POLITECHNIKA WROCŻAWSKA KATEDRA TEORII MASZYN CIEPLNYCH

Mgr inż. Eugeniusz Kalinowski

DOPUSZCZALNA SZYBKOSC STUDZENIA CIAŁ KRUCHYCH NA PRZYKŁADZIE KRUCHEGO SZKŁĄ PRZEZROCZYSTEGO

> Prasa dekterska Fremeter

Prof. mgr ind. Wikter Widniewski

Cz

S	D	i	S	r	Z	e	C	z	y
_				Contraction of the second s					

		s	sr.
I.	STI	RESZCZENIE	5
II.	WS	rep	7
III.	ROZ	ZWA ŻANIA TEORETYCZNE	9
	A.	ROWNANIE ROŹNICZKOWE PRZEWODZENIA CIEPŁA	9
	в.	STAN NAPREŻENIA I ODKSZTAŁCENIA 1	1
		1. Równania podstawowe	1
		2. Pole temperaturowe nie wywołujące stanu naprężenia	1
		3. Autora uogólnienie modelu oblicze- niowego stanu naprężeń termicznych 1	5
	с.	HIPOTEZA WYTRZYMAŁOSCIOWA	5
	D.	OKRESLENIE SZYBKOSCI STUDZENIA	5
		1. Krytyczna szybkość studzenia 20	5
		2. Dopuszczalna szybkość studzenia 20	5
		2.1. Stopień bezpieczeństwa	5
	E.	METODA WYKRESLNO-OBLICZENIOWA	
		OKRESLANIA NAPREŻEN TERMICZNYCH 28	3.
		1. Wykreślna metoda określania pola temperaturowego	3
		2. Autora wykreślno-obliczeniowa metoda wyznaczenia naprężeń termicznych	
TV.	BAT	DANTA DOSUTADOZATINE	•
1.4.			3
	A.	PRZEDMIOT BADAN	3
		i, kruchy	1
		2. Wzrost haprężeń trwałych w szkle	
		and a state of waryou w SZELE	41

2

в.	URZADZINIE BADAWCZE	43
	1. Urządzenie badawcze podstawowe	43
	 Stoisko do pomiaru doraźnej wy- trzymałości na rozerwanie i wy- dłużalności mechanicznej szkła 	46
	2.1. Stoisko badawcze oparte na rozciąganiu próbki	46
	2.2. Stoisko badawcze oparte na zginaniu próbki	47
	3. Urządzenie do pomiaru współ- czynnika wydłużalności linio- wej ciął w zależności od tem- peratury	48
c.	WYNIKI BADAN	49
	1. Wyniki badań wytrzymałościo- wych	49
	2. Wyniki badań rozszerzalności termicznej szkła	50
	3. Wyniki badań przebiegu stu- dzenia	52
D.	OBLICZENIA	53
	1. Obliczenie naprężenia rozry- wającego G, oraz niektórych wartości współczynnika sprę- żystości podłużnej E z wyników pomiarów na rozrywarce	53
	2. Obliczenie naprężenia rozry- wającego 6, oraz współczyn- nika sprężystości podłużnej E, z wyników badań na zginarce	54
	 Obliczenie współczynnika rozszerzalności liniowej 	04
	 4. Obliczenie średniej tempe- ratury próbki przed studze- niem na urządzeniu podstawo- wym i średnich temperatur 	56
	Zimnych Koncow stosów termopar	59

			str.	
	5. Obliczenie gęstości substancjalnej 2. NkG/m ³ · · · · · · · · · · · · · · · · · · ·	•	65	
	6. Obliczenie kontrolne pomierzonych przebiegów temperatur na oscylogra- fie pętlicowym		66	
	7. Obliczenie odstępów czasu 42 zgodnie z metodą Schmidta-Bindera		69	
	 8. Obliczenie spadków temperatur studzo- nej próbki szkła w okresie podstawowym △☆ °C,oraz całkowitych spadków tempe- ratury△√ °C w tym okresie 	•	71	
	9. Wykreślne wyznaczenie rozkładów tempe- ratury i naprężeń 6 w badanej próbce szkła podczas studzenia oraz oblicze- nie wydłużeń pochodzących od tych na- prężeń		71	
,	10. Wyznaczenie wykreślno-analityczne mo- mentów gnących pochodzących od sił ter- micznych,oraz określ.wydłużeń spowodo- wanych tymi momentami		71	
	11. Określenie krytycznego rozkładu temper ratur przez określenie różnicy tempera- tur na skraju badanej próbki		71	
	E. OBLICZENIE BŁĘDOW W OKREŚLENIU NIEKTÓRYCH			
1.4	WIELKOSCI POMIARÓW	•	72	
	l. Obliczenie rozbieżności średniej aryt- metycznej wyników pomiarów 6 r i E		72	
	2. Obliczenie błędu z jakim określono współ- czynnik wydłużalności przy rozerwaniu Z r	•	. 72	
	3. Obliczenie błędu Sr pomiaru śred- niego współ.wydłużalności termicznej .	•	73	
	 Orientacyjna ocena opóźnienia pomia- ru stosem dolnym temper.studzonej po- wierzchni szkła,która wynika z pojem- ności cieplnej termopary 		. 74	
	5. Orientacyjne określenie błędu pomia- ru temperatury stosem górnym	•	. 76	
	F. WYNIKI BADAN KONTROLNYCH		. 80	
٧.	WNIOSKI KONCOWE		. 81	
VI.	WYKAZ LITERATURY I WAŻNIEJSZYCH WZORÓW	•	. 86-88	3
VII.	TABELE I RYSUNKI (nieumieszczone w tekście) ZAŁĄCZNIK I	•	. 89-16	2
VIII.	WYNIKI CECHOWANIA PRZYRZADOW (ZAŁACZNIK II).		163-18	0

4 -

I. STRESZCZENIE

Celem niniejszej pracy jest okreśkenie dopuszczalnej szybkości studzenia ciał krnchych, co ma znaczenie dla wielu procesów technologicznych w przemyśle (np.szklarskim, ceramicznym, hutniczym).

Dopuszczalną szybkość studzenia określano jako taką, która nie doprowadza do dekohezji cząstek materiału.

Wprowadzono pojęcie przestrzennego modelu obliczeniowego dla naprężeń termicznych,^{x)} który charakteryzuje się tym, że naprężenia wyliczone dla tego modelu nie będą mniejsze od rzeczywiście występujących, a w niektórych wypadkach ściśle im odpowiadają.

Jako hipotezę wytrzymałościową przyjęto hipotezę de Saint Venanta jako tę, która jest w pełni do przyjęcia w przypadku ciał kruchych.

Wprowadzono pojęcia stopnia bezpieczeństwa i współczynnika bezpieczeństwa dla naprężeń termicznych i podano sposób ich oblicz enia lub przyjęcia.

Do określenia naprężeń termicznych w przypadku jednoosiowego nieustalonego przewodzenia ciepła, oraz dla niektórych innych przypadków wykorzystano w celu wytworzenia rozkładu temperatur wykreślną metodę Schmidta.

Celem sprawdzenia wyników rozważań przeprowadzono badania doświadczalne na szkle, w czasie których przekraczano dopuszczalną szybkość studzenia. Objawia się to pęknięciami.

x) W niniejszej pracy omawia się w zasadzie tylko naprężenia termiczne.

- 5 -

Pęknięcia te fotografowano kamerą filmową, zaś przebieg temperatur wewnątrz studzonego obiektu wykreślano na podstawie temperatur powierzchni zmierzonych w czasie studzenia. Temperaturę powierzchni studzonego szkła badano odpowiednio skonstru owanymi stosami termopar.

Badano także własności mechaniczne i termiczne szkła, a w szczególności doraźną wytrzymałość na rozerwanie i wydłużalność. Otrzymane wyniki badań są podane w formie tabel i wykresów.

Przeprowadzono dyskusję błędów pomiarowych.

Podano wskazówki stosowania otrzymanych wyników w praktyce.

II. WSTEP

W zagadnieniach przemysłowych często nie chodzi o wielkość naprężeń termicznych jako takich, lecz o to, czy naprężenia te nie spowodują zniszczenia materiału przez powstałe pęknięcią.

Z zagadnieniami tego typu spotykamy się przy produkcji szkieł, studzeniu ścian pieców przemysłowych itp.

Przez naprężenia termiczne rozumie się naprężenia wywołane ceteris paribus zmianami pola temperatury ciąłą.

W pracy niniejszej omawia się ciała kruche a więc takie, które między innymi charakteryzują się tym, że doraźna wytrzymałość na rozerwanie jest dla nich kilkakrotnie mniejsza niż na jednoosiowe ściskanie. Tak więc studzenie ciała kruchego, jako wywołujące głównie wydłużenia dodatnie jest procesem niebezpieczniejszym niż grzanie. Z tego względu zajmuję się w tym opracowaniu "dopuszczalną szybkością studzenia ciał kruchych". Oczywiście w przypadku grzania można użyć tej samej metody badania, trzeba tylko sprawdzić, czy występujące wtedy wydłużenia (ujemne) nie przekraczają dopuszczalnych.

Jako modelu ciąła kruchego używa się szkła przeźroczystego, produkowanego na bazie krzemianów. Szkła te odznaczają się niemal doskonąłą kruchością w temperaturach poniżej 400°C. Przeźroczystość ich pozwala na obserwowanie powstających pęknięć w czasie studzenia. Szkło jest kruche tylko przy temperaturach mniejszych od temperatury granicznej (T_g), którą przyjmuje się jako odpowiadającą lepkości $n = 10^{13}$ p.

Podczas produkcji szkło przechodzi w tunelu odprężającym od stanu płynnego do stałego. Dzieje się to w zakresach tempe-

- 7 -

ratur od ok.1000[°]C do temp. otoczenia. Chcąc więc wykorzystać uzyskane wyniki przy produkcji szkieł można to uczynić dla tej części tunelu, gdzie występują temperatury poniżej 400[°]C. Przyspieszenia produkcji można dokonać w ten sposób, że stosując największą dopuszczalną szybkość studzenia skróci się w tunelu obszar niskich temperatur, przez co dla temperatur wysokich wygospodaruje się dodatkową długość tunelu. Rejon wysokich temperatur odgrywa ważną rolę w produkcji szkła, gdyż w nim powstają naprężenia trwałe. Przez wydłużenie tej części tunelu uzyskamy to, że przy odpowiednio źwiększonej szybkości posuwu taśmy szklanej, szkło nie będzie miało naprężeń trwałych większych aniżeli przed przyspieszeniem biegu taśmy, a więc jego jakość nie ulegnie pogorszeniu, natomiast ilość produktu na jednostkę czasu wzrośnie.

Zastosowanie dopuszczalnej szybkości studzenia ścian pieców przemysłowych pozwoli na skrócenie czasu postoju tych urządzeń, koniecznego do bieżących napraw i remontów. Na skutek skrócenia czasu postoju można zintensyfikować proces produkcyjny.

III. ROZWAŻANIA TEORETYCZNE

A. Równanie różniczkowe przewodzenia ciepła.

1. Równanie podstawowe.

Z teorii przewodnictwa ciepła można wywieść równanie różniczkowe podające związek między temperaturą w dowolnym punkcie ciała jednorodnego izotropowego w danej chwili , a położeniem tego punktu w układzie prostokątnym o współrzędnych x, y, z.

Równanie to ma postać:

$$\frac{\partial v}{\partial t} = a \nabla v^2 + \frac{q_w^*}{cg} \tag{1}$$

i jest znane pod nazwą równania Fouriera-Kirchhoffa, gdzie √² jest operatorem różniczkowym Laplace'a

$$\nabla_{v}^{2} = \frac{\partial_{v}^{2} f}{\partial x^{2}} + \frac{\partial_{v}^{2} f}{\partial y^{2}} + \frac{\partial_{v}^{2} f}{\partial z^{2}}$$
(2)

a - współczynnik przewodzenia temperatury, wyrażający się wzorem:

$$a = \frac{\partial}{c_p g}$$
(3)

 λ - współczynnik, przewodzenia ciepła kcal/m²h 1°

 β - gęstość substancjalna NkG/m³

q_w- natężenie wydzielania ciepła z wewnętrznych źródeł energii kcal/m³h

W przypadku ustalonej wymiany ciepła (tj.jeśli pole temperaturowe jest ustalone) otrzymujemy z (l) równanie różniczkowe Poissona

$$\mathbf{z} \nabla_{v}^{2} + \frac{\mathbf{q}_{w}^{*}}{g \mathbf{c}_{p}} = 0 \tag{4}$$

względnie przy braku wewnętrznych źródeł energii i ustalonym polu temperaturowym, równanie Laplace'a

$$\nabla_{2}^{2} r = 0 \tag{5}$$

2. Warunek początkowy i przestrzenne warunki brzegowe

2.1. Rozwiązanie równania (1) prowadzi do znalezienia funkcji

$$\mathcal{N} = \mathcal{N}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathcal{Z}) \tag{6}$$

Znacznemu uproszczeniu ulega określenie pola temperaturowego, jeśli temperatura zależy tylko od jednej lub dwu zmiennych niezależnych położenia tj. gdy

$$\sqrt{\frac{2}{2}} \sqrt{(x,2)} lub \sqrt{\frac{2}{2}} \sqrt{(x,y,2)}$$
 (7)

Znany jest szereg rozwiązań całkowych równania różniczkowego (1), a o doborze właściwego decydują warunki brzegowe.

2.2. Warunek początkowy określa pole temperaturowe

w jakiejś konkretnej chwili poczatkowej

$$\lambda = \mathcal{N}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{z}_{0})
 \tag{8}$$

0

(9)

2.3. Przestrzenny warunek brzegowy uwzględnia sposób oddziaływania ośrodka na powierzchnię rozpatrywanego ciała w chwili dowolnej 272 Rozróżniamy w zasadzie 3 przestrzenne warunki brzegowe.

2.3.1. Dana jest temperatura powierzchni ciała w każdym miejscu i chwili $\mathcal{V} = \mathcal{V}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathcal{E})$

$$q_{\lambda S}^{*} = -\lambda \left(\frac{\partial v}{\partial n}\right)_{S} = q_{\lambda S}^{*}(x, y, z, \mathcal{C})$$
(10)

co prowadzi przy > = const do równania

- 11 -

$$\left(\frac{\partial \sqrt{2}}{\partial n}\right)_{s} = \operatorname{grad}_{n} \sqrt{s}(x, y, z, 2)$$
 (11)

czyli podaje zależność gradientu temperaturowego, o kierunku normalnym do powierzchni zewnętrznej, od miejsca i cząsu.

2.3.3. Na powierzchni ciąła zachodzi wymianą ciepła, przyczym z równości ciepła przewodzonego przez powierzchnię zewnętrzną z ciepłem przejmowanym przez otoczenie wynika warunek

$$\frac{\partial n}{\partial n} = -\frac{\chi}{\lambda} \Theta \tag{12}$$

gdzie O wyraża różnicę między temperaturą powierzchni ciała, a temperaturą otóczenia tej powierzchni

$$\Theta = v_{s}^{c} - t_{o}$$
(13)

a \mathcal{X} - współczynnik przejmowania ciepła kcal/m²h 1[°] Budowę funkcji $\mathcal{N} = \mathcal{N}(x, y, z, \mathcal{X})$ narzucają w konkretnym przypadku operacje związane ze znalezieniem stałych całkowania. Operacje te są naogół skomplikowane, a często nastręczają trudności matematyczne nie do pokonania.

B. Stam naprężenia i odkształcenia

1. Równania podstawowe

Na poniższym schemacie widzimy sposób oznaczenia naprężeń normalnych i stycznych 6

Bkładowe odkształcenia oznaczam podobnie przez \mathcal{E}_{ik}

Z warunków równowagi przy zaniechaniu tzw. sił masowych, można napisać równźanie

$$\sum_{k} \frac{\partial 6_{ik}}{\partial k} = 0 \quad (\text{przy } i, k = x, y, z) \quad (14)$$

(Siły masowe można obliczyć oddzielnie, a więc w przypadku gdy się ich nie pomija, należy dodać je wektorowo do pozostałych sił wewnętrznych).

Dla odkształceń otrzymuje się zależność

$$2\mathcal{E}_{i,k} = 2\mathcal{E}_{k,i} = \frac{\partial u_k}{\partial i} + \frac{\partial u_i}{\partial k} (\text{przy } i, k = x, y, z) \quad (15)^{\textcircled{2}}$$

gdzie u_i - oznacza przesunięcie wzdłuż osi i. Składowe odkształcenia są powiązane sześcioma zależnościami różniczkowymi, zwanymi związkami wewnętrznej zwartości, które można zapisać

$$\frac{\partial \mathcal{E}_{i,j}}{\partial k \partial l} + \frac{\partial \mathcal{E}_{k,l}}{\partial i \partial j} - \frac{\partial \mathcal{E}_{j,l}}{\partial i \partial k} - \frac{\partial \mathcal{E}_{j,k}}{\partial j \partial l} = 0 \text{ (przy } i,k,j,l=x,y,z) \text{ (16)}$$

Składowe odkształcenia są liniowymi funkcjami naprężeń. Przyjmując składowe odkształcenia początkowego równe zeru, możemy napisać

$$\mathcal{E}_{i,k} = \frac{1}{2G} \left(\frac{6}{i,k} - \frac{4}{1 + 4} s \frac{1}{i,k} \right)$$
(17)

gdzie s jest sumą naprężeń normalnych

$$\mathbf{s} = \mathbf{\hat{b}}_{\mathbf{x}\mathbf{x}} + \mathbf{\hat{b}}_{\mathbf{y}\mathbf{y}} + \mathbf{\hat{b}}_{\mathbf{z}\mathbf{z}}$$
(18)

i,k - jest symbolem Kroneckera
 M - współczynnikiem Poissona

G - modułem odkształcenia postaciowego Jeśli temperatura ciąła zmieniła się od pewnej temperatury początkowej $\sqrt{}$ do temperatury $\sqrt{}$, to każdy element dłu-

gości ciąła dl przyjmie nową długość dl

$$al_{1} = \left[1 + \beta(\sqrt{-\sqrt{-1}})\right]al$$
(19)

gdzie β - współczynnik rozszerząlności liniowej, o jednostce $\frac{1}{10}$.

Zakładając temperaturę początkową ciała 7 o = 0 otrzymamy, że każdy element długości dl przyjmie nową długość

$$dl_1 = (1 + \beta \sqrt{}) dl$$
 (20)

Oczywiście temperatura ciała w każdym punkcie może być inna, lecz zakładając malejący przedział d l, stwierdzamy, że różnice temperatur w tym przedziale dążą do zera, i dla składowych odkształceń wywołanych tylko działaniem temperatury otrzymamy

 $\mathcal{E}_{xx} = \mathcal{E}_{yy} = \mathcal{E}_{zz} = \beta n \lambda$ $\mathcal{E}_{xy} = \mathcal{E}_{yz} = \mathcal{E}_{zx} = 0$

(21) 4

Wydłużenia termiczne spowodują w ogólnym przypadku powstanie w ciele t.zw. "naprężeń termicznych", zwanych poprawnie "naprężeniami temperaturowymi".

Przez uwzględnienie wydłużeń termicznych (temperaturowych) równania określające stan naprężenia i odkształcenia ulegną pewnym zmianom - przyjmując następującą postać

$$\mathcal{E}_{i,k} = \frac{1}{2G} (\vec{b}_{i,k} - \frac{k}{1+k} s o'_{i,k}) + \beta N \vec{b}_{i,k} (22)^{(5)}$$

lub

$$G_{i,k} = 2G(\mathcal{E}_{i,k} + \frac{k}{1+k} \cdot \frac{s}{2G} \cdot \frac{s}{i,k} - \beta n \cdot \frac{s}{i,k}) \quad (23)$$

Oznaczając przez e sumę wydłużeń normalnych

 $e = \mathcal{E}_{xx} + \mathcal{E}_{yy} + \mathcal{E}_{zz}$ (24)

można wykazać, że

$$\frac{k}{1+k} \cdot \frac{s}{2G} = (e - 3\beta n^{2}) \frac{k}{1-2k}$$
(25)

a po wstawieniu do równania (23), daje

$$G_{i,k} = 2G(\mathcal{E}_{i,k} + \frac{\mathcal{H}}{1-2\mathcal{H}} \circ \mathcal{O}_{i,k} - \frac{1+\mathcal{H}}{1-2\mathcal{H}}) \qquad (26)$$

2. Pola temperaturowe nie wywołujące stanu naprężeń termicznych.

Przyjmujemy, że odkształcenia są wywołane tylko działaniem temperatury. Wtedy zespół równań (22) da równania (21).

Wykorzystując te zależności do zespołu równań wewnętrznej zwartości (16), przyjmując = const otrzymamy układ równań;

których jedynym rozwiązaniem jest równanie całkowe 1 stopnia o czterech zmiennych:

 $\sqrt{=} a_0 + a_1 \mathbf{X} + a_2 \mathbf{y} + a_3^{\mathbf{z}}$ (28)

Jeżeli na ciąło jednorodne i izotropowe nie dziąłają siły zewnętrzne lub wewnętrzne pochodzenia nietermicznego, a rozkład temperatur w ciele jest liniowy (tj.zgodny z równaniem 28), to przy współczynniku rozszerzalności liniowej 3 = const ciąło jest pozbawione naprężeń.

Oczywiście ciąło to ulegnie odkształceniu. Jeżeli pole temperaturowe jest tautotermiczne $\sqrt{2} = \sqrt{2}$, to ciąło po odkształceniu zachowa podobieństwo geometryczne.

