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1. Introduction

The conditions under which claims in non-life insurance are performed allow us
to consider the claim amounts to be samples from specific heavy-tailed probability
distributions.

Pareto distribution is often used as a model for insurance losses. This paper de-
scribes its very good properties for modelling of loss distribution using quantile
functions and simulations of the largest losses. Process of modelling and simulation
has been illustrated on the sample of observed claim size data in accident insur-
ance. We apply the process of modelling that was presented in our last year article
[Pacdkova 2004, pp. 91-99].

2. Pareto distribution of insurance losses

We will assume that individual claim amounts are drawn from a particular dis-
tribution, called a loss distribution. The aim is to describe the variation in claim
amounts by finding a loss distribution that adequately describes the claims that ac-
tually occur.

The simplest of the loss distributions is exponential distribution with cumula-
tive distribution function (CDF)

F(x)=1-e™, A>0.
The tail probability
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goes to zero exponentially in x. We would need a distribution with more weight in
the upper tail to correct this problem. We can slow the tail down by asking that the
tail go to zero as a power of x. For example we can set

P(X>x)=1—F(x)=(ﬂix)a,

which is the upper tail of the Pareto distribution that is often used as a model for
insurance losses when also a very large losses would be observed.
A random variable X has the Pareto distribution with parameters & and A if CDF is

l a
Fx)=1-|—— 1
(%) [ Fn x] (1
and probability density function
dF (x) al”
%)= = =, x>0, >0, 1>0. 2
/ dx (A+x)" l

The quantile function QF, denoted by Q(p), expresses p-quantile x, as
a function of p:

x, =Q(p) is the value of x for which p=P(X Sxp)=F(xp).

The definitions of the QF and the CDF can by written for any pairs of values
(x,p) as x=0(p) and p=F(x). These functions are thus simple inverses of
each other, provided that they are both continuous increasing functions. Thus we
can also write Q(p)=F"'(p).

When X has a Pareto distribution, from (1) we can find

o(p)=4.(-p)"* -4 3)

The basic statistics are

The Pareto distribution has two parameters & and A. The method of moments
of point estimation of parameters & and A is very easy to apply. We equate the
first two population and sample moments and we find

A _ ad’ )
=X ———=5".
a1 " (a-1)(a-2)
Eliminating 4 we obtain
25 5
a= andA=(@-1)x. 4
Ty andl=(a-1)% @
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The estimates obtained in this way will tend to have rather large standard errors,
because s’ has a very large variance. We will obtain estimates of & and A using
maximum likelihood method.

Let @ and A be the maximum likelihood estimates given data XXy X,
from the Pareto distribution P(@,4). From f(x;a,4)the likelihood is
L(a’ j’s x) = HL‘M,
i=l ( A+x, )
with In likelihood
l(a,A,x)= |:lna+aln/1 (@+1)In(A+x)]=

i=l

=nlne+nalnA-(a+1)) In(A+x,).

Setting i=0, aa—/l1=0 and solving them for & we find two expressions
o
fora:
Z": 1
d:* or &=&. (5)

n X n X
In| 1+% S -
Baley) L
We equate the two expressions for & and find that A satisfies f(1)=0, where

Z 1

A+x

Z Zln(1+ )

f= (6)

IMustrative example
We introduce the illustrative example of modelling losses by Pareto model. We
have observed sample of values of 91 individual claims from accident insurance

policies. Using »* goodness-of-fit test we will test of Hy: the data come from a
Pareto model Pa(ex,A).

We start by estimating of & and A parameters using the method of moments.
With help of the equations (4) the method of moments gives

@=2,617 and 1=73 163,76.

The method of moments does provide initial estimates for more efficient maxi-
mum likelihood method. Substituting the initial estimate 1=73 163,76 into non-
linear equation (6) and solving it with help of Solver function of table processor
Excel we find the maximum likelihood estimator A =37 277,81375. Substituting
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A into expressions (5) we find @ =1,739399006 in both cases. The value of &
may be surprising, since the population variance does not exist in this case because
of @<2. This simply says that the Pareto distribution selected by ML has very
heavy tail.

Table 1 contains the procedure of y*> goodness-of-fit test for Pareto models

with parameters chosen by two different methods. We will denote as O; observed
frequencies, as E; the expected frequencies under Pareto model with parameters
estimated by the method of moments and as E, the excepted frequencies under Pa-
reto model with parameters estimated by maximum likelihood method.

Table 1. Observed and fitted values for the Pareto model

Lower limit Upper Limit O; E; E,
at or below 19 000 46 40 40
19 000 37 000 17 19 17

37 000 55 000 9 10 9

55 000 91 000 8 10 8

91 000 160 000 6 7 6
above 160 000 5 5 5

91 1,197859 0,058203

Source: own calculations.
The #* statistic is computed as usual:

& (0, - E‘,')2
r= Z—E :
i=l i

w
o

frequences
&
S

I Pocet poistnych plneni
—0—Pa(2,61;73163)
~—O—Pa(1,74;37277)

w
o
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Fig. 1. Pareto loss distributions
We find y* =1,1978 for method of moments and y* =0,582 for ML method
of parameters estimation. To compare computed values of »’ with quantile

,(3_99._3 =11,3449 , we can see the both of Pareto models give a good fit, although, as
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expected, the ML fit is better as assessed by the »° value. The improvement in fit
is evident also from Fig. 1.

