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The interferogram containing the noises often affects the accuracy of phase retrieval, leading to 
the degradation of the phase imaging quality. To address this issue, a new interferogram blind de-
noising (IBD) method based on deep residual learning is proposed. In the presence of unknown 
noise levels, during the training, the deep residual convolutional neural networks (DRCNN) in the 
IBD approach is able to remove the latent clean interferogram implicitly, and then gradually es-
tablish the residual mapping relation in the pixel-level between the interferogram and the noises. 
With a well-trained DRCNN model, this algorithm can deal not only with the single-frame inter-
ferogram efficiently but also with the multi-frame phase-shifted interferograms collaboratively, 
while effectively retaining interferogram features related to phase retrieval. Simulation and exper-
imental results demonstrate the feasibility and applicability of the proposed IBD method. 

Keywords: interferogram denoising, deep learning, interferometry. 

1. Introduction 

Phase-shifting interferometry (PSI) is a well-known and useful technique for quantitative 
phase imaging [1, 2] and high-precision surface topography measurement [3–5]. In PSI, 
however, the interferogram captured by the CCD inevitably contains the noises owing 
to the dim field of view, high temperature of the image sensor and unstable environ-
mental disturbances. In general, the noisy interferogram usually affects the accuracy 
of phase extraction, resulting in the degradation of phase imaging quality. Thus, fil-
tering off the noises from phase-shifted interferogram is an important preprocessing 
step for making phase retrieval more accurate and robust in PSI. Typically, an iterative 
method based on an average convolution kernel ones or several times is employed to 
denoise an interferogram, but this algorithm can cause a blurring effect in the inter-
ferogram. In order to cope with this problem, many different algorithms [6–10] have 
been proposed. In [7], a two-dimensional windowed Fourier filtering (WFF) approach 
is proposed to reduce the noises in intensity fringe pattern and exponential phase filed, 
but it may result in the boundary artifacts of denoised interferogram. In [8], a fringe 
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pattern denoising algorithm is presented using image decomposition, but this method 
requires a prior knowledge about interferogram divided into different spaces. In [9], 
a dimensionality-reduction-based denoising algorithm is introduced to suppress the 
noises of fringe pattern using the singular value decomposition (SVD) method, but this 
algorithm needs to perform the additional operations of the rotation and a zero padding 
process. In [10], a well-established block-matching 3D filtering (BM3D) algorithm is 
proposed for image denoising using the non-local adaptive nonparametric filtering 
method through grouping and collaborative filtering, but this algorithm firstly needs 
to estimate the noise levels and aims at general image denoising with certain noise levels. 
Although all the algorithms above can lead to satisfactory results of image denoising, 
how to filter off efficiently the noises from the noisy interferogram remains an impor-
tant problem of a preprocessing step due to the fact that the noises in the interferogram 
are random and unknown. 

Deep learning (DL) originating from an artificial neuron model is a new area in 
machine learning research [11], in which its core idea is mainly to extract the features 
of the image associated with the tasks as the input of the support vector machine using 
the convolutional neural networks (CNN). Recently, DL has been widely used in var-
ious fields, such as recognition [12], feature classification [13], cell image segmenta-
tion [14, 15], optical image reconstruction and phase recovery [16], dual-wavelength 
interferogram decoupling [17], digital holographic microscopy [18], and optically  
trapped particle tracking [19]. 

In this paper, to address the interferogram with unknown and random noise levels, 
a novel interferogram blind denoising (IBD) method is proposed using deep residual 
learning (DRL) strategy. With the well-trained CNN model, the proposed method can 
establish the residual mapping relation in the pixel-level between the interferogram and 
noises. In the presence of different blind noise levels, this algorithm can handle not only 
a single-frame interferogram efficiently but also multi-frame phase-shifted interfero-
grams collaboratively, while retaining the interferogram features associated with phase 
extraction. The effectiveness and applicability of the proposed IBD method are demon-
strated by the simulation and experimental results of the plane wave-front, micro-sphere, 
complex wave-front, peaks and spherical cap, respectively. To the best of our knowledge, 
this is the first time that this method is proposed in this paper in PSI. 