3. Autora uogólnienie modelu obliczeniowego stanu naprę-

żeń termicznych

3.1. Stan naprężeń trójosiowy (przestrzenny)

Załóżmy, że na jednorodne izotropowe ciało poddane działaniom termicznym działają poza tym jedynie siły zewnętrzne będące wynikiem reakcji na naprężenia termiczne. Wtedy naprężenia będą zależeć m.in. od sposobu utwierdzenia ciała.

Rozważny ciało sztywnie utwierdzone i poddane działaniu pola temperaturowego, wtedy

$$\begin{aligned} \mathcal{E}_{\mathbf{x}\mathbf{x}} &= \mathcal{E}_{\mathbf{y}\mathbf{y}} = \mathcal{E}_{\mathbf{z}\mathbf{z}} = \mathbf{0} \quad \mathbf{i} \quad \mathbf{e} = \sum_{k} \mathcal{E}_{\mathbf{i},k} \mathcal{I}_{\mathbf{i},k} = \mathbf{0} \\ \mathcal{E}_{\mathbf{x}\mathbf{y}} = \mathcal{E}_{\mathbf{x}\mathbf{z}} = \mathcal{E}_{\mathbf{y}\mathbf{z}} = \mathbf{0} \end{aligned}$$
(29)

Wstawiając warunki (29) do równania (26) otrzymamy

$$\tilde{G}_{i,k} = -2G \frac{1+k}{1-2k} \beta V \tilde{J}_{ik}$$
 (29)

czyli po rozpisaniu

Znak minus akcentuje to, że spadek temperatury wywołuje naprężenia rozciągające, czyli dodatnie.

Załóżmy, że utwierdzenie ciąła zostaje usunięte, wtedy doznaje ono odkaztałceń wywołanych składowymi sił i momentów pochodzących od naprężeń termicznych wyliczonych w równaniu (30). Składowe siły działające w kierunkach osi x,y,z, wynoszą

$$P_{xx} = -\iint_{S} \int_{yz} \int_{xx} \int_{yy} \int_{yy} \int_{xz} \int_{xz} \int_{xy} \int_{xz} \int_{xy} \int_{xy} \int_{xz} \int_{xy} \int_{xy$$

Siły te w pewnym oddaleniu w głąb od powierzchni ciała wywołują równomierne naprężenia normalne

$$\vec{b}_{xx} = \vec{c}_{yz} \qquad \vec{b}_{yy} = \vec{c}_{xz} \qquad \vec{b}_{zz} = \vec{c}_{zz} \qquad (32)$$

Po podstawieniu równamí (30)(31) do równania (32) otrzymuje się

$$G_{xx} = \frac{1}{S_{yz}} \int_{yz}^{y} 2G \frac{1+4}{1-24} \beta \sqrt{(xyz)} \frac{dydz}{dydz}$$
(33)

- 16 -

Wykorzystując zależność

$$E = 2G(1 + 4)$$
 (34)

gdzie Ejest modułem sp**rę**żystości podłużnej t.zw. modułem Yunga, możemy napis**a**ć

$$\overline{\widetilde{G}}_{xx} = \frac{1}{S_{yz}} \int_{yz} \frac{E\beta}{1-2\beta} \sqrt{(xyz)} dy dz = \frac{E\beta}{S_{yz}(1-2\beta)} \int_{yz} \sqrt{(xyzt)} dy dz$$

$$\overline{\widetilde{G}}_{yz} = \frac{E\beta}{S_{xz}(1-2)} \int_{xz} \sqrt{(xyzt)} dy dz$$

$$\overline{\widetilde{G}}_{zz} = \frac{E\beta}{S_{xy}(1-2\beta)} \int_{yz} \sqrt{(xyzt)} dx dy$$
(35)

Jeśli pole temperaturowe nie jest symetryczne, to ciało ulegnie ugięciu na skutek działania momentu zginającego sił termicznych.

Moment zginający wywoła składowe naprężeń normalnych w myśl ogólnego wzoru

$$\widetilde{G}_{zg} = \frac{M_{zg} \cdot 1}{I_1}$$
(36)

gdzie M _ moment zginający sił

I - moment bezwładności przekroju zginania

1 - odcinek określający położenie rozważanego punktu względem warstwy obojętnej zginania.(dodatni lub

ujemny)

Składowe naprężeń normalnych wywołanych momentem gnącym oznaczam przez \vec{b}_{xx} , \vec{b}_{yy} , \vec{b}_{zz} ; tak więc

Naprężenie całkowite w kierunku poszczególnych osi jest równe sumie naprężeń składowych

$$G_{ii} = \widetilde{G}_{ii} + \widetilde{\widetilde{G}}_{ii} + \widetilde{\widetilde{G}}_{ii} \quad (i = x, y, z) \quad (38)$$

Składowe naprężeń normalnych należy obliczyć z równań (30), (35),(37).

Jak widać z tych równań $\overline{\widetilde{G}}_{ii}$ oraz $\overline{\widetilde{G}}_{ii}$ mają znak przeciwny niż $\overline{\widetilde{G}}_{ii}$, czyli, że naprężenia wynikłe z odkształweń wywołanych naprężeniami termicznymi $\overline{\widetilde{G}}_{ii}$, zmniejszają wielkość naprężeń całkowitych $\overline{\widetilde{G}}_{ii}$.

Jeżeli ciało poddane jest polu temperaturowemu symetrycznemu znika ostatni człon ($\overline{\overline{\mathfrak{G}}}_{ii}$) w równaniu (38). Człon ten znika także jeśli pole temperaturowe nie jest symetryczne, ale z warunków mocowania wynika niemożność ugięcia, mimo dziąłania momentów gnących. (Wtedy siły działające na ciało są wynikiem jedynie reakcji mocowania na działanie sił termicznych). Jeśli ciało jest sztywnie utwierdzone znika drugi ($\overline{\mathfrak{S}}_{ii}$) oraz trzeci ($\overline{\mathfrak{S}}_{ii}$) człon równania (38). Pozostają tylko naprężenia określone pierwszym członem ($\overline{\mathfrak{G}}_{ii}$) zgodnie z równaniem(30 Przeprowadzone rozumowanie jest pewnym uproszczeniem zagadnienia, gdyż zakłada, że

- odkształcenie siłami składowymi P_{ii} nie powoduje odkształceń powierzchni prostopadłych do P_{ii}, które nadal pozostają prostopadłe do kierunku naprężeń 6 ii (co jest tym słuszniejsze, im głębiej od powierzchni zewnętrznej leży dana płaszczyzna),
- ugięcie momentem sił termicznych jest ugięciem czystym,
 to znaczy, że włókna uginają się po promieniu r,

przyczym s jest długością włókna, a 9 kątem naghylenia płaszczyzn prostopadłych do włókien.

Przypadek omówiony powyżej (swobodnego odkształcenia wywołanego naprężeniami termicznymi), zajdzie w praktyce (także na powierzchniach skrajnych i leżących blisko powierzchni zewnętrznych) w przypadku liniowego rozkładu temperatur, jak to poniżej okażemy. Wtedy naprężenie całkowite

$$\overline{G}_{ii} = \overline{G}_{ii} + \overline{\overline{G}}_{ii} + \overline{\overline{G}}_{ii} = 0 \qquad (40)$$

zgodnie z rozważaniami zawartymi w części B2 o stanie beznąprężeniowym.

Jest jednak rzeczą oczywistą, że dodatkowe ugięcia **b** odkształcenia występujące oprócz omówionych, a wywołane polem temperaturowym spowodują zmniejszenie naprężeń całkowitych, (wywołają naprężenia przeciwnego znaku, niż naprężenia powodujące ugięcie). Ugięcia te zajdą głównie w pobliżu powierzchni zewnętrznych. Można więc stwierdzić, że naprężenia rzeczywiste będą zawsze mniejsze od wyliczonych dla modelu uproszczonego.

A oto dowód, że uproszczony model ugięcia swobodnego w ogólnym przypadku odkształceń termicznych przedstawia stan faktyczny zachodzący przy liniowym rozkładzie temperatum (t.zn. nie jest wtedy modelem uproszczonym). Do przeprowadzenia tego dowodu wystarczy dowieść, że suma naprężeń normalnych wyliczonych z równań (30),(35),(37) jest równa zeru, (zgodnie z równaniem (40), gdy rozkład temperatur jest liniowy. Dla uproszczenia obliczeń załóżmy układ odniesienia x,y,z, w środku ciężkości rozważanego ciała zgodnie z jego głównymi osiami bezwładności. Rozkład temperatur będzie określony równaniem

$$\sqrt{\frac{1}{2}} c_{0} + c_{1} x + c_{2} y + c_{3} z \qquad (41)$$

wprowadźmy oznaczenie

$$c' = c + c_x \qquad (42)$$

Przy całkowaniu podług y i z wielkość c'można traktować jak stałą. Sumowanie naprężeń normalnych musi dać w każdej chwili wartość zero, a więc \mathcal{G}_{xx} nie można rozpatrywać jako zależne od czasu \mathcal{C} .

$$\overline{\overline{G}}_{XX} = -\frac{E}{1-2\mu} \beta \sqrt{(Xyzt)} = -\frac{E}{1-2\mu} \beta \sqrt{(Xyz)}$$
(43)

$$\overline{\widetilde{G}}_{xx} = \frac{\overline{\mathcal{E}} \overline{\mathcal{B}}}{S_{yz}(1-2)} \int \int \sqrt{(xyz)} dy dz$$
(44)

$$\vec{\tilde{G}}_{xx} = \frac{z \mathcal{E} \beta}{\mathbf{I}_{zy}(1-2\ell)} \int_{\mathbf{S}_{yz}} z \, v_{(xyz)}^{\ell} dy dz + \frac{y \mathcal{E} \beta}{\mathbf{I}_{yz}(1-2)} \iint_{\mathbf{y} v_{(xyz)}} dy dz$$

 $\int_{S} y dy dz = \int_{Z} z(y) y dy = 0 \quad (Moment statyczny wzgl.z) \quad (47)$

b(z)

$$\iint z \, dy \, dz = \int z \, y(z) \, dz = 0 \quad (Moment stat.wzgl.osi y) \quad (48)$$
S
$$g(z)$$
yz

$$\vec{b}_{xx} = \frac{E}{1-2k} \cdot \vec{c}$$
 (49)

$$h_{1} = \frac{z E \beta}{I_{zy}(1-2)} \iint_{Syz} \sqrt{(xyz)} dy dz = \frac{E \beta}{I_{zy}(1-2)} \int_{Syz} \sqrt{(c'+c_{y}y+c_{z}z)} dy dz$$
(50)

$$h_{1} = \frac{\mathcal{E}\mathcal{B}}{I_{zy}(1-2)} z \int \int z c' dy dz + \int c_{yz} dy dz + \int c_{3} z^{2} dy dz \quad (51)$$

$$Syz \qquad Syz \qquad Syz \qquad Syz$$

$$\iint z c' dy dz = 0 \quad \text{mom.statyczny wzgl.osi y}$$
(52)
Syz

- 21 -

$$\int c_{2}yz \, dydz = 0 \qquad \text{moment zboczenia wzgl.osi yz} \quad (53)$$

$$\int c_{2}yz \, dydz = 0 \qquad \text{moment zboczenia wzgl.osi yz} \quad (54)$$

$$\int c_{2}yz \, dydz = 0 \qquad \text{moment zboczenia wzgl.osi yz} \quad (54)$$

$$\int c_{2}yz \, dydz = 0 \qquad \text{moment zboczenia wzgl.osi yz} \quad (54)$$

$$h_{2} = \frac{E\beta y}{I_{yz}(1-2\beta)} \left[\iint yc' dy dz + \iint c_{y}^{2} dy dz + \iint c_{3} yz dy dz \right]$$
(55)

$$\int c'y dy dz = 0 \quad \text{mom.statyczny wzgl.osi} z \qquad (56)$$

$$S_{42}$$

$$\int c_3 yz dy dz = 0 \quad \text{mom.zboczenia wzgl.y,z} \qquad (57)$$

$$S_{42}$$

$$h_2 = \frac{E\beta}{1-2\beta} y \frac{s_{yz}}{s_{yz}} = c \frac{E\beta}{1-2\beta} y \qquad (58)$$

$$S_{yz}$$

wstawiając równania (43)(45)(49)(58) do (40) otrzymamy

1

$$G_{xx} = -\frac{E\beta}{1-2\mu}v(xyz) + \frac{E\beta}{1-2\mu}c' + c_{2}\frac{E\beta}{1-2\mu}y + c_{3}\frac{E\beta}{1-2\mu}z =$$

$$= \frac{E\beta}{1-2\mu} \sqrt{(xyz)} + \frac{E\beta}{1-2\mu} (c' + c_2 y + c_3 z)$$
(59)

$$c' + c_2 y + c_3 z = \lambda_{(xyz)}$$
 (60)

$$\vec{b}_{xx} = -\frac{\vec{E}\vec{B}}{1-2\mu} (xyz) + \frac{\vec{E}\vec{B}}{1-2\mu} (xyz) = 0$$
(61)

W podobny sposób można wykazać, że $\mathcal{G}_{zz} = 0$ oraz $\mathcal{G}_{zz} = 0$ co było do okazania. 3.2. Płaski stan naprężenia

Zakładając 6 = 0 można wykazać, że (z równan. 26)

$$\mathcal{E}_{zz} = \frac{1}{1 - \mu} \left[- \mu \left(\mathcal{E}_{xx} + \mathcal{E}_{yy} \right) + \left(1 + \mu \right) \beta 2^{2} \right]$$
(62)

co daje

$$e = \mathcal{E}_{zz} + \mathcal{E}_{yy} + \mathcal{E}_{zz} = \frac{1}{1 - \mathcal{I}} [(1 - 2\mathcal{H})(\mathcal{E}_{xx} + \mathcal{E}_{yy}) + (1 + \mathcal{H})\beta\mathcal{N}]$$
(63)

i po podstawieniu do równania (26) otrzymamy

$$S_{xx} = \frac{2G}{1-EE} \left[E_{xx} + E_{yy} - (1+E) S \left(xyzE \right) \right]$$
(64)

$$G_{yy} = \frac{2G}{1 - E} \left[E_{yy} + E_{xx} - (1 + E) B \left(\frac{1}{xyzy} \right) \right]$$
(65)

$$\mathcal{F} = 0$$
 zgodnie z warunkami (21) (66)

Dla sztywnego utwierdzenia ciała w kierunku osi x i y otrzymujemy znane rozwiązanie

$$\widetilde{G}_{\mathbf{x}\mathbf{x}} = \widetilde{G}_{\mathbf{y}\mathbf{y}} = -2G \frac{1+\mathcal{H}}{1-\mathcal{H}} \mathcal{B} \mathcal{V}_{(\mathbf{x}\mathbf{y}\mathbf{z}\mathcal{L})}^{\mathcal{L}} = -\frac{\mathcal{E}}{1-\mathcal{H}} \mathcal{B} \mathcal{N}_{(\mathbf{x}\mathbf{y}\mathbf{z}\mathcal{L})}^{\mathcal{L}}$$
(67)
$$\widetilde{G}_{\mathbf{x}\mathbf{y}} = 0$$
(68)

Zakładając, jak przy stanie naprężenia trójosiowym, że utwierdzenie ciała zostaje usunięte i ciało może się swobodnie odkształcić pod wpływem istniejących naprężeń \widehat{b}_{ii} , otrzymuje się naprężenia wywołane odkształceniem $\widehat{\overline{b}}_{ii}$ oraz $\widehat{\overline{\overline{b}}}_{ii}$. Ponieważ w praktyce z płaskim stanem naprężenia spotykamy się w tarczach przyjmijmy tarczę o stałej grubości c i wtedy

$$\overline{\widetilde{G}}_{xx} = \frac{P_{xx}}{c_y} = \frac{1}{c_y} \int_{1-\overline{\ell}}^{\overline{\ell}(y)} \frac{\mathfrak{b}(y)}{1-\overline{\ell}} c \, dy = \frac{\overline{\ell}}{y(1-\overline{\ell})} \int_{1-\overline{\ell}}^{\overline{\ell}(y)} \frac{\mathfrak{b}(y)}{\mathfrak{b}(y)} dy \quad (69)$$

$$G_{yy} = \frac{P_{yy}}{cx} = \frac{E}{x(1-f_{1})} \int_{a(x)}^{b(x)} dx \qquad (70)$$

- 24 -

Naprężenia powstałe z ugięcia tarczy, jeśli pole temperaturowe jest niesymetryczne względem płaszczyzny xy, będą miały następujące wartości

$$\int_{XX}^{E} = \frac{M_{yz}}{I_{yz}} = \frac{12z E/3}{c^3(1-k)} \int_{-\frac{e}{2}}^{\frac{e}{2}} \int_{-\frac{e}{2}}^{\frac{e}{2}} \int_{-\frac{e}{2}}^{\frac{e}{2}} dz$$
(71)

$$\vec{b}_{yy} = \vec{I}_{xz} = \frac{12 \ z \ \vec{E}\beta}{c^{3}(1-\beta)} \int_{-\frac{c}{2}}^{\frac{1}{2}} \sqrt{(xyz)^{2}} \ dz = \vec{b}_{xx}$$
(72)

Naprężenie całkowite 6 jest sumą

$$\hat{G}_{ii} = \hat{G}_{ii} + \hat{G}_{ii} + \hat{\bar{G}}_{ii}$$
(73)

3.3. Liniowy stan naprężenia

Opierając się na rozumowaniu przeprowadzonym dla trójosiowego stanu naprężenia można w przypadku jednoosiowego stanu naprężenia otrzymać znane rozwiązanie;

$$G_{xx} = -\beta E \sqrt{(xyzt)}$$
(74)

$$\overline{\overline{b}}_{xx} = \frac{y}{I_z} \int_{a(y)}^{b(y)} \beta E \sqrt{(xyzt)}^{b}(y)^{ydy}$$
(76)

czyli

$$S_{xx} = -\beta E \sqrt{(xyzt)} + \frac{1}{s} \int \beta E \sqrt{(xyzt)}^{b} (y)^{dy} + \frac{1}{a(y)} \frac{\beta E}{a(y)} \left(\frac{1}{xyzt} \right)^{b} (y)^{dy} + \frac{1}{a(y)} \frac{\beta E}{a$$

+
$$\frac{\mathbf{y}}{\mathbf{I}_{z}} \int \beta E \sqrt{(\mathbf{x}\mathbf{y}\mathbf{z}\,t)} \mathbf{b}(\mathbf{y}) \mathbf{y} d\mathbf{y}$$
 (77)

C. HIPOTEZA WYTRZYMAŁOSCIOWA

1. Onéwienie ególne

De ekreśleżia wytężenia materiału kruchego poddanego dziąłamiu sił używa się wielkości ⁶⁷ ebliczenej na podstawie jakiejś hipotezy wytrzymałościewej, mp.hipotezy największego wydłużenia ⁶ (de Saint Venant'a).

W przypadku dziąłania na ciąło sił pochodzonia termicznego neżna przyjąć hipotezę do Saint Venant'a z tym, że wydłużenie makgymalno ekreślono doświadczalnie jako funkcję temperatury, a zatem

Naprężenia główne będące funkcją temperatury należy wyliezyć ze wzeru (38). Zgodnie z hipetezą największego wydłużenia o A A

1.1. Dia przestrzemnego stanu mapięcia

$$\mathcal{E}_{\text{max}}(n) = \frac{6}{F(n)} = \frac{1}{F(n)} \left[\frac{6}{2} - \frac{1}{F(0)} \left[\frac{6}{2} + \frac{6}{3} \right] \right] (79)$$

6, 6, 6, 5, se napreseniani gléwayni

W przypadku naprężeń termieznych wyliczenych se wseru (38) należy przyjąć

$$6_1 = 6_{xx}$$
 $6_2 = 6_{yy}$ $6_3 = 6_{zz}$ (80)

gdyż

Kolejność wskąźników we wzerze (79) należy debrać tak, by na C (/) etrzynać warteść największą.

1.2. Dia plaskiego stana matiga a

$$5 red = 5_1 - 46_2$$
 (81)

177.2.1

61 - 6 II 62 - 6 JY Wyliezone zo wsork (73)

1.3. Dla jednoosiowego stanu napięcia

$$\mathcal{S}_{red} = \mathcal{S}_{xx}$$
 (82)

D. OKRESLENIE SZYBKOSCI STUDZENIA

1. Krytyczna szybkość studzenia

Przez krytyczną szybkość studzenia rozumiem szybkość studzenia doprowadzającą do powstania pola temperaturowego, które powoduje dekohezję cząstek materiału przez przekroczenie wydłużenia niebezpiecznego.

Przez wydłużenie niebezpieczne dla materiąłu kruchego rozumie się wydłużenie na granicy wytrzymałości przy danej temperaturze. W części doświądczalnej niniejszego opracowania podane są wartości zmierzone \mathcal{E}_{nieb} ($\sqrt{}$) dla szkła.

