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The intensity of some pixels of the captured fringe will be saturated when fringe projection pro-
filometry is used to measure objects with high reflectivity, which will significantly affect the re-
construction of the measured object. In this paper, we propose a fringe pattern inpainting method 
based on the convolutional neural network (CNN) denoiser prior guided by additional information 
from a fringe captured in short exposure time. First, a binary mask obtained by Otsu algorithm from 
the modulation information of the short exposure fringe is used to detect the high-saturation region 
in the normal exposure fringe. Then, the corrected gray-scales of the region of the short exposure 
fringe selected by the mask are inserted in the saturated region of the normal fringe to form an initial 
fringe for iteration. At last, fringe pattern inpainting is achieved by using a CNN denoiser prior. 
The correct phase can be reconstructed from the inpainted fringes. The computer simulation and 
experiments verify the effectiveness of the proposed method. 

Keywords: fringe projection profilometry, phase calculation, convolutional neural network, denoiser prior. 

1. Introduction 

Fringe projection profilometry (FPP) is a widely used active optical three-dimen-
sional (3D) measuring technique. It has the advantages of full-field, high precision and 
high speed [1, 2]. However, when objects with high dynamic range reflectivity are 
measured, such as metal parts and china products, some intensity saturation regions 
will appear in the collected fringe pattern(s) due to the inhomogeneous reflection, 
which eventually leads to errors in the 3D reconstruction. 

Some methods have been proposed to overcome the intensity saturation problem. For 
instance, according to the polarization characteristic of the reflected light, SALAHIEH 

et al. [3] eliminated the saturated points by adding a polarizer and selecting a proper 
angle of polarization; or as ZHANG [4] has done, multiple fringe patterns captured in 
different exposure times were fused to form a high-quality fringe by selecting the pixel 
with the unsaturated highest intensity from homonymous points of the images; or as 
references [5, 6] have done, the projecting intensity of the projector was changed to 
guarantee the high quality in the regions with over low or over high reflectivity. 
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These methods mentioned above require either complex operational process or ad-
ditional hardware devices. Some scholars used the image processing technique to di-
rectly inpaint the fringe with saturation areas for avoiding time consuming and 
simplifying the measurement system. BUDIANTO and LUN [7] proposed an iterative reg-
ularization inpainting method based on a double tree complex wavelet transform. In 
reference [8], they demonstrated the importance of the election of an initial iteration 
fringe and calculated the initial fringe to guide inpainting of the saturated region ac-
cording to the geometric morphology of the neighborhood stripes. These works in-
spired us to inpaint fringes by combining the multi-exposure technique and image 
processing technique. 

In this paper, a fringe inpainting method based on a CNN denoiser prior is proposed. 
As we know, when the surface reflection is mostly considered as the diffuse reflection 
in imaging process, the intensity of the image can be changed through adjusting the 
exposure time [9]. The captured fringe pattern in short exposure time can provide the 
information which has been lost in the saturated region of the normal exposure fringe 
pattern. The saturated region of the normal exposure fringe pattern is determined by 
a binary mask obtained by the Otsu method applied on the modulation of the short ex-
posure fringe. The region without fringe is filled up with the corresponding information 
provided by the corrected gray of the short exposure fringe. The dual-exposure fused 
fringe provides a suitable initial iterative value for the CNN denoiser to produce a good 
quality fringe. The inpainted fringe can be used to calculate the correct phase infor-
mation. Simulations and experiments verify the effectiveness of the proposed method. 

2. Basic principles 

2.1. Principles of the structured light projection profilometry 

Fourier transform profilometry (FTP) [11] and phase-shifting profilometry (PSP) [12] 
are quite commonly used in the 3D reconstruction. Without loosing generality, in the FTP 
and PMP, fringe patterns captured by a CCD camera can be expressed as follows: 

1 Ii x y = a x y + b x y cos 2π f + φ x y + -------2π i (1)      0 x   N  

where Ii (x, y) is the intensity of the i-th frame of fringes, a (x, y) is the intensity of back-
ground; b(x, y) is  the contrast; φ (x, y) is the phase information; f0 is the carrier fre-
quency; N is the number of phase-shifting steps, and i = 0, 1, 2, …, N – 1. 

