
PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU
Nr 1088 ------------------------------------------------------------------------------------------------------  2005

Inwestyc je  f inansowe i ubezpieczenia -  tendenc je  światowe a polski  rynek

Viera Pacakova, Erik Śoltes
University of Economics in Bratislava

SIMULATIONS OF INSURANCE LOSSES 
USING PARETO QUANTILE FUNCTION

1. Introduction

The conditions under which claims in non-life insurance are performed allow us 
to consider the claim amounts to be samples from specific heavy-tailed probability 
distributions.

Pareto distribution is often used as a model for insurance losses. This paper de
scribes its very good properties for modelling of loss distribution using quantile 
functions and simulations of the largest losses. Process of modelling and simulation 
has been illustrated on the sample of observed claim size data in accident insur
ance. We apply the process of modelling that was presented in our last year article 
[Pacakova 2004, pp. 91-99].

2. Pareto distribution of insurance losses

We will assume that individual claim amounts are drawn from a particular dis
tribution, called a loss distribution. The aim is to describe the variation in claim 
amounts by finding a loss distribution that adequately describes the claims that ac
tually occur.

The simplest of the loss distributions is exponential distribution with cumula
tive distribution function (CDF)

F(x)  = \ - e - Xx, A>0.
The tail probability

P ( X > x )  = \ - F { x )  = e~Xx
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goes to zero exponentially in x. We would need a distribution with more weight in 
the upper tail to correct this problem. We can slow the tail down by asking that the 
tail go to zero as a power of x. For example we can set

/>(X>*) = 1-F(*) = M - ]  ,
yA + x j

which is the upper tail of the Pareto distribution that is often used as a model for 
insurance losses when also a very large losses would be observed.

A random variable X  has the Pareto distribution with parameters a  and A if CDF is
A ^

F(x) = 1 —

and probability density function
r, , dFix ) 

/ ( * )  = -
ocAa

\a+1

,A +  x

, jc> 0 ,  a > 0 ,  A > 0 .

( 1 )

(2)
dx (A + x )

The quantile function QF, denoted by Q(p) ,  expresses p-quantile xp as

a function of p:
Xp=Q(p)  is the value of x  for which p = P^X < .

The definitions of the QF and the CDF can by written for any pairs of values 
(x, p)  as x = Q(p)  andp  = F(x ) .  These functions are thus simple inverses of 
each other, provided that they are both continuous increasing functions. Thus we 
can also write Q(p)  = F ~1 ( p).

When X  has a Pareto distribution, from (1) we can find
Q(p)  = A . ( l - p ) ~ l/a- A .  (3)

The basic statistics are

E ( X )  = 

D(X)  =

a - 1 
aA2

, a >  1 

, a  > 2 .
(a-l)2 (a-2)

The Pareto distribution has two parameters a  and A . The method of moments 
of point estimation of parameters a  and A is very easy to apply. We equate the 
first two population and sample moments and we find

A
a - l

Eliminating A we obtain

■ = jc
aA2

= s

2s
a  = —— —  and A = ( a - l )  x . 

s — x
(4)
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The estimates obtained in this way will tend to have rather large standard errors, 
because s2 has a very large variance. We will obtain estimates of a  and A using 
maximum likelihood method.

Let a  and X be the maximum likelihood estimates given data xl,x2,...,xn 
from the Pareto distributionP(a,A) .  From / (jc;a, A)the likelihood is

with In likelihood

L(a ,A ,x ) n aAa

(*  + *,)**’

n
l (a, A, x ) = ^  [  ln a +a  ln A -  (a + 1) ln (A + x{) ]  =

i=i
= n \ n a + n a \ n A -{a + \ )y ']n .[A  + xj ).

Setting —= 0, —  = 0 and solving them for a  we find two expressions 
d a  BA

for or:

a  = - or a  =

Z i»1=1
1 +  -

Y — 1—
i ^ A  + Xj

n r
y — 5 —  
1r f A ( A  + Xi)

(5)

We equate the two expressions for or and find that A satisfies f ( A )  = 0, where

f U ) = -
' A + x.

x.
' A(A + xt ) 1+!

