

 exp ik z 1 λvx 2– λvy 2– 

2π i vx x vy y+ 
 

  ; =   dvxdvy (8)z 

– –
 

 
  exp 

 

3. Numerical simulation results and analyses 

The closed form of the diffracted HGBs passing through an annular aperture was per-
formed using Eq. (8) and constitutes the reference for all comparisons. The AS FFT 
algorithm evaluation is the main numerical simulation applied in this paper. From 
Eq. (8) we can see that the general propagation properties of HGBs diffracted by an 
annular aperture depend on a few geometrical and physical factors, such as the width 
of the beam waist W0, wavelength λ of the light, the propagation distance z, the mode 
number n, m, the inner r and the outer R radii of the annular aperture. We introduce 
the outer truncation parameter δR = R /W0, the inner truncation parameter δr = r /W0 
and the obscuration ratio of the annular aperture ɛ = r /R. 

3.1. Advantages of the angular spectrum algorithm 

In the ASM approach, a wave field is treated as a superposition of planar waves. Due 
to that, AS FFT algorithm can cover very short distances up to z < λ, while  for  the 
Fresnel diffraction integrals, the minimal distance is z >> D. This method also has the 
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advantage of the calculation speed due to the use of 2D FFT. Discrete form of Eq. (8) 
is extremely computationally efficient and is very fast when a 2D FFT algorithm can 
be applied here twice. Let us assume that in the discrete version of the AS diffraction 
integrals Eq. (8) the sampling number of mesh points on both the initial and the ob-
servation planes is N. The same is the sampling number of mesh point planes in the 
2D spatial frequency space. For 1D FT, the total sampling number of required opera-
tions is reduced by the application of the FFT from O (N2), in the case of the straight-
forward method to O (N2 log2 N ) for the radix-2 complex FFT algorithm. In the case 
of 2D FFT, the estimated saving in the computation is in the order of the square of the 
above and for example by N = 1024 calculation time is shortened by more than 104 times. 
Earlier results of the AS FFT algorithm method verified its quality [28]. 

3.2. Basic limitations of the AS FFT algorithm 

Besides, such as the computational advantages when a 2D FFT algorithm is used, the 
numerical implementation of the AS FFT algorithm has several drawbacks, which 
are related to the limited dimensions of integration and discrete sampling taken in the 
initial and in the observation planes and in the spatial frequency domain. However, 
the ASM is prone to a serious problem, in that it causes strong aliasing errors in longer 
distance propagation. In the 2D discrete Fourier transform calculations, the wave 
field is sampled at Nx × Ny points  (  p∆x, q∆y), where p = –Nx /2  +  1,  …,  Nx /2,  q = 
= –Ny /2  +  1,  …,  Ny /2 and the 2D FFT procedure leads to an array of complex Fourier 
amplitudes at Nx × Ny points ( p∆vx , q∆vy), where ∆vx and ∆vy are the spatial frequency 
domain which is equal to ∆vx = 1/Dx and ∆vy = 1/Dy. Assuming N = Nx = Ny a full rep-
resentation of the initial plane requires a complex valued array of N × N and the cal-
culation width of the diffraction field is D = Dx = Dy = 1/∆ν. Considering both direct 
and inverse 2D FFT algorithms, one has to remember about the consequences of the 
sampling theorem that causes that the final result has a periodic nature with the period 
D = N∆ν. In the case, when the calculated beam diameter approaches the value of that 
period, the field overlapping at the edges occurs, causing the interference between 
neighboring periods and leading to false fringes that are visible in Figs. 2(b) and (c). 
This is due to the fact that the propagation factor in Eq. (8) changes rapidly in the spatial 
frequency space, and those changes overcome the respective sampling limit criteria, 
leading to aliasing effects in the output field after the inverse FT is performed. This 
point is illustrated in Fig. 2 that shows an effect of aliasing on the axial intensity dis-
tributions of a finite-size of diffracted HGB passing through an annular aperture. 