2. Principle 

2.1. Denoising in phase-shifting interferometry 

In PSI, the phase-shifted interferogram can be theoretically expressed as 

IR x y = a x y + b x y      cos φx y  + δ η x y (1) +   

where x and y are spatial coordinates, a(x, y) and b(x, y) are the dc term and modu-
lation amplitude, φ(x, y) and δ denote the phase and random phase shifts, respectively; 
η (x, y) is the blind additive white Gaussian noise (AWGN). 
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In order to conveniently express the denoising, Eq. (1) can be rewritten as 

IR = IC + η  (2)

where IC is the noise-free or noise-suppressed interferogram. In general, the goal of 
interferogram denoising is to filter off the noise η from the noisy interferogram IR, 
which can be defined as 

IC = IR – η  (3)

The residual mapping strategy is much easier to be obtained than the original un-
referenced mapping, so deep CNN in residual mode has the capability to learn the re-
sidual mapping relationship rapidly [20, 21]. Deep CNN can be easily trained and 
improve the accuracy of interferogram denoising by using this residual learning strat-
egy. In our proposed IBD method, the noisy interferogram IR is much more like the 
noise-suppressed interferogram IC than the noise image η , especially for interferogram 
with a low blind noise level. Thus, the residual mapping will be much easier to be 
trained and optimized due to the fact that the end-to-end mapping relation is more like 
an identity mapping, in the IBD. As a result, we can conclude that the residual learning 
strategy is very suitable for interferogram denoising. 

Thus, to conveniently obtain the residual mapping, Eq. (3) can be rewritten as 

η  = IR – IC (4)

2.2. The architecture of the proposed DRCNN 

Based on Eq. (4), the architecture of deep residual convolutional neural networks 
(DRCNN) is designed for the IBD method, as shown in Fig. 1. In the DRCNN frame-
work, the input is the noisy interferogram IR, and the output is the noise image η . The 
framework of the DRCNN consists of four types of blocks, with four different colors. 
Each block consists of different numbers of convolutional layers. Each layer is com-
posed of different numbers of 3×3 convolutions, each followed by a batch normaliza-

Fig. 1. Architecture of the DRCNN for the IBD method. The number of feature channels is denoted in 
the red dotted box, respectively. 
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tion (BN) and a rectified linear unit (ReLU). Suppose the input data volume of the 
-th convolutional layer is denoted as xj ,  which can be expressed as 

N 
 – 1  – 1  ξ xj = ReLU


BN    xi 

 * wij + bj  , j = 1, 2, ..., N ()  (5)
 i = 1  

where w is the weight, b is the bias, * denotes the convolutional operation, ξ (ꞏ) denotes 
the residual mapping function at the -th convolutional layer, and N () is the number 
of feature channels. The purpose of BN, using both zero mean and unit variance to nor-
malize each BN layer, is to improve the performance of the proposed DRCNN and re-
duce the internal covariate shift [22], and BN can be defined as 

xj – μ xj   
x̂j = γ --------------------------- + β (6) 

σ2 + ε 
where 

N   

μ x = --------1------- xj
N    

j = 1 

N   

-- -- -- -   σ2 = --
N 
--1--

 
--  xj – μ xj 

2 

   
j = 1 

and x̂j is the output of the BN layer, ε is a regularization parameter, γ is a scaling 
factor and β is the shifting factor. The ReLU activation alleviates the problem of van-
ishing gradient and improves the convergence speed of the proposed DRCNN, and the 
ReLU activation function [23] can be represented as 

h x j = max0 xj (7) 

In Fig. 1, the black arrows denote Conv 3×3+BN+ReLU, and the red arrow is 
Conv 1×1. To extract multi-channel and high-level features of interferogram from the 
noisy interferogram, the number of feature channels for each layer in the IBD method 
is set to be 32, 64, 128, 64, 32 and 1, respectively, which are denoted in the red dotted 
box. There are 19 convolutional operations in the IBD method. 