(6)

Illustrative example
We introduce the illustrative example of modelling losses by Pareto model. We 

have observed sample of values of 91 individual claims from accident insurance 
policies. Using %2 goodness-of-fit test we will test of Ho: the data come from a 
Pareto model Pa (a,  A).

We start by estimating of a  and A parameters using the method of moments. 
With help of the equations (4) the method of moments gives

dr = 2,617 and 1  = 73 163,76.
The method of moments does provide initial estimates for more efficient maxi

mum likelihood method. Substituting the initial estimate A = 73 163,76 into non
linear equation (6) and solving it with help of Solver function of table processor 
Excel we find the maximum likelihood estimator A = 3>1 277,81375. Substituting
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X into expressions (5) we find a  = 1,739399006 in both cases. The value of a  
may be surprising, since the population variance does not exist in this case because 
of a <2. This simply says that the Pareto distribution selected by ML has very 
heavy tail.

Table 1 contains the procedure of x 2 goodness-of-fit test for Pareto models 
with parameters chosen by two different methods. We will denote as 0 , observed 
frequencies, as E\ the expected frequencies under Pareto model with parameters 
estimated by the method of moments and as E2 the excepted frequencies under Pa
reto model with parameters estimated by maximum likelihood method.
Table 1. Observed and fitted values for the Pareto model

Lower limit Upper Limit 0/ £> e2
at or below 19 000 46 40 40

19 000 37 000 17 19 17
37 000 55 000 9 10 9
55 000 91 000 8 10 8
91 000 160 000 6 7 6

above 160 000 5 5 5
91 1,197859 0,058203

Source: own calculations.

The x 2 statistic is computed as usual:

( 0 ,- E ,) 2

8 50UG<D
g. 40
£
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i- ^  Poiet poistnych pinem' 
Pa(2,61;73163)

—O—Pa(l,74;37277)

20000 60000 100000 140000 180000 losses

Fig. 1. Pareto loss distributions

We find x 2 =1.1978 for method of moments and x 2 =0,582 for ML method 
of parameters estimation. To compare computed values of j 2 with quantile 

Jo 99 3 = 11.3449, we can see the both of Pareto models give a good fit, although, as
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expected, the ML fit is better as assessed by the x~ value. The improvement in fit 
is evident also from Fig. 1.

3. The quantile models of the order statistics

We denoted a set of ordered sampling data of losses by
*(l)> X(2)’ •"> X(r)’-‘-’ X(n-l)’X(n) '

The corresponding random variables being denotes by 
y  y  y  y  yA(l)’ A ( 2 )  A(r)’ A (n-1)’ A (n) ‘

Thus for example is the random variable representing the largest observa

tion of the sample of n. The n random variables are referred to as the n order statis
tics. These statistics play a major role in modeling with quantile-defined distribu
tions.

Consider first the distribution of the largest observations with CDF de

noted by F(n) (x) = . The probability

is also probability that all n independent observations on X  are less than or equal to 
this value, x, which for each one is p. By the multiplication law of probability 

P(n) = P" so P = p j j  and F(x)  = p j j .

Inverting the F(x)  to get the quantile function, we have

cutaiM W )- <7)
If X  has a Pareto distribution with CDF (1) then the quantile function of the lar

gest observation is

< W* ) - * ( * ■ ( 8 )

The distribution will have a median value of (0,5) = X { \ - 0,51/n) - A  . 

For the general r-th order statistic X ^  we explain in [Pacakova 2004, pp. 91- 

99] the order statistics distribution rule:
If a sample of n observations from a distribution with quantile function Q(p)  is

ordered, then the quantile function of the distribution of the r-th order statistic is 
given by

Q(r){P(r)) = Q(BETAINV(p{r), r ,n -  r +1)). (9)
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INVBETA (.) is a standard function in packages such as Excel. Thus, the quan

tiles of the order statistics can be evaluated directly from the distribution Q(p)  of 
the data.

A particularly useful application of this result lies in evaluating the medians of 
the distributions of ordered data. Thus, the median M r of the distribution of the

r-th ordered data is M r = Q [lN VBETA(Q ,5,r,n-r + \ ) ) .  This we will term the

median rankit. A plot of x^  versus M r will give a straight line through the origin

for a correct and well-fitted model. This plot can form the basis of model validation.