2. Dopuszczalna szybkość studzenia

Przez dopuszczalną szybkość studzenia rozumiem szybkość studzenia niedoprowadzającą do powstania pola temperaturowego wywołującego wydłużenia większe od wydłużeń bezpiecznych.

$$\mathcal{E} \leq \mathcal{E}_{\text{bezp}}$$
 (83)

Przez E rozumie się wydłużenie

$$\mathcal{E}_{\text{bezp}} \leq \frac{1}{n} \mathcal{E}_{\text{nieb}}$$
 (84)

gdzie n > 1 oznacza tzw. "pewność" lub "stopień bezpieczeństwa". 2.1. Stopień bezpieczeństwa

W przypadku studzenia ciała definiuję stopień bezpieczeństwa jako iloczyn pewnych czynników bezpieczeństwa

$$n = n_{\mathcal{G}} \cdot n_{\mathcal{F}} \cdot n_{\mathcal{F}} \tag{85}$$

gdzie:

- n₆ jest to czynnik bezpieczeństwa uwzględniający istniejący stan naprężeń wewnętrznych nie pochodzący od danego pola temperaturowego (np.naprężenia trwałe w materiale)
- n ~ czynnik wywołany nierównomiernością pola temperaturowego
- n_r czynnik rezerwowy uwzględniający nieprzewidziane okoliczności (np.zaprószenie gorącym pyłem lub odłamkami pieca, zaprószenie gorącymi cząstkami paliwa, odkształceniem siłami zewnętrznymi itp.).

2.1.1. Czynnik n6

Jeżeli materiał kruchy ma naprężenia trwałe, a wielkość maksymalnego naprężenia jest równa ć (określić można trw. badając materiał przeźroczysty na polarymetrze), to czynnik bezpieczeństwa

$$a = \frac{G_{nieb}}{G_{nieb} - G_{trw.}} = \frac{E \mathcal{E}_{nueb}}{E \mathcal{E}_{nueb} - G_{trw}}$$
(86)

jeśli $\oint_{trw} = 0$ to $n_{6^{-}} = 1$ jeśli $\oint_{trw} = \oint_{nieb}$ to $n = \bigcirc (czyli \oint_{bezp} = 0)$ Naprężenia trwałe (wzgl.stan naprężenia zamrożony w czasie zestalania) powstają w strefie temperatur wyższych, a więc rozpatrując materiał w zakresie kruchości można uważać naprężenia te za niezmienne. Wystarczy więc badać szkło na polarymetrze po całkowitym zestudzeniu.

2.1.2. Czynnik n

Czynnik ten wynika stąd, że w żądnym technicznym urządzeniu nie móżna uzyskąć rozkłądu temperatury, który przyjmuje się do obliczeń. W pewnym miejscu temperatura odbiega maxymalnie od obliczeniowej i różni się od niej o $\Delta \sqrt{max.(Np.ng sze-$
$$n_{v} = \frac{\mathcal{E} \text{ nieb}}{\mathcal{E} \text{ nieb}}$$
(87)

 $E_{\beta_{Max}} = \Delta 6$ przy jednokierunkowym stanie naprężenia i sztywnym utwierdzeniu (a więc w najniekorzystniejszych warunkach).

Czynnik ten najłatwiej określić drogą eksperymentalną mierząc rozkład temperatur o zadanym przedziale.

2.1.3. Czynnik rezerwowy np

Czynnik ten należy określić indywidualnie zależnie od konstrukcji urządzenia studzącego ciało kruche oraz jego stanu technicznego. Wynika on z możliwości powstania dodatkowych naprężeń wywołanych działaniami zewnętrznymi, np.; nierównomiernością rolek w tunelu odprężającym szkło, możliwości nieprzewidzianych lokalnych przegrzań w skutek porwania płonących cząstek paliwa, zaprószenia gorącym lub zimnym pyłem, niedokładność obliczeń na skutek przyjęcia liniowości parametrów określających ciało, oraz ewentualnych innych wpływów.

E. METODA WYKRESLNO-OBLICZENIOWA OKRESLANIA NAPREŻEŃ TERMICZNYCH.

1. Wykreślna metoda określania pola temperaturowego.

Wprzypadku przewodzenia jednokierunkowego, gdy dany jest warunek początkowy i przestrzenny warunek brzegowy, można określić pole temperaturowe w danej chwili & stosując metodę wykreślną Bindera udoskonaloną przez Schmidta. Metodę tę można niekiedy stosować do dwukierunkowego przewodzenia, jeśli zmianę temperatury w kierunku drugiej osi da się przedstawić jako funkcję parametru $\mathcal{C}.(czasu)$.

Zasadnicze elementy omawianej metody przedstawiają się następująco:

Równanie różniczkowe przewodzenia jednokierunkowego

$$\frac{\partial v}{\partial z} = \alpha \frac{\partial^2 v}{\partial x^2}$$
(88)

zastępuje się równaniem różnicowym

$$\frac{\Delta 2^{\prime}}{\Delta 2} = \alpha \frac{\Delta^2 2^{\prime}}{\Delta X^2}$$
(89)

Rozpatrywany przekrój obiektu (np.płyty o grub.d) dzieli się na jednakowe warstwy oddalone od siebie o ΔX , jak to pokazano na rysunku (4) i wykreśla się początkowy rozkład temperatur (znany z warunku początkowego).

Pierwszy indeks przy temperaturze Nodnosi się do numeru warstwy drugi do czasu. Metoda pozwala na określenie temperatur na pomyślanych powierzchniach podziału (w w przegrodach) jako funkcję odstępów czasu A 2. Odstępów czasu nie dopiera się dowolnie, lecz wylicza z zależności

$$\Delta \mathcal{Z} = \frac{\Delta \mathbf{x}^2}{2a}$$

(90)

Można wykazać, że przy tak przyjętej zależności odstępów czasu od grubości warstw, dojdzie się do zależności;

$$v_{31}^{\ell} = \frac{v_{40}^{\ell} + v_{20}^{\ell}}{2} \tag{91}$$

a więc temperatura na trzeciej "przegrodzie" po upływie czasu *A 2* będzie średnią arytmetyczną z temperatur przegród sąsiednich tj. 2 i 4 przed upływem tego odstępu czasu.

Warunek (90) pozwala na określenie temperatury "przegrody" po upływie AC jeśli są dane temperatury "przegród" sąsiednich. Taki przypadek nie zachodzi w warstwach skrajnych. Dlatego musimy wykorzystać warunek brzegowy (2.3.3. części III A). Ciepło przewodzone przez warstwę skrajną równa się ciepłu wymienionemu z otoczeniem, co zapisujemy równaniem

$$-\lambda \left(\frac{\partial v}{\partial x}\right)_{x=0} dt = \alpha \left(v_s^2 - t_o\right) dt \qquad (92)$$

skąd

$$\left(\frac{\partial n}{\partial x}\right)_{x=0} = -\frac{\lambda}{\lambda}\left(n_{s}^{2} - t_{o}\right)$$
(93)

co przy zapisie róźnicowym daje na zewnętrznej ścianie płyty

$$-\frac{\Delta v^{\prime}}{\Delta x} = \frac{\alpha}{\partial} \left(v_{s}^{\prime} - t_{o} \right)$$
(94)

Równanie to (94) pozwala zastosować metodę graficzną dla określenia temperatur skrajnych. Jeśli w kierunku osi x odmierzymy odcinek $\frac{\lambda}{\sqrt{2}}$ na wysokości t_o

 $tg \mathcal{G} = \frac{\sqrt{s} - t_0}{\frac{\lambda}{N_c}} = \frac{\omega}{\lambda} \left(\sqrt{s} - t_0\right)$

czyli styczna do linii rozkładu temperatur na zewnętrznej ścianie płyty przechodzi przez punkt "O", tzw.biegun. Jeśli λ , &, to są wielkościami stałymi, to biegun nie zmienia swego położenia, a stąd wniosek, że wszystkie styczne do linii rozkładu temperatur w różnych chwilach, wykreślone w punktach ich przecięcia się z zewnętrzną ścianą płyty, przecinają się we wspólnym punkcie O.

Wykorz ystanie tej właściwości pozwoli na wykreślne podanie pola temperaturowego jako funkcji miejsca i cząsu. (rys.6)

2. Autora wykreślno-obliczeniowa metoda wyznaczenia na-

prężeń termicznych

Załóżmy sztywne utwierdzenie ciąła, wtedy zgodnie z równaniem (74) można napisać dla jednokierunkowego stanu naprężenia

$$\bar{S}_{yy} = -\beta E \sqrt{(x t)}$$
(96)

Jeśli powstanie naprężeń termicznych spowodowaliśmy nie od stanu termicznie beznapięciowego ($\sqrt{2}$ = 0), lecz od $\sqrt{2}$ = $\sqrt{2}$ to równanie (96) przyjmie postać pocz o

$$\widetilde{G}_{yy} = -\beta E \left[\sqrt{x_{(x)}} - \sqrt{7} \right]$$
(97)

Widać więc, że mnożąc wartość temperatury $\sqrt{\binom{x}{x}}$ $lub(\sqrt{\binom{x}{x}} - \sqrt{\binom{x}{o}})$ przez mnożnik - βE otrzymamy z rozkładu temperatur rozkład naprężeń. 6 yy dla ciała sztywnie utwierdzonego. Wykreślnie wykonujemy to zmieniając skalę na osi temperatur.

Zwalniając więzy ciała uniemożliwiające jego odkształcenie pod wpływem naprężeń termicznych wzdłuż osi y (tj.osi $\sqrt{}$), wyzwolimy naprężenia $\overline{\overline{G}}_{yy}$ wywołane tym odkształceniem.

$$\overline{\widetilde{O}}_{yy} = \frac{P_{yy}}{b} = -\frac{1}{bh} \int_{a}^{a} h \widetilde{\widetilde{O}}_{yy} dx \qquad (98)$$

gdzie

h - szerokość płyty w m
b - grubość płyty w m

Interpretując wykreślnie równanie (98) możemy powiedzieć, że \mathcal{O}_{yy} jest średnią wysokością pola naprężeń \mathcal{O}_{yy} , wziętą ze znakiem przeciwnym. Na polu naprężeń zajdą więć zmiany.

Jeśli pole temperaturowe nie jest symetryczne względem płaszczyzny x = 0, to (po zdjęciu całkowitym więzów) ciało zostanie ugięte na skutek występowania momentu gnącego sił termicz nych.

Naprężenia normalne (ściskające lub rozciągające) dadzą moment zginający M względem osi prostopadłej do płaszczyzny ugięcia, a przdchodzącej przez oś obojętną zginania (tj.oś, która nie doznaje naprężeń zginających na skutek zginania). Wartość tego momentu nie zależy od tego, czy zginanie powodują naprężenia \tilde{G} wynikłe ze sztywnego mocowania, czy $\tilde{G}_{yy} + \tilde{\bar{G}}_{yy}$ występujące po częściowym zwolnieniu więzów.

$$M_{zg} = \int_{-\frac{d}{2}}^{\frac{d}{2}} \tilde{G}_{yy} h x dx$$
(99)

oznaczając przez u(x) = G_{yy} .x możemy napisać

$$M_{zg} = h \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} u(x) dx \qquad (100)$$

Zależność ta pozwala na znalezienie momentu zginającego w sposób analityczno wykreślny.

Mnożąc analitycznie odczytaną z wykresu naprężeń wartość naprężenia Gyp przez przynależną wartość x, odkładamy wykreślnie wartość u(x) na rysunku. Nietrudno wykazać, że M_{zg} (wg równa-

$$\mathbf{M}_{zg} = h(\mathbf{A} \mathbf{M}_{zg} + \mathbf{A} \mathbf{M}_{zg}) = h \sum_{i=1}^{n} \mathbf{A} \mathbf{M}_{zg}, \qquad (101)$$

Odczytania wartości ΔM_{zgi} można dokonać przez planimetrowanie lub stosując jedną z wielu metod matematycznych określania pola ograniczonego daną krzywą (np.stosując wzór trapezowy lub Simpsona).

Naprężenia zginające
$$\overleftarrow{\Theta}_{yy}$$
 liczy się z zależności

$$\tilde{\tilde{G}}_{yy} = \frac{M_{zg} \cdot x}{I_z}$$
(102)

gdzie Iz jest momentem bezwładności

Dla przekroju prostokątnego

$$I_{z} = \frac{h(2b)^{3}}{12} = \frac{2hb^{3}}{3}$$
(103)

czyli

$$\overline{\widetilde{G}}_{yy} = \frac{3h x 2 \Delta M_{zg} i}{2 h b^3} = \frac{3}{2} \frac{\sum \Delta M_{zg} i}{b^3} = c x \quad (104)$$

Wartość tych haprężeń można nanieść na wykres naprężeń (rys nr 9), i dodając geometrycznie otrzymać wykres naprężeń całkowitych $\mathcal{E}_{yy} = \mathcal{E}_{yy} + \mathcal{E}_{yy} + \mathcal{E}_{yy}$

Dolna część wykresu określa $\mathcal{G}_{yy} = \mathcal{G}_{yy}(x)$.

Z ryšmaku 12 odczytujemy maksymalną wartość naprężenia rozciągającego 6 . Dla jednoosiowego stanu naprężenia jest ono równe proporcjonalnie do wydłużenia maksymalnego.

$$\mathcal{E}_{\max} = \frac{\mathcal{E}_{yy \max}}{\mathcal{E}}$$
(105)

Jeśli materiał nie ma być uszkodzony przez istniejący stan odkształcenia to $\mathcal{E}_{\max} \leq \mathcal{E}_{\text{bezp}}$ co stwierdzimy obliczając $\mathcal{E}_{\text{bezp}}$ zgodnie z dziąłem D część 2.1. i porównując z \mathcal{E}_{\max} .

Przeprowadzone rozważania uproszczą się jeśli materiał nie ulega ugięciu. Jest to możliwe przy symetrycznym rozkładzie temperatur, lub wtedy gdy warunki mocowania nie pozwalają na ugięcie. Wtedy $\vec{o}_{yy} = 0$ i odpada część obliczeń analitycznoyy -wykreślnych związanych ze znalezieniem \vec{o}_{yy} .

W przypadku mocowania sztywnego odczytujemy wprost z rozkładu temperatur $\mathcal{E} = \mathcal{E}_{\max} = -\beta(\sqrt{-\gamma})_{o\max}$, a wydłużenie to musi być mniejsze od \mathcal{E}_{bezp} , jeśli materiał nie ma ulec zniszczeniu.

Omówiony sposób badania wydłużeń pochodzących od naprężeń niszczących materiał odnosi się do naprężeń rozciągających.
Oczywiście w podobny sposób można badać naprężenia ściskające pochodzenia termicznego i stwierdzić czy istniejący stan odkształceń może zniszczyć materiał. Jednąk niebezpieczeństwo zniszczenia materiału naprężeniami ściskającymi może zajść tylko przy bardzo specjalnym stanie naprężeń termicznych (np. ogrzewanie ciała sztywnie utwierdzonego), a przy swobodnym ogrzewaniu lub studzeniu ciała zniszczenie zostanie dokonane naprężeniami rozrywającymi. W tym przypadku nawet przy gwałtownym nagrzaniu ciała, naprężeniom ściskającym towarzyszą zawsze naprężenia rozrywające i one zniszczą materiał zanim naprężenia ściskające zdążą się rozwinąć. Wynika to stąd, że wytrzymałość na rozerwamie (mowa o normalnej wytrzymałości materiału badanej jednoosiowym ściskaniem lub rozrywaniem) jest dla ciał kruchych kilka lub kilkanaście razy mniejszą niż ściskanie.

Tak więc dla ciał kruchych stan odkształceń spowodowany naprężeniami rozrywającymi jest zwykle niebezpieczniejszy od naprężeń ściskających. Omówiona metoda wykreślna odnosi się do jednokierunkowej wymiany ciepła. Można ją jednak stosować i w innych przypadkach.

Jeżeli w dwukierunkowej wymianie ciepła uda się uzależnić rozkład temperatury wzdłuż jednej osi jako funkcję tylko czasu(np.studzenie taśmy szklanej w tunelu odprężającym),

Rozpatrujemy więc ten przypadek jako jednokierunkową wymianę ciepła, z tym jednak, że w miarę upływu czasu (a więc przy rosnącym z) zmienia się temperatura otoczenia badanej płyty. Zmienia się więc położenie bieguna podczas wykreślania rozkładu temperatur w cząsie metodą Schmidta (patrz rys.5) IV. BADANIA DOSWIADCZAINE

A. Przedmiot badań

1. Szkło jako materiał sprężysty iksuchy

Jako przedmiot badań doświadczalnych obrano szkło lustrzane produkcji "Wałbrzyskich Zakładów Szkła Lustrzanego" o składzie wagowym

si02	-	69,76 %
A1203	-	2,42 %
Fe203	-	0,08 %
CaO	-	13,46 %
Na ₀ 0	-	14,28 %

pochodzące z jednego wytopu i obróbki. Zakres temperatur, którym zostało ono poddane w czasie badań wynosił od około 300 do 30°C. Jest to zakres temperatur, dla którego szkło wytworzone na bazie krzemianów spełnia warunek zupełnej prawie zgodności z prawem Hooke'a i doskonałej niemal kruchości.

Stan szklisty jest pewną formą istnienia substancji stanowiącą pomost między tzw.ciałami stałymi, a cieczami. ^Na to aby ciecz przy krzepnięciu mogła wykrystalizować muszą być spełnione specjalne warunki. Obmiżanie temperatury poniżej temperatury topnienia nie zawsze prowadzi do krystalizacji. Znaczna liczba różnych substancji nie daje się krystalizować w żadnych warunkach, ale mimo tego w stanie skrzepniętym mogą one być uważane za całkowicie trwałe. Np.kopalne żywice zachowały postać szklistą (tj.tzw.strukturę bezpostaciową) od czasów eocenu tj. w przeciągu dziesiątków milionów lat (bursztyn). Twierdzenie o niestabilności stanu szklistego wywodzi się stąd, że kryształy mają mniejszą energię swobodną (Helmholtza) niż szkła, z tego powodu poniżej temperatury topnienia jedynie kryształy znajdują się w stanie trwałej równowagi termodynamicznej podczas gdy szkła/w stanach równowagi nietrwałej (zahamowanej), która jednak może być bardzo (choć nie bezwzględnie) trwała.

W przypadku naprężeń, które przy nieźmiennym odkształceniu ciała zmniejszają się wykładniczo z czasem, jako czas relaksacji zaburzeń " \mathcal{L} " określa się czas konieczny do zaniku wartości naprężeń do $\frac{1}{e}$ wartości początkowej tych naprężeń.

Zgodnie z prawem Hooke'a dla ciał doskonale sprężystych naprężenia są proporcjonalnie do odkształceń. Wobec tego proponuję uogólniony zapis

$$\mathcal{E}_{ik} = \mathcal{K}_{ik} \mathcal{E}_{ik} \tag{110}$$

gdzie

 $\begin{aligned} \mathcal{R}_{ii} &= \mathcal{E} - \mod u \texttt{k} \text{ sprężystości podłużnej tzw.moduł Vunga}\\ & (gdy i = k) \end{aligned}$ $\begin{aligned} \mathcal{R}_{ik} &= \texttt{2} \texttt{G-gdzie G - moduł odkształcenia postaciowego}\\ & (gdy i \neq k) \end{aligned}$ $\begin{aligned} \texttt{Zależność} & \texttt{od G określa wzór 2 G(l + \mathcal{H}) = \mathcal{E}}\\ \texttt{czyli } \mathcal{R}_{ik} &= \frac{\mathcal{R} \ \texttt{ii}}{1 + \mathcal{H} \mathcal{S}_{ik}} \end{aligned}$

Jeżeli ciało jest elastyczne (takimisą ciała bezpostachowe) naprężenia wywarte na ciało częściowo rozpływają się, przy czym szybkość relaksacji naprężeń przy zadanym odkształceniu jest proporcjonalna do samego naprężenia; a więc można napisać

$$\frac{dG_{ik}}{d\mathcal{E}} = \mathcal{K}_{ik} \frac{d\mathcal{E}_{ik}}{d\mathcal{E}} - \frac{G_{ik}}{\mathcal{E}_{r}}$$
(111)

co stanowi uogólnienie zapisu [Kobeko (str.84)]

przy czym

$$\mathcal{U}_{ik} = \mathcal{U}_{ik} - \mathcal{U}_{ik} = \mathcal{H}_{ik} \mathcal{U}_{ik} - \mathcal{U}_{ik} - \mathcal{U}_{ik} - \mathcal{U}_{ik} \mathcal{U$$

Wstawiając otrzymane zależności z równania (112) do równania (111) otrzymamy

$$\frac{d G_{i,k}}{d \tau} = \mathcal{K}_{i,k} \left(\frac{d \mathcal{E}_{i,k}}{d \tau} - \frac{G_{i,k}}{2} \right)$$
(113)⁽³⁾

W przypadku odkształcenia niezmiennego w czasie $\frac{d \mathcal{E}_{i,k}}{d \mathcal{T}} = 0$, czyli

$$\frac{d \hat{G}_{i,k}}{d \hat{\tau}} = -\mathcal{K}_{i,k} - \frac{\hat{G}_{i,k}}{\hat{\tau}} = -\hat{\mathcal{L}}_{r} \hat{G}_{i,k}$$
(114)

po scałkowaniu otrzymamy

$$\mathcal{G}_{i,k} = \mathbf{A} e^{-\frac{U}{E_r}}$$
(115)

W chwili początkowej $\mathcal{E} = 0$ przyjmuje się warunek początkowy $\mathcal{E}_{i,k} = \mathcal{E}_{i,k} = \mathcal{K}_{i,k} \mathcal{E}_{i,k}$, czyli $\mathbf{A} = \mathcal{K}_{i,k} \mathcal{E}_{i,k} = \mathcal{E}_{i,k} = \mathcal{E}_{i,k}$, co daje ostatecznie wzór

$$G_{i,k} = G_{i,k}^{\circ} = \widetilde{\xi}_{n}$$
(116)

Przy $\mathcal{E} = \mathcal{E}$ naprężenie \mathcal{E} spada od wartości \mathcal{E}° do wari,k tości $\frac{\mathcal{E}_{i,k}^{\circ}}{e}$.(Odnosi się to tak do naprężeń normalnych jak do stycznych).

