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This paper investigates the influence of film thickness on the electrical and mechanical properties 
of transparent indium tin oxide (ITO) thin films. Two groups of ITO thin films deposited on unheated 
substrates were prepared by the radio-frequency magnetron sputtering technique. The biaxial re-
sidual stress and surface roughness for two groups of ITO thin films were measured by a Twyman 
–Green interferometer and a Linnik microscopic interferometer, respectively. The electrical resis-
tivity of the ITO films was measured by a four-point probe apparatus, the thickness was determined 
mechanically with a profilometer. The measurement results show that the average resistivity of 
ITO thin films decreases with increasing the deposited thickness. The compressive residual stress in 
the ITO thin films decreases with increasing the deposited thickness. We also find that an anisotropic 
stress in the two groups of ITO films is more compressive in a certain direction. The RMS surface 
roughness in the two groups of  ITO films is less than 1 nm. 

Keywords: indium tin oxide, magnetron sputtering, residual stress, surface roughness. 

1. Introduction 

Transparent conductive thin films have been widely applied in electronics, optoelec-
tronics and solar cells fields. Indium tin oxide (ITO) is one of the most widely used 
transparent conducting oxides due to its low resistivity and excellent optical transpar-
ency [1–4]. ITO thin films can be prepared by various deposition techniques, such as 
thermal evaporation [5, 6], radio-frequency (RF) magnetron sputtering [7, 8] direct 
current (DC) magnetron sputtering [9–12], plasma ion-assisted evaporation [13], ac-
tivated reactive evaporation [14], and sol-gel method [15]. The RF sputtering method 
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is the most commonly used among all these methods because of the more compact 
structure and good transmittance of thin films prepared by this technique. 

In recent years, the engineering applications of ITO thin films have become an im-
portant issue. Many studies focusing on the optimized process parameters and their 
electrical properties have been carried out, but there has been a lack of study on the 
relationship between film thickness, biaxial anisotropic stress and surface roughness. 
Measuring and controlling residual stress in thin films are a critical challenge in optical 
precision devices development. In general, optical thin film processing results in re-
sidual stress which may cause buckling of the thin films or deformation of the substrate. 
Evaluation of the residual stress is very important for thin film coatings. The aim of 
this paper is to evaluate anisotropic stress, root-mean-square (RMS) surface roughness 
and electrical resistivity in ITO thin films. The difference of residual stress and surface 
roughness of ITO films with different deposited thickness was compared between the 
two experimental sets with the same deposition parameters. Therefore, we have analyzed 
the residual stress by the fast Fourier transform (FFT) method [16], and used an inter-
ferometric microscopy to determine the surface roughness of thin films. Microstructure 
of ITO thin films was examined by means of field-emission scanning electron micros-
copy (FESEM; Hitachi S-4800). 

2. Experimental details 

In this study, thin films were prepared by the radio frequency (RF) magnetron sputtering 
method. The surfaces of the substrates were cleaned before the application of coating. 
The silicon and glass substrates were cleaned successively in acetone, alcohol, and dis-
tilled water with an ultrasonic cleaner for 15 min, after which they were dried in a vacuum 
dryer for 5 min at room temperature. ITO thin films were deposited on B270 glass sub-
strates by using RF magnetron sputtering technique. ITO thin films were grown in a high 
vacuum deposition system. The ceramic ITO target was arranged directly below the 
substrate. A RF magnetron sputtering system equipped with RF power suppliers is shown 
in Fig. 1. The target for the deposition was a 2-inch disk of In2O3–10 wt.% SnO2 oxide 
target. The vacuum chamber was evacuated to 6.65 × 10–3 Pa. The reaction gas was 
an argon (Ar) and oxygen (O2) mixture. The argon flow rate was 20 sccm, and the ox-
ygen flow rate was in the range of 1–5 sccm. RF magnetron sputtering power and sput-
tering pressure were 100 W and 0.4 Pa, respectively. The distance between the substrate 
and the target was about 75 mm. The target was pre-sputtered for 10 min. The film thick-
ness was controlled by quartz crystal monitoring. ITO thin films with three different 
thicknesses of 200, 300 and 350 nm were deposited on B270 glass substrates. 

The characteristics of the biaxial residual stress and surface roughness of ITO thin 
films with three different thicknesses were investigated experimentally. The average 
residual stress and anisotropic stress in ITO thin films with different deposition thick-
nesses was measured by a Twyman–Green interferometer, as shown in Fig. 2. As can 
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Fig. 1. The radio frequency (RF) magnetron sputtering system. 