Phase-shifting profilometry utilizes a phase-shifting algorithm to calculate the 
phase. Taking the four steps phase-shifting algorithm as an example, the wrapped phase 
can be expressed as: 

I4 x y – I2 x y    
φ x y = arctan-- -- -- -- -- -- -- -- -- -- -- -- (2)  -- -- -- -- -- -- --- -- -- -- -- -

I1 x y – I3 x y    
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The modulation which reflects the reliability of the phase calculation can be re-
garded as an evaluation parameter of the fringe quality. The modulation information 
can be calculated by the following formula for the phase-shifting profilometry [13]: 

(3)M x y  Ii x y  1 
N 

--------2i π  
 sin 

i 0= 

N 1– 

 
2 

Ii x y  1 
N 

--------2i π  
 cos 

i 0= 

N 1– 

 
2 

+= 

and N  3. 
In FTP, the Fourier transform spectrum of the fringe is expressed: 

*F u v = F0 u v + F1u f0 v + F–1u f0 v (4)    – + 

*  – u f0 v are the zero order frequency spec-Here F0 u v, F1u f0 v, and F–1 + 
trum, the positive first order spectrum and the negative first order frequency spectrum, 
respectively. The complex signal corresponding to the positive first-order spectrum is 
calculated by the inverse Fourier transform, which is expressed as: 

1-----  M x  y = b x  y exp 2iπ f0 x + φ x y (5)
2 

where b(x, y) /2 represents the modulation of the fringe pattern, the wrapped phase is 
embedded in the complex angle. Both in the FTP or PMP method, a phase unwrapping 
algorithm is needed to obtain the continuous phase. In our work, we utilize the mod-
ulation information of fringe pattern(s) to determine saturated regions. 

2.2. Image inpainting based on CNN denoiser prior 

Image inpainting is a sub-problem of the image restoration (IR). It is aimed to rebuild 
the missing part of an image. A general model of the image degradation can be expressed 
as y = Ax + n. Here y is the degraded image, x is the original image, n is the noise com-
ponent, and A is the degradation matrix. From the degraded image y, the optimal solu-
tion of the estimated value of the latent ideal image x can be expressed as [14]: 

1 
x̂ = argmin

x 
--
2
--- y A– 

2
+ λ R x   (6) 

where, y A– 
2

/ 2  and R(x) are the fidelity term and the regularization term, respec-
tively. The first term guarantees that the estimated solution conforms to the actual deg-
radation process, and the second term provides effective information about the iterative 
process. The parameter λ controls the weight of the regularization term in each iterative 
process. 

The most popular methods used to solve Eq. (6) are the model optimization method 
and the discrimination learning method [15]. The model optimization method can deal 
with many kinds of image degradation problems by utilizing different degradation ma-
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trices. Yet, the discrimination learning method requires a time-consuming training pro-
cess and it is usually restricted to specialized tasks. But after being trained, the learning-
based method can enjoy better time efficiency and tend to have a better performance. 

In recent years, more and more attention has been paid to the combination of the 
two methods. The fusion of the optimization method and the learning-based method 
normally converts the optimization problem to two individual sub-problems utilizing 
the variable splitting techniques, such as half quadratic splitting (HQS) [14, 16] meth-
od or alternating direction method of multipliers (ADMM) [17]. Solving x̂ has been 
divided into two subproblems: solving the fidelity term and solving the regularization 
term, respectively. Solving the regularization term is regarded as the image denoising 
subproblem. Sparse representation [18], block-matching and 3D filtering (BM3D) [19] 
and the convolutional neural network [20] are the common denoising algorithms. To 
the best of our knowledge, among all these methods, a well-trained CNN is one of the 
most powerful denoisers. The application of CNN denoiser in the image inpainting not 
only retains the flexibility of the model optimization method, but also improves the 
performance and time efficiency of the learning-based method. Therefore, in our work, 
a fringe inpainting method using a trained CNN denoiser prior is discussed. Because 
solving x̂ in Eq. (6) has been converted to the iterative denoising problem, a well-pre-
trained CNN denoiser is adopted in our work to improve the effect of the fringe inpaint-
ing without additional model training and large database acquisition. 

In the HQS method, an auxiliary variable z is introduced for solving Eq. (6). The orig-
inal IR problem described by Eq. (6) can be converted to: 

1 μ2
L x z  = ----- y Ax– + λ R z  + ------ z x– 

2 
(7)μ 2 2 

Here, μ is the penalty parameter in the iterative process, k means the number of itera-
tions. Solving Eq. (7) can be replaced by alternately solving the following two sub-
problems: 

2 
x = argmin y Ax– + μ x z– 

2 
(8a)k + 1 kx 

z = argmin
x 

--
2 

μ 
---- z x– 

2
+ λ R z   (8b)k + 1 k + 1 

Equation (8a) is a constrained least squares problem, which can be solved by the 
following formula, where I is the identity matrix: 

 –1 Tx = ATA + μI A y + μ z  (9)k + 1 k 

Solving Eq. (8b) is reduced to the Gaussian denoising problem, where λ /μ is the 
variance of Gaussian noise: 

z = denoiserx λ /μ  (10)k + 1 k + 1 
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Fig. 1. Architecture of the denoising CNN. 