W przypadku dużych lepkości, gdy wyraz $\frac{6}{7}$ jest bardzo mały w porównaniu z $\frac{d\epsilon_{i,k}}{d\tau}$, zachodzą odkształcenia tylko sprężyste.

Z równania (113) wynika, że wykazanie właściwości plastycznych czy sprężystych nie jest uwarunkowane tylko absolutną wartością stosunku $\frac{6i,k}{2}$, lecz także szybkością odkształcenia $\frac{d \mathcal{E}}{d \mathcal{C}}$. Tak więc substancje o dużej lepkości zachowują się przy szybkim odkształceniu jako sprężyste, zaś przy powolnym jako plastyczne. Jako przedmiot badań wybrano szkło produkowane na bazie krzemianów. W zakresie stosowanych temperatur lepkość szkła $n = 10^{19}$ P. (Wartość ustalono na podstawie interpolacji z rys. II-14 str.46 podręcznika "Podstawy szklarstwa".*tI*) Przy badanych naprężeniach maksymalnych $\mathcal{G} = \mathcal{G}_r = 6.8$ kG/mm² tj. ok.6,8.10⁸ dyn/cm² oraz szybkości odkształcenia otrzymanej przy odkształceniu $\mathcal{E}_{xx} = 9.2.10^{-3}$ w czasie maksymalnym 300 sec; $\frac{\mathcal{G}}{n} = 0.68.10^{-12} \ll \frac{d\mathcal{E}}{d\chi} = 0.31.10^{-5}$, czyli badane szkło można uważać za prawie doskonale sprężyste.

2. Wzrost naprężeń trwałych w szkle

Mowa jest o wzroście naprężeń trwałych w szkle na skutek stosowania dopuszczalnej szybkości studzenia w zakresie temperatur od 300 °C w dół.

Z uprzednich rozważań wynika, że szkło w tym zakresie temperatur jest ciałem prawie doskonale sprężystym, a więc przyspieszone studzenie nie powinno powiększyć naprężeń trwałych w szkle, tj. pogorszyć jego jakości. Na potwierdzenie tego przypuszczenia przeprowadzono następujący eksperyment.

V

Dwie próbki szkła zbadano na polaryskopie i stwierdzono istniejący stan baznaprężeniowy. Jedną próbkę nagrzano, następnie do temperatury ok.300 °C, ostudzono w strumieniu powietrza do temperatury 100 °C, a wreszcie zanurzono w wodzie o temperaturze 20°C. Po tym zabiegu znów sfotografowano dla porównania stana naprężeń w obu próbkach na polaryskopie. Wynik badań w formie zdjęcia fotograficznego załączono w dziale VII. pod rys. nr 66.

Jak widać z załączonego zdjęcia, nie daje się zauważyć wzrostu trwałych naprężeż wewnętrznych. Szkło nie pogarsza więc swojej jakości wskutek stosowania wzmożonego studzenia w omawianym zakresie temperatur. B. URZADZENIA BADAWCZE

1. Urządzenie badawcze podstawowe

- 43 -

(Rys.nr 15 + 20 załączono w dziale VII).

Numery ujęte klamrami oznaczają numer elementu na odpowiednim rysunku.

Fotografię stoiska podstawowego umieszczono w dziale VII pod nr rys.67.

1.1. Opis działania wg rysunku nr 15.

Badaną próbkę szkła (4) umieszczamy w odpowiednio wykonanym mocowaniu i nakładamy na nią stos termopar dolny (18). Stoł ten jest umocowany w odpowiedniej ramce (patrz rys.17). Następnie nakładamy pokrywę (23) i włączamy grzejniki (11) ogrzewając próbkę do żądanej temperatury. Pokrywa (23) ma papewnić możliwie równomierne obustronne nagrzanie próbki. W zbiorniku wody chłodzącej (17) nawilża się płytkę dociskową górną (16) po czym (szczegóły patrz rys.16) zbiorniczek odchyla się na odpowiednim przegubie. Po nagrzaniu próbki do żądanej temperatury i ustaleniu się pola temperaturowego włączamy lampy oświetleniowe (37, wzmacniacz (12) oscylograf (1) i kamerę (22). Po zdjęciu połrywy (24) opuszcza się płytkę dociskową górną na badaną próbkę co powoduje pękanie materiału próbki pod wpływem sił termicznych.

Stos termopar górny i dolny (górny umocowany w płytce dociskowej (16)) mierzą temperaturę górnej powierzchni studzonej próbki. Przebieg temperatury rejestruje oscylograf pętlicowy po wzmocnieniu bodźca przez wzmacniacz.

Kamera rejestruje przebieg powstawania pęknięć podczas studzenia. Początkowo kamera miała rejestrować jeszcze czas jaki upłynął od momentu zetknięcia się płytki dociskowej z próbką, do chwili powstania pierwszych pęknięć. Czas ten byłby potrzebny do określenia rozkładu temperatur, w momen- cie którym nastąpiła dekohezja cząstek szkła i byłby liczony za pomocą ilości klatek filmu przy znanej szybkości przesuwu taśmy.

Po wykonaniu pierwszych prób okazało się, że okres szybkiego studzenia próbki trwa około 0,16 sekundy, zaś kamera posiadała maksymalną szybkość 48 klatek na sekundę. Przyjmując nawet, że czas upływający od chwili zetknięcia płytki dociskowej z próbką do chwili powstania pierwszych pęknięć stanowi połowę okresu szybkiego zestudzenia szkła, błąd pomiaru tego czasu przy maksymalnej sz**gb**kości taśmy filmowej wyniósłby ok. 30 %. Nie mogąc otrzymać kamery o przynajmniej 10-krotnie większej szybkości przesuwu klatek zrezygnowano ze sprawdzenia krytycznego rozkładu temperatur tą metodą.

Drogą licznych eksperymentów prześledzono przebieg studzenia próbki za pomocą płytki dociskowej i drogą obliczeń określono, który z wykreślonych rozkładów temperatur ma być krytyczny. Następnie zmiejsżając temperaturę próbki doprowadzono do zaniku pęknięć termicznych, notując równocześnie przebieg temperatury. W ten sposób sprawdzono, czy wyznaczony drogą obliczeń krytyczny rozkład temperatur jest rzeczywiście krytyczny.

- 44 -

Rozkład ten dla stosowanego sposobu studzenia wyznacza się wykreślnie jak to pokazano w części obliczeniowej tej pracy.

1.2. Opis urządzeń pomiarowych

1.2.1. Pomiar temperatury powierzchni studzonej

próbki.

Pomiaru dokémuje się za pomocą dwu stosów termopar Cu-konstantan, z których górny jest umocowany w płytce dociskowej górnej (patrz rys.18), zaś dolny w odpowiedniej ramce (patrz rys.19). Stos górny i dolny zostął przecechowany i wyniki tego cechowania są podane dalej. Bodziec z termopar wzmacnia się na wzmacniaczu fotoelektrycznym (model WF-70 nr fabr.3014 produkcji Zakładu Optyki i Mechaniki Precyzyjnej Politechniki Słąskiej) i po wzmocnieniu kieruje się na pętlicę oscylografu pętlicowego. Użyto pętlicy nr 61238 o czułości 10 ma i oscylografu pętlicowego typu OP-8 nr fabr.6014 produkcji Instytutu Elektroenergetyki Politech. Wrocławskiej. Wskazania oscylografu rejestrowano na papierze światłoczułym. Kopie wyników załączono w dziale VII (rys.nr 32 + 51), oryginały umieszczono w archiwum Katedry Teorii Maszyn Cieplnych Polit.Wr.

1.2.2. Pomiar temperatury zimnych końców stosów termopar.

Temperaturę zimnych końców stosów termopar mierzono termoparą Cu-konst., odpowiednio długą tak, że temperaturę zimnych końców tej z kolei termopary przyjęto za równą temperaturze otoczenia. Odczytu temperatury dokonano na wskaźniku profilowym nr 2203146 do termopary Fe-konst, którego charakterystykę zmieniono przystosowując go do termopary Cu-konst. Termoparę i wskąźnik przecechowano, a wyniki cechowania są załączone.

1.2.3. Pomiar temperatury probki przed studzeniem

Pomiaru dokonano dwiema termoparami Fe-konst przyłączonymi do wskaźnika profilowego nr 2508514, z których jedna była umieszczona pod a druga nad **ha**daną próbką. Temperaturę zimnych końców przyjęto równą temperaturze otoczenia.

1.2.4. Rejestracja przebiegu zjawiska pękania

szkła.

Przebieg powstawania pęknięć rejestrowano kamerą na taśmie filmowej, której szybkość posuwu ze względu na oświetlenie wynosiła tylko 18 klatek/sek.

Do filmowania użyto kamery typu "Admira 8" na której obiektywie umieszczono specjalną nasadkę dla skrócenia ogniskowej obiektywu.

Oświetlenia obrazu dokonano za pomocą dwu lamp oświetlających.

> 1.2.5. Rejestracja czasu na papierze oscylograficznym.

Czas na papierze oscylograficznym rejestrowano za pomocą wahań prądowych prądu zmiennego z siewi miejskiej o częstotliwości 50 herców. Napięcie przetransformowano z 220/6 V i po włączeniu opornicy suwakowej w obwód skierowano bodziec na pętlicę (nr pętlicy 8619 produkcji Zakładu Elektroenergetyki Polit.Wr.) o czułości 50 mA.

> Stoisko do pomiaru doraźnej wytrzymałości na rozerwanie i wydłużalności mechanicznej szkła.

> 2.1. Stoisko badawcze oparte na rozciąganiu próbki

(rys.nr 21 załączono w dziale VII).

Na skutek niemożności osiągnięcia idealnej symetrii wykonanych próbek, we wszystkich badaniach nowowano silniejsze lub słabsze gięcie próbki podczas rozciągania. Próbki wykonano z tafli szklanej szlifując je ręcznie wg szablonu.

Z powyższych zwględów wyniki badania próbki były niepewne, szczególnie pomiar wydłużalności.

Dla tego na podstawie projektu autora wykonano inne stolsiko do badania doraźnej wytrzymałości i wydłużalności szkła, oparte na gięciu próbki.

2.2. Stoisko badawcze oparte na zginaniu próbki

(rys.nr 22)

2.2.1. Opis działania

^Badaną próbkę (5) ustawia się na podporach (4) i przez nakładanie obciążników na płytkę (9) wywiera się nacisk na próbkę poprzez szczęki dociskowe (6) o stykach walcowych. Maksymalne ugięcie przy danym obciążeniu wskazuje czujnik zegarowy (nr MNZa 51930) o dokładności 0,01 mm (2). Temperaturę próbki mierzono termoparą Fe-konstantan przyłączoną do wskaźnika (MA28 nr 000747) kl.l. Charakterystyki termopary i wskaźnika załączone w dalszej części opracowania.

Odczyty robiono początkowo przy wzroście obciążenia do 5 kG, co 1 kG, a następnie co 0,5 kG. Do 7 kG obciążenie realizowano obciążnikami, a powyżej przez dolewanie wody dla uzyskania ciągłego wzrostu obciążenia. Oczywiście notowano także wskazanie czujnika w chwili pęknięcia próbki.(rys.22 załączono w dz.VII). 3. Urządzenie do pomiaru współczynnika wydłużalności liniowej ciął w zależności od temperatury (rys.23)

Urządzenie to wykonano remontując generalnie uszkodzony dilatometr będący własnością Katedry Ceramiki ^Politechniki Wrocławskiej.

3.1. Przebieg pomiaru

(odnośniki wg numeracji na rys.23 załączonego w dz.VII) Badaną próbkę (3) umieszcza się wewnątrz rury kwarcowej (4) i dociska rurą kwarcową wewnętrzną (5). Wydłużenie
badanej próbki względem kwarcu jest przenoszone mechanizmem
(9) na bęben rejestrujący z mechanizmem zegarowym (11).
Próbkę ogrzewa się za pomocą grzejników elektrycznych.
Temperaturę próbki mierzono termoparą Fe-konst. przyłączoną
do wskaźnika profilowego do termopar nr 000747. Temperaturę zimnych końców termopary umieszczono tuż przy próbce,
a włożono ją przez specjalnie wykonany otwór w metalowym
zakończeniu drugiego elementu rury kwarcowej wewnętrznej (5).
Pomiar przeprowadzono przy wzrastającej i malejącej temperaturze próbki.

Dla kontroli wydłużenia zamontowano dodatkowo czujnik zegarowy (f-my Keilpart) o dokładności 0,001 mm mocując go sztywno z konstrukcją nośną dilatometru.

Nážkę czujnika wsparto na osi dociskacza próbki (7). Okazało się, że wskazania czujnika były pewniejsze i dokładniejsze niż pisaka (10) obarczonego dodatkowymi błędami przenoszenia wskazań mechanizmu (9). Pomiary właściwe wykonano więc przy użyciu czujnika. C. WYNIKI BADAN

1. Wyniki badań wytrzymałościowych

1.1. Wyniki otrzymane na rozrywarce

Wyniki badań na rozrywarce umieszczono w tabeli 1. W tabeli tej podano też wartość wyliczonego naprężenia rozrywającego 6_r.

1.2. Wyniki badań na zginarce

1.2.1. Omówienie ogólne

Zginarkę do badań wytrzymałościowych szkła wykonano wg projektu autora. Konstrukcję nośną wykonano w Warsztacie Wydziałowym Wydziału Mechanicznego Politechniki Wr., oprzyrządowanie i grzejniki wykonano we własnym zakresie.(Patrz rys.22).

Opis działania zginarki, charakterystykę przyrządów i przebieg pomiaru umieszczono w poprzedniej części opracowania.

Pomiary przeprowadzone na zginarce były pewne i powtarzalne, tzn.jeśli zdjęto obciążenie badanej próbki i pomiar przeprowadzono ponownie, to uzyskano prawie identyczny przebieg ugięć. Odchyłki nie przekraczały 0,02 mm, a więc prawie w dokładności odczytu skali.

Cięte diamentem próbki szkła miały szerokość średnio 20 mm.

Na zginarce były one układane w ten sposób, że krawędź, na której przesuwano diament podlegała ściskaniu (dla wykluczenia wpływu działania karbu pochodzącego od rysy cięcia). W celu skontrolowania czy obrzeża cięte nie mają wpływu na

- 49 -

wartość naprężeń rozrywających \mathcal{O}_r , wykonano badania kontrolne, tnąc z tej sąmej tafli szkła próbki o szerokości ok.10 mm i 30 mm. Próbki te zostały złamane na zginarce i wyniki pomiarów załączono w tabeli 3.

1.2.2. Tabela wyników

Wyniki pomiarów właściwych umieszczono w załączonej tabeli 2. Wyniki pomiarów kontrolnych w tabeli 3.

1.2.3. Wykreślne przedstawienia niektórych wyników badań.

W celu sprawdzenia stałości modułu Yunga dla próbki o danej temperaturze nakreślono przebieg zginania na wykresach. Wykonano po l wykresie dla każdej temperatury. (Seria pomiarów dla danej temperatury wynosi ok.12 pomiarów).

Jak wynika z wykresów, przy danej dokładności pomiąru nie daje się zauważyć wyraźnych zmian modułu wydłużalności podłużnej w czasie zginania, co jest zgodne z przyjęciem szkła jako ciąła kruchego.

2. Wyniki badań rozszerzalności termicznej szkła

Pomiary wykonano na dilatometrze (patrz rys.23). Przebieg pomiaru opisano poprzednio w rozdziale B poz.3.

2.1. Wyniki badań

Wyniki pomiarów umieszczono w tabeli 4.

2.2. Wyniki pomiarów wykreślnie

Z wykresów umieszczonych na rys.28 + 31 widać, że w początkowej fazie pomiaru temperatura rośnie, a nie ma wzrostu wydłużenia próbki, pod koniec pomiaru, gdy temperatura próbki spada, też nie stwierdza się zmniejszenia wydłużenia.

Przebieg taki wynika ze zjawiska, które można nazwać histerezą termiczną przyrządu.

Jak widać z rysunku (23) długość próbki badanej stanowi ok. 10% długości rur kwarcowych. Podczas nagrzewania rośnie naprzéd temperatura rury zewnętrznej, a później temperatura próbki i rury kwarcowej wewnętrznej. Pole temperaturowe nie jest ustalone i istnieje minimalna różnica temperatur między obiema rurami, której na początku pomiaru nie było. W tym czasie mimo wyraźnego wzrostu temperatury próbki przyrząd wydłużenia nie wskazuje, gdyż jest ono skompensowane wydłużeniem długiej rury kwarcowej zewnętrznej względem rur kwarcowych wewnętrznych i próbki. Dopiero po ustaleniu się profilu pola temperaturowego w przestrzeni przyrząd zaczyna wskazywać właściwe wydłużenia. Odwrotnie przebiega zjawisko przy studzeniu próbki.

Oprócz omówionej histerezy termicznej przyrządu istnieje także histereza mechaniczna wynikająca z oporów tarcia mechanizmów przenoszących wydłużenie. Jest ona jednak miewielka w porównaniu z omówioną poprzednio. Wielkość histerezy mechanicznej zbadano przez dodatkowy docisk ręką dociskacza próbki. Wielkość jej wynosi kilka tysięcznych milimetra, zaś histereza całkowita odczytana z wykresów (tj.termiczna + mechaniczna) wynosi ok.0,06 mm. Współczynnik liniowej wydłużalności termicznej szkła wyliczono na podstawie interpolacji liniowej wyników pomiarów na wykresie. Interpolacja wyników daje wyniki praktycznie takie same przy rosnącej i malejącej temperaturze. Dlatego do wyliczenia wartości średnich użyto wyników pomiarów przy rosnącej temperaturze.

- 51 -

3. Wyniki badań przebiegu studzenia

- 3.1. Wykresy przebiegu studzenia zdjęte przy użyciu stosu górnego podano na rys. 32 + 41.
- 3.2. Wykresy przebiegu studzenia zdjęte przy użyciu stosu termopar dolnego podano na rys.42 4 51.
- 3.3. Rejestracja przebiegu powstawania pęknięć. Odbitki z wycinków taśmy filmowej, na której rejestrowano przebieg powstawania pęknięć załączono na rys.nr 70.
- 3.4. Pomiar temperatur na urządzeniu podstawowym. Omawia się tutaj pomiar temperatur z wykluczeniem pomiaru temperatury powierzchni próbki, dokonywanego przy użyciu stosu termopar górnego i dolnego.
- 3.4.1. Schemat kluczowy połączenia termopar załączony na rysunku nr 52.
- 3.4.2. Wyniki pomiarów temperatur.

Wyniki pomiarów temperatur mieszczono w tabeli nr 5.

Oznaczenia temperatur wg schematu kluczewego umieszczonego na rys. 52. D. OBLICZENIA

 Obliczenie naprężenia rozrywającego 6 oraz niektórych wartości współczynnika sprężystości podłużnej 5 z wyników pomiarów na rozrywarce.

1.1. Obliczenie naprężenia rozrywającego 6 "

$$G = \frac{P_r}{r} kG/mm^2$$

F = s,x h mm² przekrój poprzeczny próbki rozrywanej

Wyniki obliczeń unieszczono w tabeli 4. Tam też umieszczono wyliczone poniżej niektóre wartości współczynnika sprężystości podłużnej .

1.2. Orientacyjne obliczenie współczynnika sprężystości podłużnej .

$$E = \frac{\Delta P \cdot 1}{F \cdot \Delta l_{\text{sr}}^2} \text{ kG/mm}^2$$

AP - przyrost obciążenia w kG

Al sr mm- średni przyrost wydłużenia odczytany na czujnikach wywołany przyrostem P

1 mm - długość początkowa próbki

F mm² - przekrój poprzeczny próbki

1.2.1. Obliczenie dla pomiaru 15 (z tabeli 4)

$$10^3 \cdot 41 = \frac{65 + 43}{2} = 54$$
 mm

1 = 130 mm

1.2.2. Obliczenie dla pomiaru ll

$$\Delta 1_{\text{sr}} = \frac{78 + 48}{2} \cdot 10^{-3} = 0,063 \text{ mm}$$

$$E = \frac{53 \cdot 130}{24, 7.0, 063} = 4460 \text{ kG/mm}^2$$

1.2.3. Obliczenie dla pomiaru 1

$$\Delta 1_{\text{sr}} = \frac{45 + 18}{2} \cdot 10^{-3} = 0,0315$$
 mm

$$E = \frac{(38,8-2).130}{21,4-0,0315} = 7100 \text{ kG/mm}^2$$

1.2.4. Obliczenie dla pomiaru 2

$$\Delta 1 = \frac{90 + 10}{2} \cdot 10^{-3} = 0,050 \text{ mm}$$

$$\frac{(43-2)\cdot 130}{22,2\cdot 0,05} = 4820 \text{ kG/mm}^2$$

Jak widać wartośći na E uzyskanæ z pomiarów przeprowadzonych na rozrywarce są rozstrzelone, a więc pomiary te nie mogą stanowić podstawy do określenia E_{ir} .

> 2. Obliczenie naprężenia rozrywającego 6 oraz współczynnika sprężysteści podłużnej E z wyników badań na zginarce.