Fig. 2. System for the measurement of thin film stress. 
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be seen in this figure, the light source is a helium-neon laser with a center wavelength 
of 632.8 nm. The laser light source is incident through a micro-objective lens and 
a pinhole, usually called a spatial filter, and then forms a point light source. The point 
light source is originally converted into a uniform parallel beam by a collimating lens 
of appropriate focal length. When the parallel beam hits the beam splitter, it splits the 
parallel beam into two beams. One beam is reflected by a reference plate surface, while 
the other beam will be transmitted to the film surface of the tested substrate. Two beams 
are reflected to the beam splitter and then overlap to form interference fringes on a screen. 
We use a CCD camera to capture the interference fringes imaged on the screen. The in-
terference fringe pattern is analyzed by self-developed MATLAB software program. 
The stress analysis algorithm is based on the fast Fourier transform (FFT) method 
[17, 18]. The thickness of ITO films was measured by using an alpha-step profilometer. 

The proposed method is a non-contact and non-destructive measurement to eval-
uate the residual stress of thin films. In general, the residual stress of ITO thin films 
can be expressed in terms of the modified Stoney’s formula [19]: 

1 Es ts
2  1 1 σ = ----- ----------------- ------- ---------- – --------- (1)

6 1 – νs tf  R2 R1  

where σ is the residual stress of thin films. Es is Young’s modulus of the substrate and 
νs is Poisson’s ratio of the substrate; for example, Es = 71.5 GPa and vs = 0.22 for 
B270 glass. ts is the substrate thickness and tf the film thickness; R1 and R2 show the 
radii of curvature before and after thin film coating. 

The anisotropic stress in thin films can be calculated by [20] 

E ν t1 s  1 s  s
2 

σ = ----- ------------------- --------- + --------- ------- (2)x 6 1 – ν2  Rx Ry 
 tfs 

1 Es 1 ν ts
2 

σ = ----- -------------------  --------- + ------s--- ------- (3)y 6 2  1 – ν Ry Rx tfs 

where σx and σy are the biaxial stresses of thin films in the x- and y-axis, respectively. 
Rx and Ry are the radius of curvature of the film-substrate in the x- and y-axis directions, 
respectively. If Rx is equal to Ry , then Eqs. (2) and (3) can be reduced to Eq. (1). Here 
the positive sign indicates the tensile stress and the negative sign indicates the com-
pressive stress. 

In this work, the average residual stress is calculated from the average curvature 
using the Stoney formula. For an anisotropic stress evaluation, the deformed shapes 
of the film-coated substrates are not spherical. To obtain reliable film stress from such 
aspherical shapes, a Twyman–Green interferometer combined with FFT method are 
used. The anisotropic stresses in the x- and y-axis directions are obtained from the 
Rx and Ry . The anisotropic residual stress in thin films can be defined in two principal 
stresses of σx  and σy. We developed a MATLAB program algorithm to reconstruct 
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a three-dimensional surface profile of the thin films and finally to find the biaxial re-
sidual stresses. 

The influence of the surface roughness on the performance of  ITO thin films was 
also studied. Surface roughness is the level of unevenness of the film surface. Surface 
roughness of thin films most commonly refers to the variations in the height of the film 
surface relative to a reference plane. There are two surface roughnesses widely reported 
for thin films, one is average roughness and the other is root-mean-square (RMS) rough-
ness. They represent the deviation of hillocks and valleys on the film’s surface from 
a reference plane. Average roughness is simply the average of positive hillocks devi-
ation and negative valley deviation values from the reference plane. But the average 
roughness does not truly reflect the surface deviation. Therefore, we used a home-made 
Linnik interferometer microscope to determine the RMS surface roughness of thin 
films, as shown in Fig. 3. For non-contact surface roughness measurement, we present 
a Linnik microscopic interferometer associated with fast Fourier transform (FFT) al-
gorithm to reconstruct surface topography of thin films [21]. After reconstructing the 
film’s surface, we make use of a Gaussian filter to filter out the high-frequency signal 
and to obtain roughness profile. This non-contact method was used to measure different 
rough ITO thin films by the FFT algorithm and digital filter process. In general, the 
film surface roughness was studied by atomic force microscopy (AFM) in tapping 

Fig. 3. Schematic representation of a Linnik microscopic interferometer setup. 
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-mode [22, 23]. AFM was also used to confirm the results obtained by means of the 
proposed method. The surface roughness values were obtained by a home-made Linnik 
microscopic interferometer. In Fig. 3, a He-Ne laser with the wavelength of 632.8 nm 
is used as the light source. The light beam falls on a cube beam-splitter which splits 
the beam into a reference and a test beam that emerge in perpendicular directions. One 
beam is used to direct onto a test surface through a cube beam-splitter and a microscope 
objective (20×); another beam is reflected by a reference mirror (flatness λ/20) and 
a cube beam-splitter. The test surface within the field of view of the objectives is thus 
uniformly illuminated and the area of interest on the test surface can be adjusted 
through alignment of the iris diaphragm. The beams reflected off the reference and the 
test surface onto a CCD sensor through a lens. The resulting interference fringe pattern 
is recorded by a CCD camera (Sony; ICX252) and corresponding signal is processed 
by a computer. This camera has a resolution of 2048 × 1536 pixels (3.1 megapixel) 
and the sensor’s size is 1/1.8'', thus pixel size is 3.45 μm × 3.45 μm. The process of 
image patterns with spatial-carrier phase is carried out with the support of the MATLAB 
-based software. Only the central 240 × 240 pixels, representing an actual dimension 
of  100 μm × 100 μm, were chosen for analysis in order to prevent any edge effects. 