2.3. DL-based blind denoising and training parameters setting of the DRCNN 

With these residual mapping functions in Eq. (5), the residual mapping relation ξ (ꞏ) = 
L = 19=  ξi  ꞏ can be obtained through minimizing the loss function  (Θ) between the 
i = 1

desired noise images and predicted ones from the noisy inputs, which can be defined by 
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W
 Θ = ---------  – –  ; Θ 2 (8)IRk ICk ξ IRk 

k = 1 

where W is the batch size and Θ is the trainable parameters of the DRCNN. 
It is worthy to note that the DRCNN adopts Eq. (4) rather than Eq. (3) for establishing 

the pixel-wise residual mapping. That is to say, the framework of the DRCNN is designed 
to output the noise image rather than directly outputting the denoised interferogram. 
Once the optimal pixel-level residual mapping relation ξ (ꞏ) of IR to η is achieved, the 
noise image η can be expressed as 

η = ξ (IR; Θ ) (9) 

Subsequently, by combining Eqs. (3) and (9), the noise-suppressed interferogram IC 
can be described as 

IC = IR – ξ (IR; Θ ) (10) 

During the training in the framework of the DRCNN, the batch size W is 4; the 
training epochs for this dataset are 50; the learning rate is firstly set to be 1e-3, then it 
decays from 1e-3 to 1e-7; the adaptive moment estimation (Adam) based optimizer is 
used to minimize the  (Θ) in Eq. (8) by iterative back-propagation algorithm. 

3. Simulations and discussion 

3.1. Dataset generation 

To verify the feasibility of the IBD method, as shown in Fig. 2, five types of interfero-
grams, including the plane wave-front, micro-sphere, peaks, spherical cap and complex 
wave-front, are employed as the objects of training and testing. For each type of inter-
ferogram, 80 randomly phase-shifted interferograms with the size of 128×128 pixels 
are generated according to Eq. (1) by setting the parameters as follows: the background 
term is a (x, y) = 40exp[–0.04(x2  + y2)] + 90 and the modulation term is b (x, y) = 

a b c 

Fig. 2. Five types of interferograms: (a) plane wave-front, (b) micro-sphere, (c) peaks, (d) spherical cap 
and (e) complex wave-front. 
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Fig. 2. Continued. 

= 90exp[–0.04(x2 + y2)], respectively; δ is a random phase shift in the range from 0 
to 2π; the AWGN with zero-mean and standard deviation σ inside the range (0, 40) is 
arbitrarily added to each phase-shifted interferogram. The dataset consisting of 400 ran-
domly phase-shifted interferograms is utilized to train the DRCNN framework. Note 
that the test samples are different from those in the training dataset. 

3.2. Denoising of single-frame interferogram 

To evaluate the performance of a well-trained DRCNN model, 60 interferograms with 
random phase shifts are employed in the presence of different blind noise levels. Spe-
cifically, the value of low blind noise (LBN) is σ = 6; the value of medium blind 
noise (MBN) is σ = 22; the value of high blind noise (HBN) is σ = 38. To quantitatively 
evaluate the IBD method, we introduce the peak signal-to-noise ratio (PSNR), which 
can be defined by 

  
 2n 

– 12 


PSNR = 10log --------------------------------------------------------------------------------------------------
2
--- (11) 

1 M N I1i j  – I2i j    M N  i = 1 j = 1 

where M and N respectively denote the size of the interferogram; I1 is the noise-free 
interferogram, and I2 is the interferogram denoised using different algorithms; n  is 
equal to 8. 