Do obliczeń przyjęto model ugięcia belki swobodnej obciążonej dwoma siłami P1 i P2 Z "Poradnika Mechanika" str. rok wydania

Żeby użyć omawianego modelu do badań na zginarce użytej do pomiarów trzeba przyjąć

$$P_1 = P_2 = \frac{P_T}{2}$$
, $q = b$, $d = e$, $f = f_T$

wtedy

$$f_{r} = \frac{\frac{1}{2}(P_{r} \cdot a^{2} \cdot e^{2} + P_{r} \cdot a^{2} \cdot e^{2})}{3 E I 1} = \frac{1}{3} \frac{a^{2} e^{2} P_{r}}{1 E}$$

stąd

$$\mathcal{E} = \frac{1}{3} \frac{\mathbf{a}^2 \mathbf{e}^2}{1} \frac{\mathbf{P_r}}{\mathbf{If}} = \frac{\mathbf{c}}{\mathbf{I}} \cdot \frac{\mathbf{P_r}}{\mathbf{f_r}} \mathbf{k} \mathbf{G}/\mathbf{mn}^2$$

gdzie

$$\mathbf{c} = \frac{1}{3} \frac{\mathbf{a}^2 \mathbf{e}^2}{1} = \frac{1}{3} \frac{70^2 \cdot 130^2}{200} = 138017 \quad \mathbf{m}$$

I - moment bezwładności przekroju względem osi obojętnej zginania mm⁴

2.1. Wyniki obliczeń 6 i E (podane na załączonej tabeli 6)

2.1.1. Zestawienie wartości średnich (z tabeli 6)

Tabela 75

Lp	'! ! t !			6 _r		10 ³ Er		
		1 kG/mm2	1% bł.!	kG/mm ²	!%błąd!	-	1%błąd	
1	20	8014 - 56	0,70	6,84 ± 0,25	3,65	0,853 +0,032	3,75	
2	120	7686 📩 55	0,72	6,78 ± 0,21	3,10	0,882 ±0,028	3,16	
3	220	7401 ± 71	0,96	6,63 1 0,15	2,26	0,895 ±0,022	2,46	
4	320	7205 ± 70	0,97	6,67 ± 0,29	4,35	0,927 ±0,041	4,42	

2.2. Wyniki obliczeń 6 r i E badań kontrolnych (zał.obok w tabeli 8)

2.2.1. Zestawienie wartości średnich kontrolnych

Tabela 9

Lp	¦ ≵t	6 r	! Uwagi
	1 00	! kG/mm2	
1	24	6,87	próbki szer. śred. 10 mm
2	20	6,78	próbki szer. śred. 30 mm

3. Obliczenie współczynnika rozszerzalności liniowej szkła

Obliczenie przeprowadzono w oparciu o interpolację graficzną wykonaną na wykresach wydłużeń (rys.28 + 32)

3.1. Obliczenie wyników pomiaru 1 (rys.28) Z wykresu odczytano A1 = 192 . 10⁻³ mm t = 359 °C odpowiada 18 mV t = 90 °C odpowiada 4,4 mV At = 269 °C $\beta_{1} = \frac{1}{1} = \frac{192 \cdot 10^{-3}}{78 \cdot 269} = 9,125 \cdot 10^{-6} = \frac{1}{10}$ B - współczynnik rozszerząlności liniowej względem l w kwarcu 1 - długość próbki w mm 4 t - różnica temperatur powodująca przyrost długości/1 3.2. Obliczenie wyników pomiąru 2 (z rys. 29) Z wykresu odczytano $41 = 202 \cdot 10^{-3}$ mm t = 359 °C - 17,8 mV t_= 91 °C - 4,45 mV ∆t = 268 °C $\beta_{2} = \frac{202.10^{-3}}{78.268} = 9,65.10^{-6} \frac{1}{10}$ 3.3. Obliczenie wyników pomiaru 3 (z rys. 30) Z wykresu odczytano 41 = 193.10⁻³ mm tg = 359 °c - 18 mV $\frac{t_1 = 94 \circ C - 4,6 mV}{4t = 265 \circ C}$

- 57 -

$$\beta_{3} = \frac{193.10^{-3}}{68, 2.265} = 9,31.10^{-6} \frac{1}{10}$$

3.4. Obliczenie wyników pomiaru 4 (z rys. 31)

Z wykresu odczytano

$$\Delta 1 = 189 \cdot 10^{-3} \text{ mm}$$

 $t = 359^{\circ}\text{C} - 18 \text{ mV}$
 $\frac{2}{2} \frac{1}{2} = 92^{\circ}\text{C} - 4,5 \text{ mV}$
 $\Delta t = 267^{\circ}$
 $\beta_4 \text{ w} = \frac{189 \cdot 10^{-3}}{78 \cdot 2 \cdot 267} = 9,05 \cdot 10^{-6} \frac{1}{10}$

3.5. Obliczenie średniej wartości współczynnika rozszerząlności liniowej względem kwarcu A_{w (o} -270)

$$\beta_{\rm W} = \frac{\frac{5}{4}\beta_{\rm I}}{4} = 10^{-6} \cdot \frac{9,125 + 9,65 + 9,31 + 9,05}{4}$$
$$= 9,284 \cdot 10^{-6} \frac{1}{1^{\circ}}$$

3.6. Obliczenie współczynnika rozszerzalności liniowej kwarcu (topionego) /3_k

Na podstawie danych pomiarowych umieszczonych w podręczniku "Tepłofiziczeskie Swoistwa Wieszczestw# wyd.1956 r. str.327 tablica 14-11 dla kwarcu topionego, zakładając liniową zmianę średniego współczynnika rozszerzalności liniowej, ułożono wzór $10^6 \cdot \beta_{k_{0-1}} = 0,4955 \pm 0,000045 t$ $\frac{1}{10} \cdot$

Dla zakresu pomiarowego średnio 0 + 270 °C $\beta_{\rm k} = (0,4955 + 0,000045 \cdot 270) \cdot 10^{-6} = 0,516 \cdot 10^{-6}$

$$(0,4955 + 0,000045 \cdot 270) \cdot 10^{-6} = 0,516 \cdot 10^{-6} = 1^{-6}$$

$$\beta = \beta_{W} + \beta_{k} = (9,284 + 0,516) \cdot 10^{-6} = 9,80 \cdot 10^{-6} \frac{1}{10}$$

4. Obliczenie średniej temperatury próbki przed studzeniem na urządzeniu podstawowym i średnich temperatur zimnych końców stosów termopar.

Obliczenia dokonano na podstawie danych w tabeli 5.

z tabeli 3 t_{8 śr} = 275,6 °

temperaturę tę odczytano na wskąźniku profilowym do termopary Fe-ko nr 2508514 do którego przyłączono termoparę Cu-ko, której charakterystyka jest podana na rys.79.

> temperaturze odczytanej 275,6°C odpowiada na charakterystyce wskaźnika umieszczonej na rys.78 mapięcie 14,8 mV. Napięciu temu z wykresu na rys.79 odpowiada Δ t₈ = 293 °C, czyli średnia temperatura powietrza po stronie dolnej płytki badanej t₈ °C.

 $t_8 = 4t_8 + t_0 = 293 + 21 = 314$ °C z tabeli 5 $t_{11 \text{ śr}} = 220,5$ °C

temperaturę tę (t_{11 śr}) edczytano na tym samym wskąźniku przy użyciu termopary Fe-ko o charakterystyce umieszczonej ng rys.85.odczytanej temperaturze 220,5 °C odpowiada na rys. 78 napięcie 11,7 mV. Temu napięciu na rys.85 odpowiada różnica temperatur A t = 237 °C, co przy tempemperaturze oto-11 czenia równej 21 °C daje

 $t_{11} = A t_{11} + t_0 = 237 + 21 = 258 ° C$

4.2. Obliczenie średniej temperatury zimnych końców stosów termopar

Obliczenia dokonano na podstawie pomierzonych danych z tabeli 5

4.2.1. - stosu gornego

$$t_{z k \text{ sr}}^{g} = \frac{t_{5} + t_{7}}{2} = \frac{73,9 + 77,1}{2} = 75,5 \text{ °C}$$

Srednią temperaturę zimnych końców stosu górnego obliczono na podstawie pomierzonych średnich wartości t₅ i t₇ odczytanych na wskaźniku profilowym nr 2203146, do którego przyłączono termoparę Cu-ko

 średniej wartości 75,5 °C odpowiąda na charakterystyce wskąźniką umieszczonej na rys. 77 napięcie
 V = 1,05 mV, a temu napięciu z rys. 79 odczytuje się przynależny przyrost temperatury 4 t^g = 27 °C z,k
 A więc temperatura zimnych końców stosu termopar

$$t_{z,k}^{g} = 4 t_{z,k}^{g} + t_{o} = 27 + 21 = 48 °C$$

4.2.2. - stasu dolnego

$$t_{2,k \text{ śr}}^{d} = \frac{t_2 + t_{10}}{2} = \frac{89,2 + 86,8}{2} = 88$$
 °C

 średniej wartości temperatury zimnych końców stosu dolnego 88 °C odpowiada na charakterystyce wskaźnika na rys. 77 napięcie V = 1,45 mV. Temu napięciu z rys. 83 odpowiada 4 t^g_{z.k} = 37 °C, czyli

$$t_{z,k}^{a} = \Delta t_{z,k}^{d} + t_{o} = 37 + 21 = 58 \circ_{C}$$

4.3. Obliczenie średniej temperatury próbki szkła przed studzeniem

- na podstawie pomierzonych temperatur ustalono niżej

Ze względu na podobny układ prądów konwekcyjnych pod i nad badaną płytką szkła co jest następstwem poziomego położenia płytki i sposobu jej ogrzewania, oraz wobec zbliżonych temperatur warstw granicznych po obu stronach przyjmuje się $\alpha_1 = \alpha_p$

Na podstawie przybliżonej oceny opisów przejmowania i przewodzenia orientacyjnie przyjmuję

$$v_1 = v_2 = \frac{t_8 + t_{11}}{2} = \frac{314 + 258}{2} = 286 ^{\circ}c$$

i przeprowadzam obliczenie dla przypadku konwekcji swobodnej bez zmiany fazy.

4.3.1. Określenie wielkości pomocniczej X, wykł.potęgo-

wego i, oraz stałej c

$$X = V \cdot P_r \left(\frac{\sqrt{z}}{h}\right)^{-3} = Gr \cdot Pr$$

- 61 -

przedstawiony rozkład temperatur

h - mniejsza szerokość badanej płytki szkła = 0,096 m dla średniej temperatury warstwy przyściennej (granicznej) t w.gr

$$t_{w gr} = \frac{t_8 + \sqrt{1}}{2} = \frac{314 + 286}{2} = 250 \ c$$

z tablicy 6. na stronie 712 podręcznika "Ruch ciepła i wymienniki" T.Hoblera

 $g = 0,653 \text{ Nkg/m}^{3}$ $= 0,249 \text{ kcal/Nkg l}^{9}$ $10^{2} = 3,42 \text{ kcal/m h l}^{0}$ $10^{2} = 10,06 \text{ Nkg/m h l}^{0}$ $P_{r} = 0,722$

 $v_{z}^{r} = \left(\frac{n}{g_{g}^{2}}\right)_{3}^{\frac{1}{3}} = \left(\frac{10.06^{2} \cdot 10^{-4}}{9.81.3600^{2} \cdot 0.653^{2}}\right)^{\frac{1}{3}} = 0.000571 \text{ m}$

$$V = \beta_{At} = \frac{1}{T_{W gr}} \cdot At = \frac{1}{273, 2 + 250} (314 - 286) = 0,0535$$

$$X = 0,0535.0,722(\frac{0,000571}{0,096})^{-3} = 1,86.10^9 > X_{gr} = 10^9$$

Dla danego zakresu wartości pomocniczej X z tablic 3-18 ha str.227 i 3-19 na str.228 dla ściany poziomej

 $i = \frac{1}{3}$ c = 0,14

4.4.2. Obliczenie współczynnika przejmowania ciepła

Do obliczeń wykorzystuję wzór uproszczony dla ściany pienowej (przy i = $\frac{1}{3}$; c = 0,135) - Hobler str 231 przy czym współczynnik A oblicza się stosując poprawkę

$$A = A' \cdot \frac{0,14}{0,135}$$

z tablicy 3-22 ha str.231 (Hobler) dla t = 250 °C

stąd

$$\alpha_{\rm k} = 0.91 \cdot \frac{0.14}{0.135} \cdot (286 - 258)^3 = 2.89 \text{ kcal/m}^2 \text{ h l}^9$$

Przeliczając wartość współczynnika przejmowania ciepła ze wzoru przybliżonego przytoczonego w podręczniku S.Ochęduszko tom III str.llo wzór L-76 b

$$\alpha_{\rm k} = 3,35 \ (n^{\rm L} - t)^{0,25} = 3,35.28^{0,25} = 7,7 \ \rm kcal/m^2h \ l^{\circ}$$

Sądżąc po wykładniku potęgowym $\frac{1}{4}$ wzór L-76 b odnosi się być może do zakresu GrPr = 10 \neq 10⁹ (co nie jest maakcentowane w podręczniku), lecz do dalszych obliczeń przyjąłem $\mathcal{M}_{1_k} = \mathcal{M}_{2_k} = 7,7$ kcal/m²h 1⁰, jako wartość bardziej niekorzystną w omawianym poniżej zagadnieniu, wykazując dalej,że nawet w tym przypadku można zaniedbać spadek temperatury w płytce. Ponieważ płytka szkła jest cienka, a temperatury ścian urządzenia badawczego zbliżone są do temperatury badanej próbki szkła (ściany izolowane), można pominąć wpływ promieniowania na wielkość współczynnika przejmowania ciepła czyli $\mathcal{A} \cong \mathcal{A}_k = 7,7$ kcal/m²h 1⁰ 4.3.3. Obliczenie temperatur ścian $\sqrt[n]{1}$, $\sqrt[n]{2}^{\circ}$ C Opory cieplne warstw granicznych i płytki $R_{N_1} = \frac{1}{\alpha_4} = \frac{1}{7,7} = 0,13 \text{ m}^2\text{h} 1^{\circ}/\text{kcal}$ $R_{\lambda} = \frac{\alpha}{\lambda} = \frac{0,003693}{0,715} = 0,00517 \text{ m}^2\text{h} 1^{\circ}/\text{kcal}$ $R_{\lambda} = \frac{1}{\alpha_2} = R_{\lambda_1} = 0,13 \text{ m}^2\text{h} 1^{\circ}/\text{kcal}$ $R_{\mu} = 0,13 + 0,00517 + 0,13 = 0,26517 \text{ m}^2\text{h}^{\circ}/\text{kcal}$ $\sqrt[n]{1} = t_8 - \frac{R_{\lambda_1}}{R_k}(t_8 - t_{11}) = 314 - \frac{0,13}{0,26517}(314-258) = 286,5 ^{\circ}C$

$$\sqrt{\frac{2}{2}} = \sqrt{\frac{1}{1} - \frac{R_{\lambda}}{R_{k}}(t_{8} - t_{11})} = 286,5 - \frac{0,00517}{0,26517}(314 - 258) = 285,5 ^{\circ}C$$

4.3.4. Przyjęcie temperatury próbki szkła przed studzeniem $\sqrt{2}$ °C $\sqrt{1}$ + $\sqrt{2}$ 286,5 + 285,5 = 286 °C

Przyjęto temperaturę badanej próbki szkła na początku studzenia jako wielkość stałą na całej grubości płytki wynoszącą 286 ⁰C

Uzasadnienie:

Przyjmując niekorzystniejsze warunki obliczeniowe dochodzimy do wniosku, że całkowity spadek temperatury na grubości badanej próbki wynosi 1°, a więc w granicach wartości bezwzględnego błędu pomiaru temperatury wynoszacego ok.1°C. Różnica

١

temperatur w badanej próbce powodująca pękanie termiczne szkła jest rzędu 100°C, a więc przyjęcie tautotermicznego pola temperatury płytki na początku pomiaru nie spowoduje w określeniu wielkości naprężeń błędu większego niż 0,5 %.

5. Obliczenie gęstości substancjalnej St. NkG/m³

Pomiaru dokonano ważąc płytkę szkła lustrzanego w temperaturze 20°C

Dane	zmierzone: waga płytki	- G	=	414,78	g = / NG
	grubość płytki w narożach	-b1	-	3,39	mm
		32	=	3,21	mm
		^b 3	-	3,48	mm
	and the second second	84	-	3,57	mm
	gługość płytki	11	-	222,2	mm
	szerokość płytki	1,	=	211,2	mp ma

5.1. Obliczenie objętości płytki

 $b_{sr} = \frac{\sum b_i}{4} = 3,412 \text{ mm}$ V = 222,2 · 211,2.3,412 = 160200 mm³ 5.2. Obliczenie gęstości substancjalnej *S* 20

$$\beta_{20} = \frac{1}{v} = \frac{414,78}{160200} \cdot 10^6 = 2589 \approx 2590 \text{ Nkg/m}^3$$

5.3. Ustalenie zależności gęstości substancjalnej od temperatury P

- z obliczeń 3,7 współczynnik rozszerzalności liniowej szkła $\beta = 9,80.10^{-6} \frac{1}{10}$, stąd

$$S_{t} = S_{20} \frac{1}{1 + 3\beta(t - 20)} = \frac{2590}{1 + 0,0000294(t - 20)} NkG/m^{3}$$

6. Obliczenia kontrolne pomierzonych przebiegów temperatur na oscylografie pętlicowym

6.1. Pomierzenie całkowitego wychylenia plamki świetlnej na papierze oscylograficznym

Tabela 10

-	Lp	stosu dol- nego Ahc mm	Nr pomiaru	stosu górnego Ahc mm	Nr pomiaru	Uwagi
-	1	56,0	45	36,0	20	
	2	54,0	30	31,5	19	
	3	47,5	49	38,0	38	
	4	58,5	43	30,5	51	
	5	56,5	46	36,0	34	
	6	56,0	28	36,5	37	
	7	51,0	42	35,0	36	
	8	53,5	29	37,0	40	
	.9	54,0	47	35,5	39	
9	10	56,0	48	36,0	33	
		54,3	4	35,2		Wartości średnie

6.2. Obliczenie spadków temperatur odpowiadających pomierzonym wychyleniom średnim plamki świetlnej.
6.2.1. Pomiar stosem górnym

stała pętliczki a = 3,9 mm/mA Sredniemu wychyleniu plamki świetlnej $\Delta h_c^g = 35,2$ mm odpowiada prąd wyjściowy ze wzmacniacza.

$$A = \frac{35,2}{3,9} = 9,03 \text{ mA}$$

Prądowi 9,03 mA na wyjściu ze wzmacniacza odpowiada bodziec na wejściu V mV

- 67 -

 $V = Y \cdot A = 6,12.9,03 = 55,2 \text{ mV}$ Y = 6,12 mV/mA przełożenie wzmacniacza

Napięcią stosu termopar V = 55,2 mV odpowiada różnica temperatur odczytana z wykresu (rys.nr 84)

$$A t_{g} = 90,5^{\circ}C$$

6.2.2. Pomiar stosem termopar dolnym

Wychylenia Plamki $Ah_c^d = 54,3 \text{ mm}$ odpowiada prąd wyjściowy $A = \frac{54,3}{3,9} = 13,92 \text{ mA}$

Prądowi temu odpowiada bodziec na wejściu

Dla napięcia bodźca 85,2 mV odczytuję spadek temperatury z wykresu na rys 82.

$$\Delta t_{a} = 146,5$$
 °C

Spadek ten odczytano z wykresu od przyrostu temperatury na początku pomiaru tj.temperatury początkowej stosu 286 °C pomniejszonej o temperaturę zimnych końców wynoszącą 58°C

6.3. Obliczenie średniego spadku temperatury powierzchni próbki od chwili podniesienia pokrywy osłaniającej do momentu zetknięcia się próbki ze studzącą płytką dociskową górną (tj.w okresie wstępnym)

6.3.1. Pomierzenie z wykresów oscylograficznych spadków temperatur oraz czasów, w których te spadki zachodzą.

Tabela 11

Lp	! h _o !spadek ! mm	lczasie 2	szybkość spadku i 14W i sec i	Nr pomiaru i	Uwagi !
1	2,0	0,24	8,33	49	
2	6,5	0,62	10,50	42	
3	11,0	0,84	13,10	29	
4	8,0	0,76	10,50	45	
5	8,0	0,76	10,50	30	
6	8,0	1,20	6,66	47	
7	8,5	0,98	8,68	48	
8	7,5	1,00	7,50	46	
9	10,0	1,12	8,93	28	
10	7,0	1,02	6,86	43	
	7.65	0.854	9.16		wartości

6.3.2. Obliczenie spadku temperatury powierzchni

w okresie wstępnym.

- średniej wartości szybkości spadku wychylenia plamki świetlnej odpowiada szybkość spadku natężenia prądu

 $\Delta A' = \frac{\Delta W}{R} = \frac{9,16}{3,9} = 2,35 \text{ mA/sec}$

to z kolei odpowiada szybkości spadku napięcia o 4 V'

ΔV'= Δ A.Y = 2,35.6,12 = 14,39 mV/sec

ten spadek napięci a odpowiada szybkości spadku temperatury odczytanemu z wykresu na rysunku nr 82 Δ_{\pm} ; = 24,5 °C/sec

Sredni czas upływający od chwili podniesienia pokrywy do chwili zetknięcia próbki szkła z płytką dociskową górną wynosi C= 0,854 sec. W tym czasie spadek temperatury powierzchni wyniósł

4 t = 4 t'. 2 = 24, 5.0, 854 = 21 °C

6.4. Rysunek przebiegów temperatur

Zestawienie pomierzonych przebiegów temperatur wykreślono pomiżej na rys.56.