Due to highly parallel characteristic of the CNN, solving Eq. (10) was completed on 
GPU in our simulation and experiments. Figure 1 is the architecture of the denoising 
convolution neural network [12]. The designed architecture starts with a convolutional 
layer and a rectified linear unit (ReLU), followed by five repeated modules sequen-
tially, and ends with convolution layers. Each module consists of a convolutional layer, 
batch normalization and ReLU. There are 64 convolution kernels in every convolution 
layer, and each layer uses dilated convolution with parameters of 1, 2, 3, 4, 3, 2, 1, 
respectively. 

3. Inpainting the saturated region of fringe pattern 

An additionally captured short exposure fringe is used to fill up the saturated region 
in the normal exposure fringe to form an initial iterative fringe as one of the inputs of 
the CNN denoiser to inpaint the fringe. The complete inpainting process is listed as 
following: 1) Two fringes are captured in exposure time T and T', respectively. In our 
experiment, T'  was set to be about one-thirtieth of T. In fact, the short exposure time 
is determined on the premise that the fringe quality in the region corresponding to the 
saturated region of the normal exposure fringe is satisfying. 2) The Otsu method is used 
to determine the saturated region from the modulation of the short exposure fringe. 
3) The initial iterative fringe used in the fringe inpainting is determined by fusing 
two fringes with different exposure times. 4) Fringe inpainting is achieved by using 
CNN denoiser prior quickly. Some details will be given in the following parts. 

3.1. Saturated region detection 

The modulation information on fringe is used to determine the saturated region. As 
we all know, the modulation in the saturated region is low. It is difficult to select the 
saturated region from the other region with low modulation values in the normal ex-
posure fringe. Therefore, the modulation map of the short exposure fringe is selected 
to detect the saturation area. Although the short exposure fringe pattern avoids the ap-
pearance of the saturation area, the contrast and the signal to noise ratio (SNR) of the 
fringes are unavoidably low. In order to suppress the effect of noise component, the 
Fourier transform method is selected to calculate the modulation of the short exposure 
fringe. Figure 2 shows a comparison result of the saturated regions determined from 
the modulation images obtained from the normal exposure fringe and the short expo-
sure fringe, respectively. Figures 2a and 2d are the fringes captured in the normal and 
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Fig. 2. Determine the saturation areas from fringes captured in different exposure times. (a) Normal ex-
posure time fringe pattern; (b) modulation of Fig. 2a; (c) binary image of Fig. 2b using Otsu threshold 
method; (d) short exposure time fringe pattern; (e) modulation of Fig. 2d; (f ) binary image of Fig. 2e using 
Otsu threshold method. 

the short exposure time, respectively. Figures 2b and 2e are their modulation distribu-
tion maps. Figures 2c and 2f are the corresponding binary images of Figs. 2b and 2e 
by the Otsu threshold method. 

3.2. Calculate the initial fringe for iteration 

Our method limits the solution space of Eq. (6) by fusing a proper initial fringe as one 
of the inputs of the CNN denoiser. Obtaining a suitable iterative initial fringe carrying 
the real height information of the surface of the object for following fringe inpainting 
is one of the key steps of our works. As we mentioned above, the short exposure fringe 
has lower contrast and SNR. If the selected good quality local fringe region from the 
short exposure fringe is directly inserted into the corresponding saturated region of the 
normal exposure fringe to build the initial iterative fringe, it will result in obvious in-
tensity difference between the filled region and the other regions in the fused fringe. 
In this case, it is difficult to obtain an ideal solution x̂ of Eq. (6). In order to guarantee 
a satisfying result, the average value and the contrast of the local fringe selected to fill 
the saturated region are adjusted to close to those of the normal exposure fringe. The short 
exposure fringes are processed by the following three steps. 

1) The intensity of the selected region from the short exposure fringe Idark, used 
to fill the corresponding saturated region of the normal fringe Ibright, is adjusted in ad-
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vance. First, we obtain the region Ω by dilating the selected region R. The area in Ω 
but outside of R is expressed as Ω /R. Second, a gray-stretched coefficient r = rangebright/ 
rangedark is calculated. The rangedark stands for the subtraction between the minimum 
gray value and the average gray in the region R of the short exposure fringe pattern, 
and the rangebright is calculated by subtracting the minimum gray value from the aver-
age gray in the region Ω /R of the normal exposure fringe pattern. This coefficient is 
used to stretch the gray level of the region R in the short exposure fringe pattern. 