In the Table, for five types of interferograms, based on Eq. (11), we present the av-
erage PSNR results obtained with the IBD, BM3D, WFF and SVD methods in the pres-
ence of LBN, MBN and HBN, respectively. It is worthy to note that the default parameters 
for the BM3D and WFF are used and the number of largest singular values that are not 
truncated is 10 in the SVD method. For example, in the Table, for the micro-sphere, 
at LBN, the WFF method has the lowest value of PSNR about 16.82 dB, while the 
IBD method yields the best value of PSNR about 37.15 dB, resulting in significant im-
provement of the IBD method by 20.33 dB. It is found from the Table that the IBD meth-
od has the highest value of PSNR on most of phase-shifted interferograms compared 
with the BM3D, SVD and WFF methods, but fails to obtain the best value of PSNR 
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T a b l e. The average PSNR (dB) results obtained by the IBD, BM3D, SVD and WFF methods for five 
types of interferograms at LBN, MBN and HBN. The best results are highlighted in bold.  

Methods IBD BM3D SVD WFF 

LBN 

Plane wave-front 36.17 34.41 29.29 18.54 

Micro-sphere 37.15 36.05 25.01 16.82 

Peaks 30.16 32.15 13.51 11.66 

Spherical cap 36.04 33.30 31.06 18.42 

Complex wave-front 35.28 33.52 30.56 12.99 

MBN 

Plane wave-front 36.00 34.68 26.69 18.42 

Micro-sphere 35.35 33.71 22.78 16.56 

Peaks 29.59 28.06 13.49 11.62 

Spherical cap 35.18 32.21 25.58 18.37 

Complex wave-front 34.43 32.78 24.94 12.94 

HBN 

Plane wave-front 33.10 32.45 22.84 18.13 

Micro-sphere 31.96 31.15 20.43 16.32 

Peaks 27.91 24.90 13.36 11.57 

Spherical cap 32.26 30.25 21.98 18.05 

Complex wave-front 31.82 29.84 21.40 12.87 

on phase-shifted interferogram of peaks at LBN. Through the analysis of five types of 
interferograms, one can know that phase-shifted interferograms of peaks possessing 
multiple closed-interferograms increase the difficulty of recognition of interferogram 
features in the DRCNN, leading to the unsatisfactory result of interferogram denoising 
for the IBD method. The simulation results show that the IBD method has better blind 
denoising performance of single-frame interferogram for different blind noise levels. 

3.3. Filtering off the noises from multi-frame phase-shifted interferograms 

3.3.1. The plane wave-front 

To verify the effectiveness of the proposed IBD method for denoising of the plane wave 
-front, four noisy interferograms with 0, π/2, π and 3π/2 phase shifts, one of which is 
presented in Fig. 3a, are used to simultaneously denoise. In Fig. 3e the theoretical phase 
map is shown and in Fig. 3f the noisy phase map is presented. Through the calculation, 
one can know that the root mean square error (RMSE) of the noise in Figs. 3e and 3f 
is 0.31 rad. Figures 3b–3d present one of the denoised interferograms with the IBD, 
SVD and WFF methods, respectively. Then the phases retrieved from the denoised 
interferograms with the IBD, SVD and WFF methods are presented in Figs. 3g–3i, and 
the corresponding RMSEs are 0.04, 0.19 and 0.11 rad, respectively. Note that their 
phases are extracted using a standard four-step phase-shift (FSPS) algorithm. Com-
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Fig. 3. The plane wave-front. (a) The noisy interferogram, (b), (c) and (d) the interferograms denoised 
with the IBD, SVD and WFF methods, (e) and (f ) the theoretical and noisy phases, (g), (h) and (i) the 
phases extracted from the interferograms denoised with the IBD, SVD and WFF methods, respectively. 

pared with the RMSE of noisy phase, that is 0.31 rad, the values of noise removal for 
the IBD, SVD and WFF methods are 0.27, 0.12 and 0.20 rad, respectively. 