3. The quantile models of the order statistics

We denoted a set of ordered sampling data of losses by
X(y> X2y +s Xrys =05 Xnotys Xy -

The corresponding random variables being denotes by

X X oy oos X pyoooms Xpuyp Xy

Thus X (n) for example is the random variable representing the largest observa-
tion of the sample of n. The n random variables are referred to as the n order statis-
tics. These statistics play a major role in modeling with quantile-defined distribu-

tions.
Consider first the distribution of the largest observations X, with CDF de-

noted by F, (x) = p,,, . The probability

Fi (%)= P()‘P(X x)

is also probability that all n independent observations on X are less than or equal to

this value, x, which for each one is p. By the multiplication law of probability

Py =P" s0 p=p; and F(x)=p[}.

Inverting the F(x) to get the quantile function, we have

— \/n
0w (P)=2(P05)- ™
If X has a Pareto distribution with CDF (1) then the quantile function of the lar-

gest observation is
Va

Q. (P)=A(1-p") " -2 ®

-l/a

The distribution will have a median value of @, (0,5)=4(1-0,5"") "~ - 4.
For the general r-th order statistic X, we explain in [Pacikova 2004, pp. 91-

99] the order statistics distribution rule:

If a sample of n observations from a distribution with quantile function Q(p) is
ordered, then the quantile function of the distribution of the r-zh order statistic is
given by

0, ()= Q(BETAINV (py.rin—r +1)). ©)
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INVBETA(.) is a standard function in packages such as Excel. Thus, the quan-

tiles of the order statistics can be evaluated directly from the distribution Q(p) of

the data.
A particularly useful application of this result lies in evaluating the medians of

the distributions of ordered data. Thus, the median M, of the distribution of the
r-th ordered data is M, =Q(INVBETA(0,5,r,n~r+1)). This we will term the
median rankit. A plot of X,y versus M, will give a straight line through the origin

for a correct and well-fitted model. This plot can form the basis of model validation.

4. Demonstration of the simulation of the largest observations

Table 2 contain the results of simulation of the 20 largest observations in sam-
ple of 1000 Pareto distributed losses with quantile function (3) step by step by our
last year article [Pacdkova 2004].

Table 2. Simulation of 20 the largest from 1000 losses

v n l/n v u Qu)
0,135493|1000(0,0010000{0,9980032|0,9980032{1291697,514
0,331321| 999(0,0010010|0,9988948/0,9969002| 994804,452
0,253843| 998|0,0010020]0,9986272|0,9955316] 799110,676
0,993465| 997(0,0010030|0,9999934|0,9955251| 798406,978
0,180922| 996/0,0010040(0,9982849|0,9938177| 656697,334
0,997123| 995(0,0010050/0,9999971|0,9938148| 656511,689
0,855881| 994/0,0010060/0,99984340,9936592| 646673,091
0,919813[ 993|0,0010070{0,9999158(0,9935756| 641539,780
0,943984| 992(0,0010081|0,9999419|0,9935178] 638057,160
0,761040] 991{0,0010091(0,9997245(0,9932441| 622188,114
0,865165| 990/0,0010101/0,9998537(0,9930988| 614169,640
0,561498( 989(0,0010111{0,9994166(0,9925194| 584666,674
0,436941( 988/0,00101210,9991623(0,9916880| 548102,839
0,068052| 987|0,0010132)0,9972808/0,9889915| 460784,822
0,198585]| 986|0,0010142]0,9983619(0,9873713( 422982371
0,905523] 985(0,0010152)|0,9998993|0,9872719| 420910,870
0,130303| 984|0,0010163|0,9979311|0,9852293| 383336,723
0,624701| 983|0,0010173]0,9995215]0,9847579| 375807,461
0,648640( 982]0,0010183]0,999559310,9843239| 369193,331
0,554228( 981]0,0010194{0,9993986{0,9837319| 360622,519

Source: own calculations.

Column denoted by v contains 20 values v;, generated from uniform distribu-
tion under interval(0;1) not ordered in any way. Column u includes values of

transformed variables
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—y¥n
Uiny =V

1
Uiy = (Voo )t Uy
1

u(n-z) = (vn—Z )’l-2 . u(n—l) 4

where the v;,, i=n,n-1,n-2,..., are generated values from the column v. The
values U form an ordering sequence from a uniform distribution.

The order statistics for the largest observations on X in column denoted by Q(«)
are then simulated using the uniform transformation rule and Pareto quantile func-
tion (3) with maximum likelihood estimated parameters &= 1,739399006 and

A =37277, 81375 as
Xy =ty )-
Xa-1) = Q(“(,.-n) )’

Y02y =@ (o))

|® QUBETAINV(0,5)) * Q(BETAINV(0,995)) & Q(BETAINV(0,005)) * O(u)|
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Fig. 2. Graphical presentation of extreme losses sirnulation
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The quantile function thus provides the natural way to simulate values for those
distributions for which it is an explicit function of p. As we have seen it is possible
to simulate the observations in upper tail without simulating the central values.
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On the Figure 2 we can see except simulated values of Q(x) also the quantiles
of the order statistics X (981)* X (082)7 -+ X (909)* X (1000) for probabilities p=0,5 (me-

dian rankits), p=0,005 and p=0,995. Quantiles for p=0,005 and p=0,995

give the bounds which the 20 largest observations of 1000 Pareto distributed losses
would exceed with probability only 0,01.
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SYMULACJA STRAT W UBEZPIECZENIACH Z ZASTOSOWANIEM
FUNKCJI KWANTYLOWYCH ROZKEADU PARETO

Streszczenie

Artykut dotyczy zastosowania rozktadu Pareto w modelowaniu strat w ubezpieczeniach. Autorzy
opisuja wlasciwosci tego rozktadu, szczegélnie na potrzeby modelowania strat z zastosowaniem funk-
cji kwantylowych. Rozwazania teoretyczne sa zilustrowane przykladem empirycznym z zakresu
ubezpieczen wypadkowych.
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