A four-point probe apparatus was used to find electrical resistivity of ITO thin film. 
The four-point probe approach provides more reliable test results. The resistivity and 
sheet resistance of a thin film can be inferred from the electrical resistance measured. 
The coating thickness is one of the most important thin-film parameters, since it largely 
affects the properties of a thin film. The alpha-step profilometer was popularly used 
to measure the film’s thickness by means of the step formed between a film and its 
substrate. Thus, all film thicknesses were determined by the alpha step D-600 stylus 
profiler in this study. 

3. Results and discussion 

Various growth techniques and sputtering parameters have an essential affect in con-
trolling the properties of ITO films. This work mainly investigates the effect of the 
deposited thickness on the electrical and mechanical properties of sputtered ITO films 
prepared by using RF magnetron sputtering technique. 

3.1. Dependence of the electrical resistivity on film thickness 

The thickness dependence of the electrical conductivity of sputtering ITO film was in-
vestigated experimentally. For the resistivity measurement of ITO thin films, the av-
erage resistivity values are 1.85 × 10−3 Ωꞏcm for 200 nm, 1.62 × 10−3 Ωꞏcm for 300 nm, 
and 5.20 × 10–4  Ωꞏcm for 350 nm. The lowest resistivity (5.20 × 10–4 Ωꞏcm) was ob-
tained from ITO films with thickness of 350 nm, as shown in Fig. 4. This measured 
resistivity value is close to that (from 1.6 × 10–4  to 6.5 × 10–4  Ωꞏcm) of the film de-
posited using similar sputtering method [24–28]. It was observed that the resistivity 
value decreases with increasing the film thickness from 200 to 350 nm. The variation 
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Fig. 4. The average resistivity of ITO films as a function of deposited thickness. 

of sheet resistance with the thickness of  ITO films is similar to that reported in other 
studies [29]. The observed dependence of the resistivity on film thickness is in good 
agreement with the Fuchs–Sondheimer theory [30]. According to Fuchs–Sondheimer 
theory, some expressions can be derived for the electrical conduction of thin conduct-
ing films. The size effect usually occurs on all very thin films, because they usually 
have an insulating layer or oxide layer on their surface. The resistivity variations were 
caused by the grain size change in the ITO thin films. The results show that there are 
significant differences in the electrical resistivity of ITO films with different thick-
nesses. The decrease of resistivity with increasing the deposited thickness is correlated 
with the increase in the carrier concentration. 

3.2. Dependence of the residual stress on film thickness 

The biaxial residual stresses in ITO thin films with different deposited thicknesses were 
investigated experimentally. In order to evaluate the biaxial anisotropic stress of 
ITO thin films, the surface profile and the radius of curvature were determined by the 
Twyman–Green interferometer system. Anisotropic stress in thin films exhibits a di-
rectional dependence stress in the deposition plane of thin films. In such case, residual 
stresseses are measured for the directions parallel and perpendicular to the initial depo-
sition plane of the films. Therefore, anisotropic stress state is characterized by two 
principal stresses. The residual stress in the x-axis direction σx and the stress in the y-
axis direction σy . We prepared two groups of ITO samples with different thicknesses. 
The residual stress measurement results show that the stress anisotropy (σx ≠ σy) is sig-
nificant and the average compressive stress decreases as the thickness of the films in-
creases. The comparison of the two groups of ITO films was made, and the biaxial 
anisotropic stress and the average stress vs. film thickness were plotted as shown in 
Figs. 5 and 6, respectively. It can be seen that when the film thickness increases from 
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Fig. 5. Biaxial residual stress vs. film thickness for ITO group 1. 
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Fig. 6. Biaxial residual stress vs. film thickness for ITO group 2. 

200 to 350 nm, the average stress value decreases. Moreover, it should be noted that 
the two groups of ITO thin films with different thicknesses show a similar tendency 
in terms of residual stress behavior. The anisotropic stresses in ITO films are found to 
be more compressive in the x-axis direction than that in the y-axis direction. 