2) In order to obtain the fused iterative initial fringe with uniform contrast, a nor-
malized modulation distribution M *(x, y) of the region R of the short exposure fringe 
pattern is calculated by the definition of M *(x, y) = M (x, y) /max(M (x, y)). Finally, for 

*the pixels in the region R of the Idark, a corrected fringe is calculated by the fol-Idark 
lowing equation. 

rangebright Idark* = -------------------------- ------------------------ (11)Idark rangedark M * x y  

*3) The fused fringe pattern can be calculated by using Ifused = Idark1 – A + AIbright, 
where A is a binary matrix, in which R region is “0” and outside of R region is “1”. In 
fact, A is the degeneration matrix corresponding to Eq. (6). Ifused will be used as one of 
the initial inputs of the iterative process of the CNN denoiser prior method. Figure 3 
shows the flow chart of the fusion process. 

Fig. 3. Flow chart to obtain the iterative initial fringe. 

3.3. Iterative inpainting process of the fringe pattern 

Up to now, the image Ifused has been prepared. The fringe inpainting flow based on the 
CNN denoiser prior is shown in Fig. 4. Here the iterative initial fringe y is equal to AZ0, 
where A is the degradation matrix calculated by the method in Section 3.1, and Z0 equals 
Ifused, which is calculated by the method mentioned in Section 3.2. Taking y, A and Z0 
as the inputs of fringe inpainting system, the CNN network works for denoising. In 
this paper, we adopt the IRCNN [14] denoiser prior to realize fringe pattern inpainting. 
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Fig. 4. Complete flow chart of the proposed fringe pattern inpainting method. 

The final inpainted result will be obtained by solving the fidelity term and the regu-
larization term with the iterative algorithm. 

4. Simulation and experiment 

4.1. Computer simulation 

A computer simulation was carried out to verify our method. The simulated object was 
expressed by a two-dimensional Gaussian function. The angle between the optical 
axis of the camera and the optical axis of the projector optical in fringe projection 

Fig. 5. Results of different inpainting methods. (a) Simulated fringe pattern; (b) simulated fringe pattern 
with saturated region; (c) the fused fringe with Gaussian noise; (d) inpainted result of TV-H–1 method; 
(e) inpainted result of the transport method; (f ) inpainted result of the proposed method. 
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measurement system was set to 30°. The original fringe pattern with 512 × 512 pixels 
is shown in Fig. 5a. We artificially set a saturated region, where the intensity was set 
as “1”, as shown in Fig. 5b. In order to simulate the procedure of the fringe inpainting, 
the saturated region was filled up with a sub-image, in which the intensity of each pixel 
is 0.9 Ibright and is polluted by Gaussian noise. The fused fringe, as shown in Fig. 5c, 
is one of the inputs of the CNN denoiser. As a comparison, we compared the inpainted 
results of the proposed method with that of TV-H–1 inpainting [21] and transport in-
painting [22]. The inpainted results of TV-H–1 inpainting algorithm and transport in-
painting algorithm are shown in Figs. 5d and 5e, respectively. The inpainted result of 
our method is shown in Fig. 5f. 

Since the application of the well-prepared initial fringe in the inpainting method 
limits the solution space of x̂, the regularization term calculated by the CNN denoiser 
is effective enough. Only 5 iterations were taken to obtain the satisfied results in our 
method. The Table lists the comparison between the proposed method and other meth-
ods, including the number of iterations, the time consuming, the peak value of the sig-
nal-to-noise ratio (PSNR) and the root mean square error (RMSE) of the reconstructed 
phase from the inpainted fringe. 

T a b l e. Comparison of our method, TV-H–1 and transport. 

Methods Iterations Execution time PSNR RMSE 

Initial fringe pattern – – 27.4880 0.4052 

TV-H 100 4.61 s 31.9497 0.3050 

Transport 50 75.13 s 39.9499 0.0497 

Method in this paper 5 9.88 s (CPU)/0.39 s (GPU) 41.6962 0.0440 

4.2. Experimental verification 

Some experiments were carried out to verify the proposed method. The hardware system 
of the experiment consists of a Baumer camera with resolution of 1392×1040 pixels, 
a Epson projector with resolution of 1280×800 pixels and a computer. In the experi-
ment, a cup was measured. In order to compare our method with other common meth-
ods [4, 21, 22], 25 frames of fringes corresponding to different exposure times, 
changing from 2000 to 50000 μs with 2000 μs increment internal, were collected. Two 
fringes at 50000 and 2000 μs of exposure times were used in our image inpainting 
method. 