7. Obliczenie odstępów czasów 42 zgodnie z metodą Schmidta-Bindera (patrz str.28.)

7.1. Dane pomierzone

Gęstość substancjalna średnia w zakresie temperatur 20 - 300 °C ze wzoru nz str 66

920-300 = 2570 Mkg/m³

średnia grubość badanych płytek

b = 3,693 mm

Z podręcznika "Tepłofizyczeskije Swoistwa Weszczestw" wyd.1956 r. dla szkła lustrzanego z tabeli 14 - 10 na str.327

> ciepło właściwe $c_p = 0,186 \text{ kcal/Nkg l}^{\circ}$ współczynnik przewodzenia ciepła $\partial = 0,715 \text{ kcal/m h l}^{\circ}$ przyjęto wartość średnią z podanych wartości granicz.

7.3. Obliczenie

7.3.1. Współczynnik przewodzenia temperatury

$$a = \frac{\lambda}{c_{\rm p} S} = \frac{0,715}{0,186.2570} = 1,495.10^{-3}$$

7.3.2. Odstępy Al czasu dla okresu wstępnego

Dla tego okresu przyjęto podział ścianki na 20 warstw o grubości jednej warstwy ^A x

$$A x_{1} = \frac{3,693}{20} = 0,1846 \text{ mm} = 1,846.10^{-4} \text{ m}$$

$$A l_{1} = \frac{x_{1}^{2}}{2a} = \frac{1,846^{2}.10^{-8}}{2.1,495.10^{-3}} = 1,142.10^{-5} \text{ h}$$

*∆l*²₁ = 0,0411 sec

1

7.3.3. Odstępy At 2 czasu dla okresu podstawowego

Dla tego okresu przyjęto podział ścianki na 40 warstw o grubości jednej warstwy 4 x₂

$$4 x_2 = \frac{3,693}{40} = 0,0923 \text{ mm} - 0,923.10^{-4} \text{ m}$$

$$\Delta \mathcal{L}_{2} = -\frac{x^{2}}{2a} = \frac{0.923^{2} \cdot 10^{-8}}{2 \cdot 1,495 \cdot 10^{-3}} = 0,2863 \cdot 10^{-5} \text{ h}$$

$$\Delta \mathcal{L}_{2} = 0,0103 \text{ sec}$$

8. <u>Obliczenie spadków temperatury studzonej próbki</u> szkła w okresie podstawowym ΔΝ⁻, ^oC oraz całkowitych spadków temperatury ΔΝ⁻ w tym okresie

Obliczeń tych dokonano w tabeli 12 na podstawie pomierzonych odpowiednich wychyleń planki świetlnej na papierze oscylograficznym. Tabelę 12 załączono w dziale VII.

> 9. Wykreślne wyznaczenie rozkładów temperatury i naprężeń 6 w badanej próbce szkła podczas studzenia oraz obliczenie wydłużeń pochodzących od tych naprężeń

Rozkłady te zostały wyznaczone wykreślnie zgodnie z metodą Schmidta-Bindera ha rys. nr 57 i 58. Tabelę obliczeniową wydłużeń nr 13 umieszczono na rys. 58.

10. Wyznaczenie wykreślno-analityczne mamentów gnących pochodzących od sił termicznych, oraz określenie wydłużeń spowodowanych tymi momentami.

Tok obliczenia analitycznego przebiegów momentów gnących w czasie podano w tabeli nr 24. Wyniki z tej tabeli naniesiono na rys.59. Na rysunku tym umieszczono w tabeli fw potrzebnedo nr 15 wyniki obliczeń wydłużeń $\overline{\xi}_{max}$.

> 11. Określenie krytycznego rozkładu temperatur, przez określenie różnicy temperatur na skraju badanej próbki.

W tabeli nr 16 podano tok przeliczenia maksymalnego wydłużenia E_{max} na skrajnej powierzchni próbki w zależności od różnicy temperatur ⊿ t_{skr}.
Na rysunku 60 określono różnicę temperatur, przy której dochodzi do krytycznego rozkładu temperatur. Różnica ta odczytana z rys.60 wynosi 96 °C.

E. OBLICZENIE BLEDOW W OKRESLENIU NIEKTORYCH

WIELKOSCI

 Obliczenie rozbieżności średniej arytmetycznej wyników pomiarów doraźnego naprężenia rozrywającego przy zginaniu 6 oraz współczynnika sprężystości podłużnej E.

Obliczenia te przedstawiono w tabelach 48 + 21.

2. Obliczenie błędu z jakim określono współczynnik wydłużalności mechanicznej przy rozerwaniu \mathcal{E} r

Współczynnik ten obliczono ze wzoru $\mathcal{E}_r = \frac{6_r}{E}$, gdzie \mathcal{E}_r zmierzono z błędem \mathcal{O}_{rG} zaś E z błędem \mathcal{O}_{rE} . Błąd wartości \mathcal{E}_r obliczono ze wzoru

$$\mathcal{O}_{\mathcal{E}}^{\ell} = \frac{1}{2} \left[\left(\frac{\partial \mathcal{E}}{\partial i} \mathcal{O}_{i}^{\ell} \right)^{2} = \frac{1}{2} \left(\frac{\partial \mathcal{E}}{\partial i} \right)^{2} + \left(\frac{\partial \mathcal{E}}{\partial i} \right)^{2} + \left(\frac{\partial \mathcal{E}}{E^{2}} \right)^{2} \right]$$

2.1. Obliczenie dla pomiarów przeprowadzonych przy t = 20°C

$$\mathcal{L}_{\mathcal{E}_{20}} = \sqrt{\left(\frac{1}{8014} \cdot 0, 25\right)^2} + \left(\frac{6,84}{8014^2} \cdot 56\right)^2} = \frac{1}{2} 0,000032$$

2.2. Obliczenie dla pomiarów przeprowadzonych przy t = 120°c

$$\sigma_{\mathcal{E}_{120}} = \sqrt{(\frac{0,21}{7686})^2 + (\frac{6,78.5,5}{7686^2})^2} = \frac{1}{2} 0,000028$$

2.3. Obliczenie dla pomiarów przeprowadzonych przy

$$t = 220 \, ^{\circ}C$$

 $\mathcal{L}_{220} = \sqrt{\left(\frac{0.15}{7401}\right)^2 + \left(\frac{6.63.71}{7401^2}\right)^2} = \frac{1}{2} \, 0.000022$
2.4. Obliczenie dla pomiarów przeprowadzonych przy
 $t = 320 \, ^{\circ}C$
 $\mathcal{L}_{320} = \sqrt{\left(\frac{0.29}{7205}\right)^2 + \left(\frac{6.67.70}{7205}\right)^2} = \frac{1}{2} \, 0.000041$

3. <u>Obliczenie błędu *Br* pomiaru współczynnika średnie-</u> go wydłużalności termicznej <u>B</u>

Tabela 22

Lp	10°, Bw	! ! D !	10 ⁶ b ²	! obliczenia ! ! l !	Uwagi
1	9,125	-0,159	25 281	$\int_{\beta} = \frac{214669}{3} \cdot 10^{-6} =$	
8	9,650	+0,366	133956	= ± 0,268	
3	9,310	+0,026	676	$\int_{3^{12}}^{\infty} \frac{0.268}{4} = \pm 0,134$	
4	9,050	-0,234	54756		
	37,135	-0,001	214669		suma
	9,284				średnio

 $B_{\rm W} = (9,294 \pm 0,134).10^{-6}$ co daje 1,45 % błędu

 $\beta = \beta_{W} + \beta_{kW} = (9,8 \pm 0,134) \cdot 10^{-6}$ codaje 1,37 % błędu

Przyjmuję, że ^B obarczone jest tym samym błędem bezwzględnym co ^Bw, gdyż w tablicy 14 - 11 str 323 podręcznika "Tepłofizyczeskije Swoistwa Weszczestw" nie jest podany błąd z jakim przytoczono wartość współczynnika wydłużalności termicznej dla kwarcu topionego ^Bkw.

Przyjmuje się, że rozkład temperatury wewnatrz drutu termopary jest tautotermiczny, co jest uzasadnione wysokimi wartościami współczynnika przewodzenia ciepła A dla metalu (termopara Cu-konst)

- 74 -

Temperatura otoczenia drutów termopary nie jest stała i zmienia się od +15 do +138°C. Do obliczenia orientacyjnego przyjmuję stałą temperaturę otoczenia równą średniej arytmetycznej wynoszącej ok.76°C. Przyjmując th temperature w ten sposób wyliczymy dla okresu poprzedzającego osiakniecie temperatury otoczenia 76°C, większą wartość opóźnienia temperatury od rzeczywiście występującego, zaś dla końcowego przekroju temperatury wartość opóźnienia mniejsza.

Po takich przyjęciach słuszny jest wzór określający czas studzenia drutu zaczerpnięty z podręcznika T.Hoblera "Ruch ciepła i wymienniki" str.110 wzór 2 - 139, który po prostym przekształceniu przyjmuje postać

$$\mathcal{L} = \frac{ge_{s_m}}{\alpha} \ln \frac{\sqrt{-t_0}}{\sqrt{p-t_0}}$$

gdzie t - temperatura otoczenia

 v^{\prime} - temperatura ciała studzonego po upływie czasu zN- - temperatura ciała studzonego na początku N - współczynnik przejmowania ciepła c - ciepło właściwe = F stosunek objętości V studzonego ciała do jego powierzchni zewnętrznej

Dla drutu o średnicy d i długości L przy pominięciu powierzchni czołowych

$$\mathbf{s}_{\mathbf{m}} = \frac{\pi \cdot \mathbf{d}^2 \cdot \mathbf{L}}{4 \cdot \pi \cdot \mathbf{d} \cdot \mathbf{L}} = \frac{\mathbf{d}}{4}$$

Obliczenie przeprowadzam dla drutu miedzianego termopary, który nieco szybciej się nagrzewa co stanowi o faktycznym opóźnieniu wskazań temperatury.

Wg podręcznika Hobler - "Ruch ciepła i wymienniki" z tablicy 14 na str.724 dla miedzi przyjmuję

8 = 8930 NkG/m³

- c = 0,0954 kcal/Nk 1°
- $A = 332 \pm 3 \% \text{ kcal/m h 1°}$

Wielkość współczynnika przejmowania ciepła oblicza się z przebiegu pola temperaturowego na skraju studzonej powierzchni. Dla tej powierzchni obowiązuje wzór

~ Osur = (4g 9)skr

czyli

X= (fg g)skr Non- to

Z rysunku 80 określą się $(tg \mathcal{G}) \approx (\frac{\Delta \mathcal{V}}{\Delta \chi})_{skr}$ Dlą dwu rozkłądów temperatur występujących mniej więcej w środku okresu podstawowego, obliczą się

$$tg\mathcal{P}_1 = \frac{102 - 54}{0,0923.10} = 520.10^3$$

$$tg \mathcal{Y}_2 = \frac{138 - 97}{0,0923.10} = 444.10^3$$

więc

$$\alpha_{1} = \frac{520}{286 - 102 - 76} \cdot 10^{3} = 4800 \text{ kcal/m}^{2} \text{h} 1^{\circ}$$

$$\alpha_2 = \frac{444}{286 - 138 - 76} \cdot 10^3 = 6 200 - 10^3 = -10^3 =$$

średnio przyjmuje się

$$\alpha = \frac{4800 + 6200}{2} = 5500 \text{ kcal/m2k 10}$$

Wstawiając otrzymane wartości do wzoru na 2, otrzymamy

$$\mathcal{T}_{h} = \frac{8930.0,0954.0,00018}{4.5500} \cdot \ln \frac{140 - 76}{286 - 76} = 825.10^{-6} h$$

co stanowi

 $l_{s} = 0,0297 \text{ sec}$

Cały okres podstawowy trwa około 0,17 sec więc opóźnienie bodźca 0,0297 sec stanowi ok 17% tego okresu.

Obliczenie krytycznego rozkłądu temperatur przeprowądzone jest więc słusznie z tym, że wyliczone odstępy czasów są dłuższe ok 17% od rzeczywiście występujących; czyli wyliczony średni spądek temperatury w cząsie jest bezpieczniejszy.

5. Orientacyjne określenie błędu pomiaru temperatury stosem górnym

Jak wynika z rys. 56. na str 69 czas nagrzewania stosu górnego trwa dłużej niż dolnego. Pomiar temperatury powierzchni studzonej płytki szkła dokonany stosem górnym jest pomiarem kontrolnym. Z pomiaru tego wynika, że na końcu okresu studzenia sumarycznybłąd wskazań wynosi 1°, więc bezwzględna wartość tego błędu jest w granicach dokładności pomiaru temperatury termoparą. Natomiast na początku okresu studzenia (tj.w okresie podstawowym i na początku okresu końcowego)błąd wskazania temperatury stosem górnym jest duży i wynika z intensywnego chłodzenia spoin termostosu górnego, co jest wywołane przewodzeniem ciepła wzdłuż drutów termopary. W miarę wyparowywania wody ze skrajnych warstw płytki dociskowej górnej chłodzenie spoin maleje i wskazanie temperatury rośnie do wartości temperatury powierzchni skrajnej płytki. Dla uzasądnienia tych rozważań przeprowadzam poniżej orientacyjne obliczenie błędu pomiaru temperatury wywołanego intensywnym chłodzeniem spoiny termopar na przełomie między okresem podstawowym i końcowym.

Po upływie czasu $\tilde{U} = 0,12$ sec licząc od początku okresu podstawowego średnia temperatura spoin termostosu górnego wyliczona w tabeli nr /7 wynosi $\sqrt[f]{s} = 98^{\circ}$ C. Wynika stąd,że

w tym czasie zachodzi intensywne skraplanie pary na spoinie

Do obliczeń orientacyjnych przyjmuję przejmowanie ciepła przy skraplaniu $\alpha'_1 = 10\ 000\ \text{kcal/m}^2\text{h}\ 1^0$ zaś dla przejmowania ciepła od drutów termopar do wody w filcu $\alpha'_2 = 1000\ \frac{\text{kcal}}{\text{m}^2\text{h}\ 1^0}$

Druty termopar traktuję jako pręty o nieskończonej długości, gdyź ich grubość wynosi 0,18 mm w porównaniu z długością chłodzoną drutu 10 mm. Spoinę termopary traktuję jako kulkę o zmierzonej średnicy $D_{\pm n} = 0,4$ mm.

Przez t oznaczam temperaturę styku płytki szkła z płytką dociskową górną, so stanowi temperaturę otoczenia dla spoiny

- 77 -

- f powierzchnia przekroju poprzecznego drutu termopary m² O - obwód zewnętrzny przekroju f m N² - temperatura spoiny ⁰C
- t temperatura wody chłodzącej otaczającej druty termopary oc

Dla prętów o L = ∞

$$Q_{\lambda x}^{*} = 0 = \sum f \Delta \lambda \Theta_{s} = \Theta_{s}(\sqrt{\alpha_{2} \lambda_{cu} Of} + \sqrt{\alpha_{2} \lambda_{ko} f}) \frac{kcal}{h}$$

Pomijając zmianę entermii pręta wraz ze spoiną wywołaną zmianami temperatury $\sqrt[]{}^{c}$ w porównaniu z ciepłem prząjętym przez spoinę, można napisać na podstawie bilansu energetycznego, źe ciepło przejęte przez zewnętrzną powierzchnię spoiny F_s jest przewodzone u nasady prętów (drutów termopary) i przekazane do wody chłodzącej. Na tej podstawie można napisać

$$t_s - v_s^r = \frac{v_s - t_w}{F_s \alpha_i} \left(\sqrt{\alpha_2 \partial_{e_u} 0f} + \sqrt{\alpha_2 \partial_{e_v} 0f} \right) \circ c$$

po wstawieniu liczb ogólnych

 $t_s - N_s = \frac{N_s - t_w}{\pi D^2 \alpha_1} \left(\sqrt{\alpha_2 n_{eu}} \frac{\pi 2d^3}{4} + \sqrt{\alpha_2 n_{eo}} \frac{\pi 2d^3}{4} \right) c^{0}$

Dane dla miedzi przyjęto jak w obliczeniu 4 miniejszego działu, zaś dla konstantanu po przeliczeniu jednostek A ko= 17,2 kcal/m h l⁰

(Na podstwie danych z Poradnika Materiałoznastwa Elektrotechnicznego wyd 1959 str 137)

Po wstawieniu danych szczegółowych otrzymamy

$$t_{s} = \sqrt{\frac{98-21}{1000.323}} + \sqrt{\frac{98-21}{1000.17,2.\frac{2.0,00018^{3}}{4}} + \sqrt{\frac{1000.17,2.\frac{2.0,00018^{3}}{4}} + 40,5} + \sqrt{\frac{1000.17,2.\frac{2.0,00018^{3}}{4}} + 40,5} + \sqrt{\frac{1000.17,2.\frac{2.0,00018^{3}}{4}} + 40,5} + \sqrt{\frac{1000.17,2.\frac{2.0,00018^{3}}{4}} + 40,5} + 40^{\circ}c}$$

Obliczenie to potwierdza przypuszczenie, że opóźnienie wskazania temperatury mierzonej stosem górnym wynika z intensywnego chłodzenia spoin.

F. WYNIKI BADAN KONTROLNYCH

Z badań tych wynika, że pękanie termiczne następuje przy danym sposobie studzenia płytki szkła jeżeli temperatura skrajnej warstwy obniży się o 97 ± 1. °C

Z obliczeń 11 rozdziąłu D wynika, że winno ono wystąpić, jeżeli obniżenie temperatury wynosi 96 ± 2,6 °C

Różnica między wielkością przewidywaną a pomierzoną wynosi 1 °C co stanowi 104 %

Rozbieżność wyników wyliczonych i pomierzonych można uznać za technicznie dopuszczalną.

Kopie kontrolnych przebiegów temperatur zdjęte na oscylografie załączono w dziale VII pod nr rys. 64,65.

Fetegrafie prébek kentrelnych po studzeniu załączono w dziale VII. str. 162 Pęknięcia wideczno na zdjęciu są przypadkowe, wynikające z działania karbu eraz intensywniejszego nieco studzenia na obrzeżach. Na powierzchni studzenej typowych pęknięć termicznych nie na.

Błąd określenia różnicy temperatur na skraju płytki szkła dokonanego w rozdziale D poz.ll obliczono przy założeniu, że $\mathcal{E}_{\max} = \overline{\mathcal{E}} + \overline{\overline{\mathcal{E}}} + \overline{\overline{\mathcal{E}}} = \overline{\mathcal{E}}$ gdyż $\overline{\mathcal{E}} + \overline{\mathcal{E}} \ll \overline{\mathcal{E}}$ (patrz tabela 16) Ponieważ $\overline{\mathcal{E}} = \beta \Delta t_{skr}$ czyli $\Delta t_{skr} = \frac{\overline{\mathcal{E}}}{\beta}$, stąd

 $\int_{|At|_{r}} \frac{1}{2} \left(\frac{\sqrt{2}r}{3} \right)^{2} + \left(\frac{2}{3^{2}} \right)^{2} = \frac{1}{2} \left(\frac{0,022.10^{-3}}{9,8.10^{-6}} \right)^{2} + \frac{0,895.0,134.10^{-6}}{(9.8.10^{-6})^{2}} \right)^{2}$

= <u>+</u>2,56 = <u>+</u>2,6 °C

(Sr dla Skr ≈ 220 °C przyjęto z tabeli 7 str. 56, zaś Sr z tabeli 22 str. 73).

V. WNIOSKI KONCOWE

Dekohezję cząstek materiału kruchego wywołuje krytyczny rozkład temperatury. Sposób stwierdzenia, czy dany rozkład temperatury spowoduje pęknięcia termiczne, jest podany w części tepretycznej opracowania. Wykonano takie obliczenie w sposób wykreślno-analityczny w części obliczeniowej do przeprowadzonych pomiarów.

W przypadku szczególnym, jakim jest sztywne umocowanie studzonego ciąła kruchego, krytyczny rozkład temperatury sprowadza się do krytycznej różnicy temperatur. Znaczy to, że jeśli będziemy studzić tak umocowane ciąło, a spadek temperatury ciąła przekroczy Δt_{kr} , wtedy nastąpi dekohezja cząstek materiąłu. Równocześnie jest to najmniejsza różnica temperatury mogąca doprowadzić do takiego zniszczenia. (Mowa tylko o naprężeniąch termicznych).

O krytycznej różnicy temperatur można mówić także w przypadku ciała zupełnie swobodnego, ale tylko dla ściśle określonego sposobu studzenia. Znaczy to, że przebieg współczynnika przejmowania ciepła &, oraz przebieg temperatury otoczenia w czasie jest ściśle określony. Wtedy krytyczny rozkład temperatury można poznać po zaistniałej różnicy temperatur w danym punkcie pola temperaturowego. Najwygodniej to uczynić po maksymalnej różnicy temp.w ciele.