3.3. Dependence of surface roughness on film thickness 

We evaluated the surface roughness using a homemade Linnik microscopic interferom-
eter (see Fig. 3). Two groups of ITO samples with different thicknesses were measured 
by the Linnik microscopic interferometer. The roughness measurement is 100 μm 
× 100 μm in size. RMS value is the square root of the variance or the standard deviation 
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Fig. 7. Surface roughness contours of the ITO films deposited with different thicknesses: (a) 200 nm, 
(b) 300 nm, and (c) 350 nm (for group 1). 

of the film surface from the reference plane within the sampling area. This value is 
calculated by a statistical formula with 10 measurements. While the film thickness was 
300 nm, the RMS surface roughness was 0.874 ± 0.019 nm for group 1 and 0.933 
± 0.023 nm for group 2. However, it slightly decreased when the thickness range was 
from 300 to 350 nm. The surface morphology of the ITO samples significantly varied 
with different film thicknesses. Figure 7 reveals the surface roughness contoures of 
the ITO thin films deposited with different thicknesses for group 1 samples over the 
scan size of 100 μm × 100 μm. The thickness of the thin films is increased by increasing 
the deposition time. Figure 8 shows the RMS surface roughness as a function of de-
posited thickness for both groups. The results of roughness measurements for the two 
groups of ITO samples show a similar tendency. The RMS surface roughness increases 
gradually from 0.714 nm (200 nm thick film) to 0.874 nm (300 nm thick film), above 
which the RMS roughness decreases slightly to 0.852 nm of the 350 nm thick film. 
The stabilization of the surface roughness after certain thickness may attribute to the 
filling of the holes and craters by the ITO film deposition. As increasing the thickness 
of ITO thin films, the deposited films were changed from smaller grains to larger 
grains. In other words, the average grain sizes became larger. 
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Fig. 8. RMS surface roughness vs. film thickness. 

Microstructure of ITO thin films was examined by means of field emission scan-
ning electron microscopy (FESEM; Hitachi S-4800). FESEM is an advance technology 
of SEM because it has a better resolution and more focus beam. The accelerated voltage 
is ranging from 10 to 40 kV for the SEM. The voltage between cathode and anode 
is 5 kV. The magnification used to scan the thin film was 100k times. Figure 9 demon-
strates the SEM morphologies of ITO thin films prepared by RF magnetron sputtering 

a b 

 
 

 
    

   
    

  
 

c 

Fig. 9. SEM topography of ITO thin films with different thicknesses: (a) 200 nm, (b) 300 nm, and 
(c) 350 nm (for group 1). 
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Fig. 10. Cross-sectional SEM micrographs of ITO films with different thicknesses: (a) 200 nm, (b) 300 nm, 
and (c) 350 nm (for group 1). 

method for different deposited thicknesses. The SEM surface morphologies of ITO thin 
films reveal a smoother surface, with small grains. It also shows that the grain size in-
creases as the film thickness increased from 200 to 300 nm. A large amount of small 
grains were observed on the surface of as-deposited ITO films. But the grain size slight-
ly decreases as the film thickness increased from 300 to 350 nm. The results are in 
agreement with those of surface roughness obtained from the Linnik microscopic in-
terferometer. The cross-sectional SEM micrographs of the ITO thin films are presented 
in Fig. 10. Almost all the ITO films reveal a compact dense and columnar grains 
microstructure at different film thicknesses. The grain size slightly increases for 
ITO films produced from 200 to 350 nm, but some voids are present. The ITO film’s 
microstructure made of compact columnar grains with estimated dimension between 
10 and 20 nm. 

4. Conclusions 

We investigated the dependence of resistivity, residual stress and surface roughness on 
the thickness of sputtering indium tin oxides films grown by a radio-frequency mag-
netron sputtering system at room temperature. For thin film measurements, the resis-
tivity of ITO films was measured by the four point probe method and the results  
revealed that the lowest resistivity of 5.20 × 10–4  Ωꞏcm was obtained from ITO films 
with thickness of 350 nm. The mechanical properties of ITO thin films were evaluated 
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from the biaxial and the average stress. In general, thin films prepared by sputtering 
technology are dense in structure and show a compressive stress. Our results show that 
the compressive stress decreases with increasing the film thickness which results in 
a decrease in the average stress. We find that the anisotropic stresses in the two groups 
of ITO films are more compressive in the x-direction than those in y-direction. The sur-
face roughness measurements for the two groups of ITO thin films with different thick-
nesses are similar to each other. When the thickness increases, the RMS roughness 
increases from 0.714 to 0.874 nm, then decreases to 0.853 nm for ITO group 1, while 
the value increases from 0.668 to 0.933 nm and then decreases to 0.840 nm for ITO 
group 2. Furthermore, FESEM images demonstrate the smooth surface and morphol-
ogies of the ITO films. These results show the RMS surface roughness was varied with 
ITO film thickness. The electrical resistivity, surface roughness, and residual stress de-
pend strongly on the film thickness which was demonstrated in this work. 
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