The proposed method is used to inpaint the fringe, and the result is compared with 
those of the TV-H–1 method [21], the transport method [22] and the multi exposure 
fusion method [4]. The fringes obtained by the TV-H–1 method, the transport method, 
the multi-exposure fusion method and our method are shown in Fig. 6. Figure 6a is 
the original fringe pattern. Figure 6b is the fused fringe, as the initial fringe for iter-
ation in our method. Figure 6c is the fused pattern by the multi-exposure method [4]. 
Figures 6d–6f  are inpainted results of the TV-H–1, Transport, and CNN denoiser prior 
methods. 

https://CPU)/0.39
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Fig. 6. Comparison of different inpainting methods. (a) Original fringe pattern; (b) fused initial fringe by 
our method; (c) fused pattern using the multi-exposure method; (d) inpainted result of the TV-H–1 method; 
(e) inpainted result of transport method; (f ) inpainted result of the CNN denoiser prior. 

We calculated the phase information from the inpainted fringes. The wrapped phase 
was calculated by the four-step phase shifting method. And the unwrapped phase was 
calculated by the modulation guided phase unwrapping algorithm [23]. Figure 7 
shows the unwrapped phases distributions. Figure 7a is the result obtained from fringes 

Fig. 7. Phase reconstruction of a cup. (a) Result of the multi-exposure method; (b) result of the TV-H–1; 
(c) result of the transport method; (d) result of directly using the fused fringe; (e) result of the CNN denoiser 
prior method. 
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Fig. 7. Continued. 

Fig. 8. Experiments for measuring plastic models. (a) The gray image of the plastic mango; (b) normal 
exposure fringe pattern of the mango; (c) inpainted fringe pattern of the mango; (d) reconstruction result 
of the mango; (e) the gray image of the plastic banana; (f ) normal exposure fringe pattern of the banana; 
(g) inpainted fringe pattern of the banana; (h) reconstruction result of the banana. 
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Fig. 8. Continued. 

inpainted by the multi exposure fusion method. Figures 7b, 7c and 7e are the results 
obtained from the inpainted fringes by the TV-H–1 mehod, transport method and 
CNN denoiser prior method. A comparison phase map from the dual-exposure fused 
fringes without inpainting operation is given in Fig. 7d. 

Other experiments have also been carried out to show that our method has a good 
capability. The measured objects are a plastic mango and a plastic banana, as shown in 
Figs. 8a and 8e. Figure 8b is one of the normal exposure fringe patterns of the mango, 
Fig. 8c is the inpainted fringe using the proposed method, Fig. 8d is the phase recon-
struction result of the mango. Figure 8f  is one of the normal exposure fringe patterns 
of the banana, Fig. 8g is the inpainted fringe pattern using the proposed method, Fig. 8h 
is the phase reconstruction result of the banana. 

In the following experiment, our method is applied to reconstruct an object from 
fringes with a larger saturated region, as shown in Fig. 9. Figure 9a is a normal expo-
sure fringe pattern, Fig. 9b is a short exposure fringe pattern, Fig. 9c is the inpainted 
result by our proposed method, Figs. 9d and 9e are intensity distributions of segments 
between 170 to 370 columns in the 256th row of the normal exposure fringe and the 
inpainted fringe, respectively. The reconstructed phase distribution from the fringes with 
saturated region and from the inpainted fringes is shown in Figs. 9f  and 9g. The orig-
inal image has low contrast in the saturated region, so the phase in the region is not 
reliable, and the phase missing region is marked in the red box. 
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Fig. 9. Experiments for inpainting the fringe with larger saturated region. (a) Normal exposure fringe pat-
tern; (b) short exposure fringe pattern; (c) inpainted result by the proposed method; (d) a section of in-
tensity distribution in normal exposure fringe pattern; (e) a section of intensity distribution of the inpainted 
fringe; (f ) reconstructed result from normal exposure fringe patterns; (g) reconstructed result using 
inpainted fringes by the proposed method. 
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5. Conclusion 

An inpainting fringe method based on the convolutional neural network (CNN) denoiser 
prior using dual-exposure fringes is proposed. The modulation information of a short 
exposure fringe pattern is used to determine the region which needs to be inpainted. 
The grayscale of the short exposure fringe pattern is corrected and fused with the nor-
mal exposure fringe to form the fused fringe, as the initial fringe for the iteration. Then 
the high-quality fringe pattern will be obtained by the iterative inpainting method based 
on the CNN denoiser prior, which is used to calculate the phase corresponding to the 
height information on the measured object. Compared with other inpainting methods, 
the simulation and experimental results show that the proposed method can inpaint 
the fringe with saturated region quickly, even the fringe pattern with a large saturated 
region. 
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