W przypadku liniowości rozkładu temperatury uzyskujemy dlą ciała jednorodnego i izotropowego stan beznapięciowy. (Patrz dz.III. str.15). Wtedy ani wielkość spadku temperatury ciała, ani wielkość gradientu temperaturowego nie ma wpływu na powstanie pęknięć termicznych. Występującą w danym ciele różnicę temperatur ograniczają jedynie właściwości fizyczne ciała (temperatura topnienia lub lepkiego płynięcia). Z powyższych rozważań można wysnuć następujące wnioski praktyczne:

1. Jeżeli z jakichś względów nie możemy ocenić swobodneści umocowania, tzn.że istniejące dylatacje nie dają pewności swobodnego odkształcenia się ciała na skutek działań termicznych, bądź nie jesteśmy o tym przekonani, wtedy należy ten przypadek potraktować jako sztywne umocowanie i przy studzeniu nie przekraczać krytycznej różnicy temperatur Δt_{kr} (dla badanego szkła lustrzanego $\Delta t_{kr} = 91$ °C - przy maksymalnej występującej temperaturze 220 °C).

2. Gwałtowne studzenie ściany znajdującej się w stanie beznaprężeniowym, powodujące stromę gradienty temperaturowe na skraju ściany (przy czym zaburzenia temperaturowe wynikające z tego studzenia nie sięgają głębiej niż 15% grubości ściany) można traktować jako zachodzące przy sztywnym umocowaniu. Błąd popełniony na Δ t nie przekroczy 5%.

3. Jeżeli mamy studzić ściąnę znajdującą się w stanie beznaprężeniowym, a poddaną działaniu silnego gradientu temperaturowego (przy czym maksymalna różnica temperatur jest przynajmniej dwukrotnie większa od Δ t_{kr} dla sztywnego mocowania), wtedy bezpieczniej jest początkową fazę studzenia przeprowadzić po stronie niższej temperatury.

- 82 -

Parametry opisujące własności badanego ciała w występującym zakresie temperatur nie były stałe; ale wpływ zmian wielkości tych parametrów na tzw.nieliniowość zjawiska jest technicznie pomijajny. Widać to po zgodności badań kontrolnych z wynikami obliczeń opartymi na liniowości zjawiska.

Dużą zgodność wyników pomiarów kontrolnych należy poza tym przypisać dokładnemu przeprowadzeniu pomiarów, oraz cechowaniu przyrządów użytych do pomiarów.

Wyniki niniejszej pracy można zastosować:

- 1. do bezpośredniego zwiększenia produkcji ciał kruchych np. w przemyśle szklarskim, gdzie szybkość studzenia decyduje o szybkości posuwu taśmy szklanej,
- 2. do określenia pola temp. tej części tunelu odprężającego szkło, gdzie mamy do czynienia już z ciąłem kruchym tj. od temperatur ok.450 + 350 °C w dół, zależnie od gatunku szkła,
- 3. do pośredniego zwiększenia produkcji przez skrócenie czasu postoju urządzeń, warunkowanego czasem studzenia np.w przemyśle metalurgicznym, gdzie po wytopie należy usunąć bieżące uszkodzenia wymurówki,
- Ad 1. Stosując wyniki tej prący można zwiększyć produkcję szkła przez zwiększenie szybkości przesuwu taśmy szklanej. Dokonać tego można stosując dopuszczalną szybkość studzenia w tej części tunelu odprężającego, gdzie temperatury spadną poniżej ok. 400°C (zależnie od rodzaju szkła). Stosowanie tej szybkości pozwoli skrócić długość części tunelu

o niskich temperaturach, a przez to wydłużyć część o wysokich temperaturach, gdzie ulegają zamrożeniu naprężenia, czyli powstają tzw.naprężenia trwałe. Stosując zwiększoną szybkość przesuwu taśmy uzyskamy większą produkcję, a wielkość naprężeń trwałych nie wzrośnie, a to wskutek wydłużenia tej części tunelu, gdzie one powstają i zastosowanie tam nowego, łagodniejszego profilu temperatury. Chogo ocenić ekonomię takiego postupowania należy zbadać istniejący profil temperatur w tunelu i wielkość naprężeń trwałych w uzyskiwanym obecnie produkcie. Następnie istniejący profil temperatur w zakresie wysokich temperatur rozciągnąć na zwiększoną długość tunelu, o długość wygospodarowaną w zakresie niskich temperatur. Z kołbi można zwiększyć szybkość przesuwu taśmy szklanej o tyle, by czas przebywania szkła w tej części tunelu, gdzie zamrażają się naprężenia na skutek krzepnięcia, nie został skrócony.

Ad 2. Do zaprojektowania długości tunelu odprężającego szkło należy znać najekonomiczniejszy profil temperatury w tunelu.Obecnie długość tę projektuje się w oparciu o istniejące urządzenia, a następnie drogą prób i regulacji ustala się profil temperat.

Stosowanie wyników tej pracy pozwoli na określenie teoretyczne tej części profilu temperatury w tunelu, gdzie mgmy do czynienia z ciałem kruchym. To pozwoli na <u>obliczenie</u> długości tej części tunelu odprężającego.

Ad 3. Intensyfikację procesu metalurgicznego można uzyskać skracając czas przestoju urządzeń, konieczny do przeprowadzenia bieżących napraw i konserwacji.

> Wnętrze pieca po wytopie posiada bardzo wysoką temperaturę i naprawy można dokonać dopiero wtedy, gdy temperatura spadnie na tyle, by człowiek mógł tam wejść. Temperatura ta zależy od sposobu ochrony człowieka przeg nagrzewaniem go od gorących ścian.

> Tak więc intensyfikacja procesu metalurgicznego wiąże się tutaj z intensyfikacją studzenia. Stosując zwiększoną szybkość studzenia należy jednak sprawdzić w sposób podany w niniejszej pracy, czy nie jest ona większa od dopuszczalnej.

VI. WYKAZ PRZESTUDIOWANEJ LITERATURY wraz z wykazem literatury podstawowej, którą posłużono się przy wykonywaniu niniejszej pracy.

Lp.	Autor	Tytuł	Rok wydania
1.	Praca zbiorowa	Podstawy szklarstwa t.I	1954
2.	Praca zbiorowa	Podstawy szklarstwa t.II	1955
3.	Henryk Berinson	Jak walczyć z napręże- niami w szkle	1954
4.	Witold Nowacki	Zagadnienia termosprę- żystości	1960
5.	Marek Zakrzewski	Hipoteza złomu krucheg	o 1958
6.	B.E.Gatewood	Temperaturnyje napria- żenia (tłum.z angiel- skiego - tytuł orygina łu Thermal Stresses)	1959
7.	Ernst Melan, H.Parkus	Termouprugłyje napriaż nia wyzywajemyje stacja narnymi temperaturnymi polami	e- 1958 o-
8.	Edmund Karaśkiewicz	Zarys teorii wektorów i tensorów	1958
9.	P.Kobeko	Ciała bezpostaciowe tłum.z rosyjskiego tytuł oryg. "Amorfnyje weszczestwa"	1955
10.	B.G.Koreniew	Niektoryje zadaczi Teorii Uprugosti i tepłoprowodnosti re- szajemyje w Besselewych funkcjach.	1960 1
11.	Ernst Eckert	Einfürung in den Wärme u.Stoffastausch.	1959
12.	Gröber/Erk/Grigull	Warmeübertragung	1955

- 87 -

Lp.	Autor	Tytuł	Rok wyd.
13.	M.Jacob	Woprosy tepłoperedaczi tłum.z ang tytuł oryg. "Heat Transfer"	1960
14.	T.Hobler	Ruch ciepła i wymienniki	1959
15.	Ochęduszko St.	Teoria maszyn cieplnych t.III	1955
16.	Michiejew	Asnowy tepłoperedaczi	1949
17.	M.T.Huber	Wytrzymałość materiałów (Mechanik t.I).	1948
18.	Praca zbiorowa	Poradnik Materiałoznawstwa elektrotechnicznego	1959
19.	Praca zbiorowa	Tepłofizyczeskije swoistwa weszczestw	1956

203 -

Wykaz waźniejszych wzorów zaczerpniętych

z literatury wg.odnośników przy numeracji

wzorów w tekście.

Odnośnik	Autor	Tytuł	str.	nr wzoru w podręcz
1	T.Hobler	Ruch ciepła i wymienniki	101	2 - 107
2	W.Nowacki	Zagadnienia ter- mosprężystości	17	2.1
3	W.Nowacki	Zagadnienia ter- mosprężystości	17	2.2
4	E.Melan, H.Parkus	Termouprugłyje napriażenia wyzy- wajemyje stacjo- narnymi polami	15	2.5
6	_ • • • _		16	2.7
7.	- " -	- n' - n	17	2.10
8.	- " -	- n - n	21	3.2.
9.	B.E. Gatewood	Temperaturnyje na- priażenia	31	-
10.	- " -	- " -	30	1.22
11.	T.Hobler	Ruch ciepła i wy- mienniki	121	2 - 153
12.	P.Kobeko	Ciała bezposta- ciowe	84	7
13	P.Kobeko	Ciała bezposta- ciowe	85	10
14	P.Kobeko	Ciała bezposta- ciowe.	85	12

VII. RISUNET I TABRLE

- 80 -

(nie unieszczone w tekście)

JAZACZNIK I

Wdn - Zani, nr 1120/57 - 1500

3

93 1

31.33

0

Wdn - Zam, at 1120/57 - 1509

3000 St , 0.23A

Opornica suwakowa

Zaciski laboratoryjne

Zaciski osprzętu el.

ø

A

Schemat połączeń elektrycznych na tablicy rozdzielczej.

Rys. 20

Nr. pom. 40

Nr. pom. 33 0.12 0 -Tsec Ah a,12 Ahe 118 hit Rys.nr. 37

Nr. pom. 34

MMMMMMMMMMMMM-stata czasowa

Rys.nc. 60

Pomiar kontrolny 2

Shkt

Pomiar kontrolny 1

Rys.nr. 65

Ahr2

Wyniki pomiarów przeprowadzonych na rozrywarce

Tabela 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	-15	16	-17	18	19	20	21	22
	to		Wsk	azani	ia cz	ujnik	ów pi	czy o	bciąż	eniu	w kG			1.51%	Pr	41,	wym.p.	róblci	F	6 r	Thinget
TD	0Ĉ		2	5	10	15	20	25	30	35	40	45	50	55	kQ	x10m	mm	m	mm ²	kG/mm ²	- CHANGA
1	20	II	0	0 5	0	0 18	9	16	28 18	36 18	and and	in de la compañía de Compañía de la compañía			38,8	45	3,21	6,7	21,4	1,81	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
2	50	II	00	48	15 8	25	35	40 25	3538	1					43,0	10 90	3,27	6,8	22,2	1,93	
3	20	II	0	8	50	80 -25				and and a		and a second	and and		21,0		3,45	7,2	24,8	0,85	cie probli /asymetria
4	20	I	00	10	+70 -60			al.							27,0		3,29	6,5	21,4	1,27	
5	20	I	00												23,0		3,50	7,0	24,5	0,94	- ** -
5	20	II	00	50	15 0	30 -8	58 -22	93 -52	110	115 -7a	140	160 -74	165	179	54,0	179 -74	3,45	7,4	25,5	2,12	
7	20	I	00	50	8 30										32,0		2,70	6,8	18,3	1,75	czujniki zacięły si
8	20	II	0	20 -10	65 -30	50 -30	90 -35	125	150 ~80	200 -165	230	•			43,0	245	2,68	6,5	17,5	2,46	
9	20	II	0							aller -					38,8		2,80	6,8	19,0	2,04	cow.czuju.
10	20	II	0	20	5 10	8 20	-20	-95 139	-120	-150 230	-190	-130 240		1	47,0	-140 250	2,70	6,5	1,75	2,68	
11	100	T	00	4	4 16	14 17	30 17	40 17	60 17	70 17	72 17	77 25	77 43		55,0	78 48	3,45	7,3	24,7	2,22	
12	100	II	0 0	20	10.	20	25	30 0	50 -15	85 -15	100	120 -15	140		52,0	140	3,43	7,4	25,4	2,05	
13	100	II	00	-5 25	-5 50	-17 60	-30 80	-30 93	-30 110	-30 120					35,6	-30 120	3,25	7,0	22,7	1,59	
											a dester al			2 2 Page							C. Oshu

Wdn - Zam, nr 1120/57 - 1500

			c.d	. tab	oli	1													A States	Sec. 1	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
14	100	II	0	70 -20	100	150	190	200							30,0		3,95	6,7	22,4	1,34	silne zginanie
15	100	II	00	00	53	5 20	5 35	10 43	23	38 43	52 43				44,0	65 - 43	2,88	6,9	19,9	2,21	
16	100	I	0	-1	-7	+5	40	80 0	120 0	143 0	168	200 -100	250	260 -170	65,0	285	3,00	7,3	21,9	2,97	na począti czujnik I zacieł si
17	100	I II	0	55	15 25	15 42	15 . 55	20 60	34 61	49 61	65 61	80 61			49,0	96 61	2,97	6,7	19,9	2,47	
18	100	I II	0	4	33	50 0	93 0	137	170 0	197	220	238	243 0		52,0		3,03	7,6	23,0	2,26	czujnik I zaciął si
19	100	I II	00					2							31,0		2,83	6,0	17,0	1,83	czujniki obluzowa-
20	100	II	0	0 5	0 10	-20 35	-50 70	-75	-120 150						31,0	-125	2,71	7,2	19,5	1,59	
21	200	II	0	20	17	-30	-50 -10	120							27,0	-140	3,28	7,0	22,9	1,18	
22	200	I IT	00	-10	450	-60 120	-64 145								20,6	-65 142	3,48	6,9	24,0	0,86	silne giecie
23	200	I II	0	-30 +10											16,2		3,40	7,0	23,8	0,68	pekia w u- chwycie por wyklucz.
24	200	I II	00	20. 0	60 0	100 -3	127 -3	145	158 -3	170 -3	181 -5				42,2	190 -5	3,55	7,1	25,2	1,68	
25	200	II	9 0												41,2		3,21	6,4	20,5	2,01	tchwyty czi ników oblu
26	200	I II	0			-170 210	-170	-170 242				aller !		and Sector	29,0	-170 270	3,50	6,7	23,4	1,20	and the second
27	200	II	0 0	50	20	30.	.45	56 0	70	80 10	85 30				43,0	87 30	3,19	6,7	21,3	2,02	A CONTRACTOR
28	200	I II	0				70 -40	100	120	140.	160 -60	and and a second			43,0	192	3,48	7,1	24,7	1,74	and the second
Sec. 1	and the second	Ser.		The states of	SUSAL TO	W. Maria		C. C. C. K.	11-4-18-02	A BRAN	Non-Ser	121.21		a Standard	100 AL- 10	1- Bartin	AND AND ADDRESS	IC Warner	12 Containty	E BUT D	a.c.h.

.

Wdu - Zam, nr 1120/57 - 1500

c.d.tabeli 1

		1		Contraction of the second			C. C. C.	1		and the state		Contraction of	CONTRACTOR			The state of the	E.C. Alle	1000	Contraction of the local distance		and the second
1	2	13		5	6	7	E .	9	10	11	12	13	74	15	16	17	18	19	20	21	22
		I	0	-10	-30	-90 -	-140	-155	-155	-157	-175	-175	-175	and and a second	50.0	-175	3.38	7.4	25.0	2.00	Sterne Star
47	SUN.	12	0	5	65	310	160	195	- 195	512	340	245	255			255					Contraction of the second second
30	200	I	0	5	0	-10	-10	-10	O	15					37,0	20	3,52	7,0	24,7	1,50	Station .
		4	0			Contraction of the	20		22		Concernant of the second	Constanting of			State of the second sec	Cars -	Congradian and		11 J 1 2		eznápile
31	300	TT									data data				30,0		3,42	7,3	25,0	1,20	zaciął si
ALC: NO		-	a	0	10	45	22	28	30	30	30					30		Tora Ca	e aller and		Contraction of the second
32	300	II	0	0	a	Q	Ø	3	15	30	40		and the	12 5	43,0	50	3,54	6,7	23,7	,1,81	
E. P. P.		I	0	-90		90	-90	-90			1.2.20				26.5	-90	3 22	5 0	22.6	1.12	silna
33	300	II	0	90	.80	70	80	90		State St		Cast of		and the second		100	1000	14	and the		siecie
		I	0	10	20	20	20	35	42				-		32.0	45	3.42	7.0	24.0	1.33	Constant of the
24	200	II	0	0	5	15	15	-3	-4	RANK	a strate	and good	Stand Star	N Server 1		-5	and and a		and the state		Second Street
-	100	I	0	o	0	-1	-25	-50	-50	-80	-110				41,5	-170	3,44	6,9	23.7	1,75	
22	2.3	II	a O	10	50	25	50	170	130	160	200		Ser State	200		250		1			alal uz Augenza
36	300	I T	0								1000				48,0		3,40	7,0	23,8	1,94	ozujniki
- Store out	100 100 100 100 100 100 100 100 100 100	7	6	5	ta	- 20	70	NO.				The state	Carlos and		200	State of	1910100				
37	300	17	c	9	0	225	-30			a lan	- and				36,0		3,26	6,7	21,8	1,65	
-	C. S. C. S.	T	10	E	40			C. ALLONG	Carlo II			Participal and		-		and the second se	The second				
38	300		a		10									Sign I's	35,0		3,48	7,3	25,4	1,38	
	CONSTRUCTION OF		0	No.	10	-	78		75	70	ED	TIC		Part Contractor	Carlo and an	00		1 28 30	Contra de	and the state of the	
39	300	TT	0	2	-10	-22	75	-22	-22	-27	130	160			47,6	180	3,24	7,2	23,3	2,04	
1 minut	Personal A	T	G	3 243	and the second	Contraction of the second	and we de		- Alexandre					1994 6 - 100		Martin Start	-	in in	ar a	0 00	ozujniki
40	300	II	O.					Children of the							ec.		2,40	100	22,0	0,08	zacięły si
	-	Section of			All the	and the second second		and and		1				A BARRIER		and the second second		HE CONTRACTOR	a serie a la la		

1

Wyniki pomiarów wykonanych na zginarce

Tabela 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	15	17	18	19	20	21	22	23
LI	t		10	0.	f nm		Ug	ięcie	Prz;	r obc	iążer	niu l	? kG					Pr	mo.f	Wym	Lary bki	Uwari
the second	- VC	1	2	3	4	5	5.5	60	6,5	70	75	8,0	8,5	9.0	9.5	10	11	kG	mm	s mu	h ma	
1	20	24	52	70	93	115	127	138	150	160	-	179	-	202				9,320	228	19,7	3,71	19.5.
121	20	23	54	72	96	120	131	144	157	169	4	192	1	217	-	236	258	11,880	276	20,5	3,63	
Tu	20	20,5	48	65	85	105	116	126	139	146	-	165	-		No. 1		. T. 191	8,270	169	22,0	3,65	
4	50	22,5	50	65	87	108	119	130	142	151	-	170		191	202	1		9,670	206	19,8	3,77	
- un	20	21,0	49	64	87	108	119	129	142	151	1	171	+					8,030	174	19,5	3,97	and the second
6	20	22	50	65	90	112	124	135	147	157	-	179	and the second					8,00	179	2820	3,68	
17	20	22	51	63	91	111	124	134	147	155	-	174	-	194				9,010	195	22,5	3,55	
8	20	22	50	68	91	114	126	136	149	158		178	T					8,230	184	19,6	3,71	
101	20	22	50	68	90	114	125	135	148	158	-	178	St. Bra					8,00	178	19,9	3,72	
ho	20	55	50,5	65	88	109	120	130	144	152	-	172	-	192				9,150	198	20,3	3,73	
7	1 20	21	49	65	87	105	117	128	140	149	-	166	-	186				9,280	192	20,3	3,73	
1	2 20	21,5	50	65	90	109	120	131	144	152	-	171	4	192				9,500	204	19,8	3,75	
1	3 120	20,5	18	65	86	108	120	130	142	150	-	171	-					8,780	187	19,7	3,75	62.
14	120	22,5	52	70	92	111	127	145	154	161	-	181				an an a		8,130	184	20,0	3,73	

- 100 -

d.c.n.

	e,d	.tabel	i 2		an part			i e set			in a second											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	, 17	18	19	20	21	22	23
15	120	22.0	51	70	91	114	125	135	148	158	+							7,960	178	20,0	3,74	22.5. 62.
16	120	22,5	51	68	89	111	122	133	144	153	-	172			124			8,77	188	20,3	3,78	
17	120	24,0	53	70	92	115	127	138	150	159	169	179	190	212				9,000	212	19,8	3,71	
18	120	23	52	70	91.	117	127	137	150	160	169		The second		Sec. 1			7,780	174	20,0	3,79	
19	120	25	60	79	108	133	144	161	173	182	194	206	223					9,280	241	20,4	3,53	
20	120	24	54	72	95	118	130	145	156	165	175	187	200	-	223	Sec.		9,550	225	19,7	3,70	5.60
21	120	23	52	70	92	117	128	142	153	162	171	182	193	-	215			9,640	220	20,0	3,72	
52	120	23	50	69	90	113	124	140	150	159	169	179	190	202				9,850	221	19,5	3,78	
23	250	24	53	70	.91	115	125	135	149	157	171							7,990	179	20,1	3,72	And And
24	220	24 20	54	72	94	119	131	144	156	168	180	191	203	215	1			9,640	230	20,2	3,71	
25	220	24	55	73	95	122	134	150	159	169	183	194	206	218	-			9,020	220	20,0	3,71	
26	220	24	53	72	93	120	130	140	156	164	179	190			AN A			8,375	198	19,8	3,74	
27	220	24	55	73	98	123	135	152	162	171	185	196						8,085	200	20,3	3,67	
28	220	25	56	76	-99	127	139	149	165	179	193	204	212	229				9,300	236	19,5	3,68	
29	220	23	52	69	90	115	126	140	151	164	174	184	195					8,560	196	20,0	3,75	
30	220	23	52	68	91	114	126	140	152	164	173	183	194					8,995	205	19,8	3.75	HARRY CONTRACT

1. 100

Wdn - Zana, nr 1120/57 - 1500

d.c.n.