3.3.2. The spherical cap 

We employ four noisy interferograms with 0, π/2, π and 3π/2 phase shifts, one of which 
is presented Fig. 4a, to verify the feasibility of the IBD method for denoising of the spher-
ical cap. One of the interferograms denoised by the IBD, BM3D, SVD and WFF methods 
is presented in  Figs.  4b –4e, respectively. To compare the blind denoising perfor-
mance, the theoretical and noisy phases are illustrated in Figs. 5a and 5b, respectively. 
The RMSE of the noise in Figs. 5a and 5b is 0.24 rad through the calculation. The phases 
extracted from the interferograms denoised with the IBD, BM3D, SVD and WFF meth-
ods are shown in Figs. 5c–5f by using the FSPS algorithm, and the corresponding 
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Fig. 4. The spherical cap. (a) The noisy interferogram, (b), (c), (d) and (e) the interferograms denoised with 
the IBD, BM3D, SVD and WFF, respectively. 

a b 

c d 

Fig. 5. The spherical cap. (a) The theoretical phase, (b) the noisy phase, (c), (d), (e) and (f ) the phases 
retrieved from the interferograms denoised with the IBD, BM3D, SVD and WFF methods, respectively. 
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Fig. 5. Continued. 

f 

RMSEs are 0.03, 0.05, 0.06 and 0.14 rad, respectively. Compared with the RMSE of 
noisy phase, that is 0.24 rad, the values of noise removal for the IBD, BM3D, SVD 
and WFF methods are respectively 0.21, 0.19, 0.18 and 0.1 rad. 

3.3.3. The complex wave-front 

To demonstrate the feasibility of the IBD method for denoising of the complex wave 
-front, three noisy interferograms with 0, 2.5 and 4.5 phase shifts are employed to si-
multaneously filter off the noises, one of which is shown in Fig. 6a. Figures 6d and 6e 
respectively present the theoretical and noisy phases, and the RMSE of the noise in 

a b c 

d e 

Fig. 6. The complex wave-front. (a) The noisy interferogram, (b) and (c) the interferograms denoised with 
the IBD and BM3D methods, (d) and (e) the theoretical and noisy phases, (f ) and (g) the phases retrieved 
from the interferograms denoised with the IBD and BM3D methods, respectively. 
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Fig. 6. Continued. 

Figs. 6d and 6e is 0.1674 rad. The noisy interferograms are simultaneously denoised 
by the IBD and BM3D methods to achieve the noise-suppressed interferograms, one 
of which is shown in Figs. 6b and 6c. The phases retrieved from the noise-suppressed 
interferograms denoised by the IBD and BM3D methods are presented in Figs. 6f 
and 6g, and the corresponding RMSEs are 0.1395 and 0.1741 rad, respectively. Note 
that their phases are extracted by using the AIA method [24, 25]. 

3.3.4. The peaks 

For the peaks, four noisy interferograms with 0, π/2, π and 3π/2 phase shifts, one of which 
is presented in Fig. 7a, are used to simultaneously denoise to verify the effectiveness of 

a b 

c d 

Fig. 7. The peaks. (a) The noisy interferogram, (b) the interferogram denoised with the IBD method, (c) the 
noisy phase, and (d) the phase retrieved from the interferogram denoised with the IBD method. 
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the proposed IBD method. The RMSE of the noise phase is 0.69 rad in Fig. 7c. The phase 
retrieved from the denoised interferogram with the IBD method in Fig. 7b is presented 
in Fig. 7d, and the corresponding RMSE is 0.39 rad and the value of noise removal 
for the IBD method is 0.3 rad. 

From simulation results of five types of interferograms above, the advantages of the 
IBD method can be summarized as: 1) the IBD method can filter off the noises from 
not only single-frame interferogram but also multi-frame phase-shifted interferograms; 
2) the IBD method has the best denoising effect, compared with the BM3D, SVD and 
WFF methods; 3) although the denoising effect of the IBD method for the complex 
wave-front and peaks is unsatisfactory, the IBD method is suitable for denoising of the 
plane wave-front and spherical cap. 