4. Demonstration of the simulation of the largest observations

Table 2 contain the results of simulation of the 20 largest observations in sam
ple of 1000 Pareto distributed losses with quantile function (3) step by step by our 
last year article [Pacakova 2004].
Table 2. Simulation of 20 the largest from 1000 losses

V n 1 In v1'" u Q(u)
0,135493 1000 0,0010000 0,9980032 0,9980032 1291697,514
0,331321 999 0,0010010 0,9988948 0,9969002 994804,452
0,253843 998 0,0010020 0,9986272 0,9955316 799110,676
0,993465 997 0,0010030 0,9999934 0,9955251 798406,978
0,180922 996 0,0010040 0,9982849 0,9938177 656697,334
0,997123 995 0,0010050 0,9999971 0,9938148 656511,689
0,855881 994 0,0010060 0,9998434 0,9936592 646673,091
0,919813 993 0,0010070 0,9999158 0,9935756 641539,780
0,943984 992 0,0010081 0,9999419 0,9935178 638057,160
0,761040 991 0,0010091 0,9997245 0,9932441 622188,114
0,865165 990 0,0010101 0,9998537 0,9930988 614169,640
0,561498 989 0,0010111 0,9994166 0,9925194 584666,674
0,436941 988 0,0010121 0,9991623 0,9916880 548102,839
0,068052 987 0,0010132 0,9972808 0,9889915 460784,822
0,198585 986 0,0010142 0,9983619 0,9873713 422982371
0,905523 985 0,0010152 0,9998993 0,9872719 420910,870
0,130303 984 0,0010163 0,9979311 0,9852293 383336,723
0,624701 983 0,0010173 0,9995215 0,9847579 375807,461
0,648640 982 0,0010183 0,9995593 0,9843239 369193331
0,554228 981 0,0010194 0,9993986 0,9837319 360622319
Source: own calculations.

Column denoted by v contains 20 values v., generated from uniform distribu
tion under interval (0; l) not ordered in any way. Column u includes values of 
transformed variables
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« M = (V-  j H - V d*

where the v(, i = n , n - l , n - 2 .....  are generated values from the column v. The
values form an ordering sequence from a uniform distribution.

The order statistics for the largest observations on X  in column denoted by Q{u) 
are then simulated using the uniform transformation rule and Pareto quantile func
tion (3) with maximum likelihood estimated parameters a =  1,739399006 and 
X =37277, 81375 as

X(»)=Q(%))'

V »  = 2 ( v . ) ) ’

V 2 ) = G ( “(.-2))’

V o = ( v"-i
1

•  Q(BETAINV(0,5)) ♦ Q(BETAINV(0,995)) * Q(BETAINV(0,005)) ♦ Q{u)

Fig. 2. Graphical presentation of extreme losses simulation

The quantile function thus provides the natural way to simulate values for those 
distributions for which it is an explicit function of p. As we have seen it is possible 
to simulate the observations in upper tail without simulating the central values.
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On the Figure 2 we can see except simulated values of Q(u) also the quantiles 
of the order statistics Xpt2y .....X^I000̂ for probabilities p  = 0,5 (me

dian rankits), p  = 0,005 and p  = 0,995 . Quantiles for p  = 0,005 and p  = 0,995 
give the bounds which the 20 largest observations of 1000 Pareto distributed losses 
would exceed with probability only 0,01.
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SYMULACJA STRAT W UBEZPIECZENIACH Z ZASTOSOWANIEM 
FUNKCJI KWANTYLOWYCH ROZKŁADU PARETO

Streszczenie
Artykuł dotyczy zastosowania rozkładu Pareto w modelowaniu strat w ubezpieczeniach. Autorzy 

opisują właściwości tego rozkładu, szczególnie na potrzeby modelowania strat z zastosowaniem funk
cji kwantylowych. Rozważania teoretyczne są zilustrowane przykładem empirycznym z zakresu 
ubezpieczeń wypadkowych.
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