3.3. The intensity distributions on-axis x and on-axis y 
in the near and the far fields 

The examples of the 2D transverse intensity distributions (left column), normalized 
axial intensity distribution on-axis x (center column) and on-axis y (right column) of 
several HGmn modes passing through an annular aperture are presented in Fig. 3.  As  
can be seen in the middle figures that the normalized on-axis intensity distributions 
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Fig. 2. AS FFT calculations of the HG44 mode passing through an annular aperture. The transverse cross 
-sectional intensity distribution (first column), and normalized axial intensity distributions along on-axis x 
(second column). Calculations are performed for W0 = 1 mm, D = 20 mm, λ = 0.001 mm, R = 1 mm, and 
r = 0.5 mm. The effect of aliasing that occurs at longer distances results in the fringes visible in (b) and (c). 
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Fig. 3. Transversal intensity distribution of several HGB modes (a) HG22, (b) HG24, and (c) HG28 pass-
ing through an annular aperture in the near-field region (left column), the normalized axial intensity dis-
tributions along on-axis x (central column), and on-axis y (right column). The numerical simulation uses 
the AS FFT algorithm with z = 200 mm, W0 = 1 mm, λ = 632.8 nm, R = 1 mm, and r = 0.5 mm. 

for the three different modes HG22, HG24, and HG28 are nearly the same in the x di-
rection, but are different in the y direction (right column). One can see that the on-axis 
intensity distribution changes in different modes. 

The transversal intensity and the normalized axial intensity distributions for several 
HGmn modes passing through an annular aperture are depicted in Fig. 4. Comparing 
Figs. 3 and 4, one can see that in the near-field region, the diffraction patterns of the 
on-axis intensity distribution both vary in different modes. However, in the far-field 
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Fig. 4. Transversal intensity distribution of several HGB modes (a) HG22, (b) HG24, and (c) HG28 pass-
ing through an annular aperture in the far-field region (left column), the normalized axial intensity dis-
tribution along on-axis x (center column), and on-axis y (right column). Calculation are performed for 
z = 1600 mm, W0 = 1 mm, λ = 632.8 nm, R = 1 mm,  and  r = 0.5 mm. 

region, the diffraction pattern is invariant, the on-axis intensity distribution is varying 
in the x direction, whereas the diffraction pattern for the on-axis intensity is very dif-
ferent in the y direction. 

3.4. The on-axis intensity distribution as a function of the propagation distance z 

The results of the numerical calculations were performed by using Eq. (8) to illustrate 
the evolution of on-axis intensity distribution passing through an annular aperture and 
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Fig. 5. The normalized axial intensity distributions as a function of the propagation distance z for several 
HGB modes (a) HG22, (b) HG24, (c) HG26, and (d) HG28 passing through an annular aperture. The nu-
merical simulation uses the AS FFT algorithm with W0 = 1 mm,  λ = 632.8 nm, R = 1 mm, and r = 0.5 mm. 

to stress, the influence of aperture diffraction on the changes in the beam shape inten-
sity of the HGBs from near-field to the far-field regions are shown in Fig. 5. The nor-
malized on-axis intensity distribution causes fierce and fast oscillations in the near 
-field region. Because of the interference between the two-edge, the diffracted waves 
increase throughout the near-field. Whereas the oscillations of diffraction patterns dis-
appear clearly in the far-field region, and the change of diffraction tends to stability. 
As it is visible in Fig. 5, the on-axis intensity distribution patterns for four different 
Hmn modes are nearly the same, and only the difference in intensity magnitudes exists. 

3.5. The transverse intensity and the phase distributions 
with different truncation parameters 

The results of the numerical calculation model of the transverse intensity and phase 
distributions are obtained using the AS FFT algorithm, which uses the 2D FFT proce-
dure. It has been divided into three steps: first, determining the intensity and phase dis-
tributions of the HGB; second, calculating the intensity and phase distribution of the 
HGB diffracted by an annular aperture starting at the initial plane, i.e. the location of 
the minimum waist (z = 0), which is called a diffracting aperture; and third, calculating 
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Fig. 6. A combination of the transverse intensity and phase distributions of the HG44 mode (left column) 
plus a diffracting aperture (middle column), which can produce a diffraction pattern (right column) of the 
HGB diffracted by an annular aperture at the observation plane z = 200 mm, for a fixed obscuration ratio 
ɛ = 0.5 and for different values of outer and inner beam truncation parameters δR = 0.6 (a,b), δR = 1  (c,d),  
δR = 2 (e,f ), and δr = 0.3 (a,b), δr = 0.5 (c,d), δr = 1 (e, f ), respectively. The size of each picture is 4 mm. 
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the propagation of the HGB diffracted by the aperture between the initial and the ob-
servation planes, which is a sum of the freely propagating HGB and a beam multiplied 
by the diffracting aperture as are shown in Fig. 6. It is clear from figures that the trans-
verse intensity in a cross-section plane and the phase distribution of HGBs diffracted 
by passing through an annular aperture are depending strongly on the beam truncation 
parameters, which have influences on the beam shape intensity and the phase distri-
butions. In addition, the beam truncation parameters influence the beam diffraction. 