4. Experiments 

4.1. Single-frame interferogram denoising 

To verify the applicability of the IBD method, we have applied this method to the real 
noisy interferogram with HBN (Ref. [5]), as shown in Fig. 8a, and the denoising result 
is presented in Fig. 8b. To compare the blind denoising performance of real interfero-
gram denoised by the IBD approach with the other algorithms, the interferograms 
denoised with the BM3D, SVD and WFF methods are presented in Figs. 8c–8e, re-
spectively. It can be seen from Figs. 8b–8e that the IBD method can provide visually 
satisfactory results while preserving interferogram features, compared with the BM3D, 
SVD and WFF methods. Compared with the real noisy interferogram, the values of 

a b c 

d e 

Fig. 8. (a) The real interferogram from Ref. [5]; (b), (c), (d) and (e) the interferograms denoised by the 
IBD, BM3D, SVD and WFF methods, respectively. 
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 Fig. 9. The central horizontal sections of Figs. 8a–8e. 

PSNR obtained with the IBD, BM3D, SVD and WFF methods are 24.26, 22.07, 19.05 
and 16.54 dB, respectively. We can know that the IBD method has the highest value 
of PSNR. In order to further observe the contrast in details, the central horizontal sections 
of Figs. 8a–8e are shown in Fig. 9. From Fig. 9, it can be seen that the IBD method has 
successfully suppressed the multiple noise spikes of real interferogram compared with 
the other methods, filtering off the noises from the interferogram effectively. The exper-
imental result demonstrates the applicability of the proposed method for single-frame 
interferogram. 

4.2. Separating the noises from three-frame phase-shifted interferograms 

To further demonstrate the practical performance of the proposed IBD method, the 
optical experiments of the spherical wave-front are performed. The experimental setup 
is similar to the Mach–Zehnder interferometer. When the phase shifts of reference wave 
are changed, three interferograms with random phase shifts are captured by a CMOS, 
respectively. The IBD method is also employed to filter off the noises from the three 
real interferograms with LBN, one of which is presented in Fig. 10a. After the three 
interferograms are denoised by the IBD method, one of which is shown in Fig. 10b. 
Figures 10c and 10d present the phases extracted, using the AIA method, from three 
real interferograms and three interferograms denoised with the IBD method, respectively. 
Figure 10e shows the phase obtained by the EVI algorithm [26] from the two real inter-
ferograms. In general, the accuracy of phase retrieval with the AIA method is higher 
than that of the EVI algorithm [5, 26]. To conveniently compare the accuracy of phase 
retrieval, the phase in Fig. 10e is considered as the reference phase. Through the cal-
culation, the RMSEs in Figs. 10d and 10e, Figs. 10c and 10e are 0.23 and 0.25 rad, 
respectively. That is to say, the high-precision phase can be retrieved from the denoised 
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c d 

e 

Fig. 10. (a) The experimental interferogram, (b) the interferogram denoised by the IBD method, (c) the phase 
extracted from three real interferograms, (d) the phase extracted from three real interferograms denoised 
by the IBD method, (e) the reference phase extracted from two real interferograms. 

interferograms with the IBD method. The experimental result shows the applicability 
of the proposed method for collaboratively filtering multiple interferograms. 

5. Conclusions 

In conclusion, we have proposed a new IBD method based on DRL for denoising of 
phase-shifted interferogram. Based on DL, for unknown noise levels, the IBD approach 
is able to establish the pixel-level residual mapping relation between the interferogram 
and noises. The IBD method can address not only single-frame interferogram efficient-
ly but also multi-frame phase-shifted interferograms collaboratively, and it does not 
require any prior evaluation about the noise levels. We have compared the IBD method 
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with the BM3D, SVD and WFF algorithms, and the good denoising performance of 
this method is demonstrated by the simulation and experimental results. The IBD meth-
od can become a useful tool and improve the accuracy of phase imaging in PSI. 
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