3.6. The beam truncation parameters effect on axial intensity distribution 

Figure 7 shows the normalized axial intensity distribution of the HGB passing through 
an annular aperture as a function of the propagation distance z. For comparison, the 
result for the unapertured (without aperture) case is also shown (black curve). The max-
ima and minima of these oscillations are due to the interference between the two edge-
diffracted waves increasing throughout in the near-field region. As it is visible in Fig. 7, 
the strength of the oscillation increases as the beam truncation parameter decreases, 
and the maximum of intensity shifts towards the aperture as the beam truncation pa-
rameter decreases. 
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Fig. 7. The normalized axial intensity distribution as a function of the propagation distance z for  
HG44 modes passing through an annular aperture. Calculations are performed for a fixed obscuration ratio 
parameter ε and for different values of beam truncation parameters δR = 0.6, 0.8, and 1 and δr = 0.3, 0.4, 
and 0.5, respectively. In the calculations we take W0 = 1 mm, λ = 632.8 nm. 

3.7. On-axis and off-axis intensity distributions in the near and far fields 

Simulation results of numerical implementation of Eq. (8) for the transverse cross-sec-
tional intensity distributions of several HGmn modes and its propagation 2D and 3D at 
different propagation distance z, are shown in Figs. 8 and 9. As can be seen that 
the transversal intensity distributions along the corresponding axes for different 
HGmn modes have a certain proportion of the HGmn mode, when the mode order is even, 
HG24 and HG44, as shown in Figs. 8(a) and (b). When the mode order is odd HG23 in 
Fig. 8(c), the transverse intensity along the corresponding axis is 0, which is the dark 
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Fig. 8. AS FFT calculations of the HGmn modes passing through an annular aperture at different obser-
vation planes, showing the transverse intensity distribution in a plane cross-section (a, b, c), the size of 
each picture is 6 mm. Calculations are performed for λ = 632.8 nm, W0 = 1 mm, R = 1 mm, and r = 0.5 mm. 

fringe. In the figures, we find that the transverse intensity distribution changes quickly 
with changing propagation distance z. The comparison of the plots in these figures 
shows variations of the transverse intensity diffraction distributions with the propaga-
tion distance z from near-field to far-field regions for different HGmn modes. As can 
be clearly seen in Figs. 9(a) and (b), the diffraction axial intensity increases in the near-
field just behind the annular aperture, and shows fast oscillations, then the axial inten-
sity decreases rapidly with the increase in the propagation distance. Moreover, the 
HGB seems to bifurcate and two diffraction side lobes appear beside the central beam. 
With the increase in the propagation distance and the brighter spots can be seen in 
Figs. 9(a) and (b). These bright spots result from the constructive and destructive in-
terference of the two edge-diffracted waves. Figure 9(c) shows the off-axis intensity 
distribution decreases in the near-field behind the annular aperture, but the intensity 
increases gradually with the propagation distance and then decreases, and the bright 
spots can be seen. A comparison of the on-axial and off-axial intensity distribution 
along the propagation direction shows that there is the same oscillation in the on-axial 
and in the off-axial intensity distributions, but the locations of the maxima and the min-
ima are different. From the results in Figs. 8 and 9, we can see that the diffraction in-
tensity changes along the propagation distance z and differs for different HGmn modes. 
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Fig. 9.  The 2D and 3D propagation of the axial intensity distribution profiles in the sagittal plane (a, b) 
and  in the off- axis direction, where  x = y = 2 mm (c). Calculations are performed for λ = 632.8 nm, 
W0 = 1 mm, R = 1 mm, and r = 0.5 mm. Red color represents the maximum intensity, and blue color rep-
resents the minimum intensity. 

4. Conclusions 

The numerical model for evaluating the diffraction patterns of the HGBs passing through 
an annular aperture has been introduced by using FFTs and AS methods. The AS FFT 
algorithm was used to calculate the complex amplitude with its real part, the transverse 
intensity, longitudinal intensity, and phase distributions by using a computational pro-
gram written in Borland C++Builder. The images are processed in Borland C++ Build-
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er to reduce the noise and adjust the brightness and contrast. The obscuration ratio and 
the beam truncation parameters have a significant influence on the transverse intensity, 
the longitudinal intensity, as well as the phase distributions, which originate from the 
diffraction effect caused by an annular aperture. The applied method significantly im-
proves the numerical efficiency and reduces the computation effort significantly. Fur-
thermore, the AS FFT algorithm can be applied in the full distance range without 
restriction on the far field. AS FFT algorithm may be extended to model the vector 
EM field and beyond the paraxial limitations and can be very useful in modeling in 
many other problems like computer generated holograms, optical tweezing, optical 
communication, optical vortices, etc. 
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