The street in	2 474	and the	S 23	AN INT	1000	200-
17. U.U.	1000	11 . 11	x LA	walker !	10.25	100000

	e.d.	tabeli	. 2	2.00			-															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	27	22	23
31	220	26	55	72	.95	119	132	146	156	167	180	192	205			1000		8,575	205	20,0	3,72	+
32	220	24	54	73	96	121	134	145	159	168	184	195	205					8,500	205	19,7	3,73	
53	320	23	53	71	94	118	130	143	155	165	181	190	204	215				9,090	219	19,8	3,73	52.
34	380	25	55	73	98	123	135	147	159		Sar 12							7,070	173	19,1	3,72	
35	320	27.5	60	80	110	135	148	160	175	487	205	217	228	243			all Juge	9,310	250	19,2	3,60	
36	320	88	81	81	109	138	150	162	175						1			6,500	175	21,5	3,46	
37	320	22	49	65	87	110	121	134	143	155	ALT							7,090	156	20,7	3,79	
38	320	23	53	73	.98	123	134	146	161	168	183	195	205	218				10,00	240	19.7	3.72	
39	320	25	56	76	100	124	137	153	163	177	189							38,075	202	20,0	3,70	
40	320	23	45	65	87	108	119	130.	141	151	162	173	-					8,130	176	20,4	3,78	
41	320	28	61	63	110	139	152	171	181	193	206	220	231	260				9,050	265	19,1	3,61	
42	329	26	60	80.	105	132	143	158	175	184								7,690	204	20,4	3,60	
43	320	24	58	27	102	126	136	144	171	180	197	209	221	232				9,080	236	20,3	3,60	
44	320	28	60	80	107	135	150	167	177	188	205	218	230	245				9,800	265	19,8	3,59	
45	320	27	58	80	105	132	146	160	170	180	197	209	222					8,500	223	20,6	3.55	
1 and	S	- 8	zero	kość	prót	nki -	and the second	h -	gru	bość	prób	ki	ALL BAR	P. C. Law		and a				A. A.		

deare probat

· Wyniki badań kontrolnych wykonanych na zginarce

- 140 -

Tabela 3

Lp	t °C	P	100.fr	Wymiary p	róbki	Dwaga
		kG	mm	s mn	h mm	
1 1	24	3,750	200	9,7	3,54	25.8.62
2	24	4,500	218	10,8	3,53	
3	24	4,730	193	12,2	3,56	
4	24	. 5,350	175	.14,0	3,65	
5	24	4,990	200	11,1	3,76	
6	24	4,000	172	10,9	3,64	
7	24	4,550	165	11,8	3,77	
8	24	4,750	245	10,0	3,53	
9	24	5,750	270	10,9	3,52	
10	24	4,500	230	10,0	3,53	
11	20	13,030	195	29,6	3,70	28.8.62.
12	20	11,000	195	28,8	3,57	
13	20	12,010	216	29,1	3,54	Starses.
14	20	14,300	225	31,3	3,65	
15	20	9,950	, 226	24,6	3,55	
16	20	13,405	192	29,4	3,76	

Wdn = Zam. av 1130/57 = 1500

and the second	A state of the state of the		the second second	- 141 -			and the state	A Starting of the Constant		
Ta	bel:	a 4								「日本の日本の
Pomiar	2 1		Pomia	r 2		Pomi	ar 3	Poni	ar 4	A CONTRACTOR
temp.	10321	tomp.	102/1	temp.	10342	temp.	10-11	temp.	10%	2
my	IRLIA	mV	mn	mV	TOUTH	mV	17271	mV	ma	-
0,8	0	1,6	0	13	203	3.2	0	0.2	0	
1,5	0	2,7	0	12,5	195	4	0.4	0.4	0	
5	0,5	3	0	12	163	5	10	0,6	0	-
3,5	4	3,5	2	11	173	6	21	0,8	0	
4	6	4	6	10	159	7	33	1	0	
4.5	10	4,5	10	9,5	150	8	47	1.5	17	The
5	14	5	15	9	142	9	60	2	45	
5,5	18	5.5	20	8	127	10	74	2,5	4	
6,0	23	6	25	7.5	119	11	88	3	7	
6,5	27	6,5	30	7	112	12	105	4	16	1
7,0	35	7	- 38	6,5	104	13	118	5	22	
7,5	43	7,5	46	5,5	90	14	132	6	29	1
8	50	8	53	5	183	15	147	7	37	A A A
29	63	9	67			16	165	3	51	T
10	79	9,5	75		Star.	17	181	9	63	and the second
11	91	10	83			18	195	10	77	
12	107	10,5	90			18,4	204	11	90	and a
13	120	11	97	Steel Cone		18,4	204	12	105	1
14	136	11,5	105			14	203	13	119	
15	143	12	113	Color Carlos		13	195	14	130	T
16	160	12,5	120			12	180	15	146	T
17	178	13	126					16	159	
18	190	13,5	133	1999	A PRAY CA		a Station	17	173	1
18	190	14	140			1 h the		18	188	
17	190	14,5	150		The second	Color Base		18,05	190	I
16	190	15	157		ALC: N		A Property	17	190	
15	190	15,5	166	. 100 · · · ·	1998 M			16,3	190	The second
14	190	16	172			a gip I		15,5	190	the state
13	188	16,5	178	States -	Mar			16.5	190	the second
11	170	17	188				100 100	na dru	gi dzi	01
9	146	17,5	193		Star Land	A State		0,15	20	ALL A
8	130	18	202				and the second			
7	110	18,5	208		24		and and	100		
6	97	18	208			and all				
5	80	16,7	208		The second	and the second	10000	and the second	Carlo Sta	1
4	60	13,5	206		S. Sta			A CARACTER		-
All and the second		Constant of the second	Mar Land	A STREAM PROPERTY.	and the second second	R. MERSON S	A State of the sta	- Barriston Barriston		北

Wiln - Zam, ur 1190/67 - 1500

Tabels 5

	Mary .	Pos	eda pir	elicznik	a T	·	Pozyoj	a nika Ti	
1 Mare	1	12	3	4	5	6	1	5	T Uwar
pom.	t3 %	t2 00	610 00	tg 00.	⁴ 5	67 00	ta oc	\$110C	81
1	90	82	07	98	72.5	85	280	1 A.	
2	92	89	87	92	78	85	280	1 H	
3	92	90	88.	96	75	78	285	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4	90	88	85 .	92	74	79	282	-	atos
5	92	91	89 .	97.	70	70	279	-	górny
6	83	83	82	88	72	72	275		
7	87	34	83	20.00	72	75	280	-	
8	85	84	70	86	73	73	275	-	
9	92	90	87	95	80	85	280		
10	87	86	83	90	68	69	270	4	
11	90	89	85	93	80	78	274	222	
12	92	90	87	93	80	81	280	224	
13	88	86	83	90	69	78	280	225	
14	90	88	82	00	75	76	280	225	stos
15	98	96	95	102	83	90	270	219	dol-
16	92	90	90	98	76	78	270	219	ny
17	90	88	07	97	75	88	268	218	
18	88	87	84	93	70	80	265	217	State of
19	90	67	. 87	94	82	87	268	217	
20	92	91	68	97	80	61	270	219	
fred.	+	89,2	86,8	-	73,9	77,1	275,6	220,5	
dla poz. od-do		11+20	11+20	-	1 + 10	1 + 10	1 + 20	11#20	

- 142 -

Wdn - Zam. ar 1120/57 - 1500

.

đ

in marks have		「日日	The state is						- 2	13 -			and the second	124				1
		16	104/12/	k6/mn	45512	411111	51282	50000	50000	47059	48193	46512	47059	50000	50533	49383	48780	
10 T. A.		15	10 ⁴ /4 ² /	leG/mm	46567	15454	51471	50725	50000	47297	47945	46053	45557	\$0000	51471	5000	46611	-Calle
		14	104/4P/	kG/mm	47619	45454	52631	51724	50847	48387	50000	46875	46875	50847	52631	50847	50000	P
		13	104 / AP/	k6/ma	48780	17613	54054	54054	52631	50000	20000	4890	50000	52537	52631	50000	52631	To a lot of
		12	10 ⁴ /4 ² /	kG/mm	55555	55555	58823	62500	66667	62500	580 3	55555	55955	66667	62500	66667	62500	ale 2 al
		11	MESSER	kG/am	326,2	475,8	289,4	337.97	281,0	280,0	315,3	283,0	280.6	320,2	324,8	332,5	307.3	pbc1 ase
		10	T= 8h3	4 IIII	83,83	31,92	68,66	68,42	87,07	80,06	93,89	85,41	85,37	66.76	85,79	10*48	87,27	tenne (
		5	9 9 9	e utur	45,19	45,74	48,58	46,90	46,18	45+14	47,435	44,96	45,89	47,07	47,07	46,40	46,41	sente a
		8	s h	anna 4	1006,0	983,1	1063,9	1061,0	1044,8	996*7	1006,7	1000,9	1024,4	1053,5	1053,5	1044,1	1047,2	o obcite
		4	8 h	eun	271,15	270,87	291,49	281,43	297,13	270,35	283,54	64*692	275,39	282,44	262,44	276,44	278,50	udge date
•		6	a h	unti	60*24	74,62	79,86	74,65	75,51	73,60	79,67	72,72	74,03	75,72	75,72	74,25	to" nh	preyla
		5	ħ	UNI	3,91	5,63	3,65	3+77	3,77	3,58	3,55	3.M	3ª72	5*73	39.73	5,75	3.75	Honeroo
	Q	4	Ø	uu -	19.7	20.5	22,0	6464	19.5	20.0	22+5	19.6	19.9	20,3	20,3	19,8	19.7	nia di
WET - LON		10	Ir	x100m	223	276	169	205	424	179	195	184	178	198	192	204	Zer .	61 1020
Zom he 112	D a b	2	Pr	kG	9,330	11,380	8,270	9,650	8,030	8,000	010.6	8,230	8,000	9,150	9,280	9,500	6.700	454 0
With		1	ID		-	a	173	4	UN.	9	2	0	6	10	3	12	13	m

Carlotter	
1710	
0.00 2000	
- CO.	
(). The second	
1.000	
1.00	
1	
· ····	
THE W	
H S	
THE W	
A P	
H H	
H -	
H-	
IT - A	
E - A	
1 - 12	
市 - 1	
11 - 400	
11 - 400	
11 - 100	
II - AQUID	
1E - 4000	
18 - 191081	
18 - Actor	
1 - AQUAR	
11 - AQUELI	「「「「「「「「「」」」」
II - AQUELI	「「そのころのころ
I - Adioato	「「「「「「「「」」」」
r 1320/57 - 10	「「「「「「「「「「「」」」」」
at 1120/27 - 10	「「「「「「「「「「」」」」」
ut 1320/57 - 10	「「「「「「「「「「「」」」」」
nt 1320/27 - 10	「「「「「「「「「」」」」」
nt 1120/24 - 10	and a state of the
nt 1120/24 - 10	「「「「「「「「」」」」」
. nt 1320,57 - 10	「「「ころ」」ということで
1, nt 1120/57 - 11	「「「「「「「「」」」」」」
n, nt 1320/24 - 10	「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
m. ut 1120/27 - 10	「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
un, nt 1320/24 - 10	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
11 - 420211 tu me	「「「「「「「「」」」」」」
am. nt f120/27 - 10	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
tam, nt 1320/27 - 1	「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
Zam, nt 1120/57 - 1	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
Zam, nr fiknfik - 10	「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
Zam. ut 1320/57 - 10	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
Zam, nt 1320/57 - 10	「「「「「「「「」」」」」」」」

		-	
-			
-			
	-		
- 1			
		-	
-			
		-	

16	and the second	A CONTRACTOR	Carl Carl	Carlos Carlos	1.	10 10 2 1000	a start and a start	10 martine 1	Contraction of the local division of the loc	and the second second	and the second	and the second	and the second states	a factor of the	State of State of	State State State	12 march
	116	43010	47679	48780	47059	47059	39604	49385	44444	trutter	48780	44444	42105	45977	41237	43071	45454
大学の語いなどのなどの	15	46667	47297	49295	47297	46667	41667	46053	46053	47297	43611	45454	AH304	45454	43750	42769	47297
日本のないの	14	48387	47619	50000	48387	46154	41096	46875	46154	47619	48587	45154	44976	44776	44118	42253	47649
たというで記事でいる	13	50000	50000	52631	51282	51282	41667	48780	50000	50000	51232	50000	50000	50000	46512	46512	51282
and the second s	72	55555	52631	58823	58823	55555	52631	55555	55555	52631	53823	55555	55555	52631	55555	50000	55823
市民にいたいと見て	11	284.5	278,6	305,9	315,0	272.3	324.8	334,02	337.4	344°Z	279,6	337.4	9.565	293,4	283,0	325.5	239,6
いたのではないというない	10	85,80	87,19	91,36	84,26	86,49	73.27	85,15	85,80	37,77	86,22	85,96	85,11	36,32	83,62	30,93	68*48
	6	46,12	46,62	48,40	45,42	46,37	42,36	46.44	46,12	46,43	46,35	46,34	45,33	45,16	45,57	44,01	46,87
日本のないのであるとう	8	1029,6	1046,3	1096,3	1011,1	1037.9	897,*3	8*266	1029,6	1053,2	1034.7	1031,5	1021.3.	1035,8	1005,4	8, 172	1054.9
「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	7	276,77	279,75	290,04	272,54	278,26	254,19	269 * 69	276,77	278,62	278,14	278,05	275,29	276,95	277,41	264,08	281,25
A NEW TO DE CONTRACTOR	9	74,40	74,80	76,73	75,45	74,60	72,01	72,89	74,40	12.57	74.77	74,94	74,20	74,05	74,50	71,76	25,00
「日本のない」とない	5	3,72	3,74	5,78	3.71	3,73	5,53	5.70	3,72	3.78	3,73	3,71	3+77	3,74	3,57	3,69	3,75
	4	20,0	20,0	20,5	19,8	20,0	20,4	2.61	20,0	19.5	20,1	20,2	20.0	19,8	20.3	19.5	20.0
A CLASS COLOR	3	184	178	188	212	174	241	225	220	221	479	230	198	198	200	236	196
	CV	8,130	7,960	8,770	0000.6	7,780	9,280	9,550	9,640	9,850	066*4	9,640	9,025	3,375	8,085	9,300	8,560
	5	41	35	10	21	18	19	20	53	53	S	54	35	58	53	28	33

Cue C + II.

Dell 6 7 8 9 10 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 14 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 <th></th> <th>-</th> <th>the second</th> <th></th> <th></th> <th>202-1-2</th> <th>ALL DESCRIPTION OF</th> <th></th> <th>100 A</th> <th>(13</th> <th></th> <th></th> <th>Black</th> <th>10000</th> <th>J. Comments</th> <th>Carries .</th> <th>the states</th>		-	the second			202-1-2	ALL DESCRIPTION OF		100 A	(13			Black	10000	J. Comments	Carries .	the states
Deall 6 7 8 9 10 11 12 13 14 15 205 19,5 3,75 74,52 278,44 1094,1 46,41 87,00 314,3 25200 46357 47297 205 19,6 3,75 74,40 275,44 1004,1 45,43 87,00 314,3 47599 47297 205 19,1 3,75 74,46 7027,5 45,46 87,01 5762 51262 48337 47297 205 19,1 3,772 74,40 275,46 7027,5 45,46 87,01 5955 46578 45757 219 19,1 3,772 74,40 275,46 70,27,5 45,45 5555 50000 46976 47576 2105 19,1 3,772 74,47 74,45 375,45 50000 46197 5556 2105 214,5 354,41 74,47 74,45 375,45 50000 40147 4545	39295	46512 37383	40816	-36564	47059	41237	43011	47059	39604	40000	43478	44444	43966	43966	45454	16	
Deal. C 5 5 5 7 8 9 10 11 12 13 14 2 3 4 5 5 5 7 8 9 10 11 12 13 14 2 5 4 5 5 7 8 7 14 7 14 7 14 205 19,8 3,75 74,40 276,47 1022,5 45,45 576,7 556 4576 4576 4576 205 19,1 3,72 74,40 276,47 1022,5 45,45 577,5 566 4576 4576 5756 4576 4576 4576 4576 4576 4576 45766	58889 39775	44872 38839	42189	384.61	47297	43210	43210	48611	39326	39773	43750	45454	45750	45454	47297	15	
Dealt 6 Construction Construction	40540	44118	41667	38451	47619	44118	42857	49180	38961	40000	44118	46154	44776	46875	48387	14	
Dell Color T S S T T T 2 4 5 6 7 8 9 10 11 12 2 4 5 6 7 8 9 10 11 12 2 205 19,8 3,72 74,40 276,77 1022,5 46,13 85,93 500,1 5882 205 19,1 3,72 74,40 276,77 1022,3 45,93 500,1 5882 205 19,1 3,72 74,40 275,46 1027,5 45,93 85,15 500,1 5882 219 19,1 3,72 74,40 275,46 1027,5 45,93 500,1 5882 250 19,1 3,73 74,47 74,47 74,45 5755 50000 250 19,1 3,75 74,48 70,23 81,47 74,55 5000 505,41 525,48 5000 525,48 5000 500,11 525,54 5000 525,48 5000 500,11 525,555 <td>42553</td> <td>45454</td> <td>44444</td> <td>40816</td> <td>47619</td> <td>45454</td> <td>411414</td> <td>51282</td> <td>41667</td> <td>40000</td> <td>46512</td> <td>48980</td> <td>47619</td> <td>50000</td> <td>51282</td> <td>13</td> <td></td>	42553	45454	44444	40816	47619	45454	411414	51282	41667	40000	46512	48980	47619	50000	51282	13	
Dell 6 7 8 9 10 11 2 4 5 6 7 8 9 10 11 2 4 5 5 6 7 8 9 10 11 2 19,8 3,75 74,25 278,44 1044,1 46,415 87,01 314,6 2 205 19,47 3,772 74,40 275,445 1022,5 45,45 315,36 500,1 314,6 2 205 19,47 3,772 74,405 275,445 1022,5 45,45 315,47 317,5 2 19,47 3,772 74,405 275,445 1022,5 45,497 35,475 347,5 2 19,47 3,772 744,38 275,445 1022,5 45,497 35,475 347,56 2 19,47 3,72 744,38 274,450 74,575 247,56 247,56 247,56 247,56 247,56 247,56 243,57 247,56 243,57 244,56 244,57 252,52 243,57 243,57 <td>50000 45454</td> <td>52631</td> <td>50000</td> <td>45454</td> <td>50000</td> <td>50000</td> <td>50000</td> <td>62500</td> <td>50000</td> <td>50000</td> <td>55555</td> <td>55555</td> <td>52631</td> <td>58823</td> <td>62500</td> <td>12</td> <td></td>	50000 45454	52631	50000	45454	50000	50000	50000	62500	50000	50000	55555	55555	52631	58823	62500	12	
Delli 6 7 8 9 10 5 4 5 6 7 8 9 10 205 19,8 3,75 74,25 278,44 1044,1 46,47 87,01 205 19,8 3,75 74,40 275,77 1029,6 45,93 85,80 205 19,1 3,72 74,40 275,46 1027,5 45,91 87,01 205 19,1 3,72 74,43 275,46 1027,5 45,91 87,02 219 19,1 3,72 71,43 275,46 1027,5 45,91 85,62 2175 21,5 3,43 244,37 983,2 44,005 81,93 2175 2,45 71,00 297,46 1022,3 45,05 74,65 2175 2,45 71,00 297,46 1022,3 45,05 74,65 2175 21,5 74,45 244,67 983,5 44,65 2175 21,5 74,45 244,67 91,66 219 21,5 74,45 275,46 1100,5 44,74 219 20,4 74,50 275,46 1100,5 44,45 219 20,4	343.2	317,8	269,1	316,7	284,5	282,6	350,0	248,1	227,5	325+8	247,46	318,1	262.2	500,1	314,8	11	
Dell C 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 205 19,8 3,75 74,25 278,44 1044,1 46,13 205 19,4 3,77 74,40 276,77 1022,5 45,91 205 19,41 3,773 73,48 275,445 1022,5 45,91 219 19,3 3,773 73,485 275,445 1022,5 45,91 210 19,41 3,772 71,005 264,371 983,4 41,47 210 19,42 3,773 73,485 275,465 1022,5 45,91 210 19,42 3,772 74,43 275,465 1022,5 44,47 2105 21,5 3,44 7022,5 45,45 77 74 2105 21,5 3,44 70,45 275,465 1022,5 44,47 2105 21,5 24,45 725,456 1014,47 45,45 <	74,42	78,92	79,32	74,88	91,82	84,42	84,51	91,69	74,22	74,65	81,93	85,62	85,19	85,80	87,01	10	
Deli 6 7 8 3 4 5 6 7 8 3 4 5 7 6 7 8 205 19,8 5,75 74,40 276,77 1029,6 205 20,0 5,72 74,40 276,77 1029,6 205 19,7 5,72 74,40 276,77 1029,6 205 19,1 5,72 74,40 276,77 1029,6 219 19,1 5,72 71,05 264,57 1027,5 219 19,1 5,72 71,05 264,57 1027,5 215 3,46 77,35 292,64 1100,5 215 3,46 77,35 292,64 1100,5 175 21,5 3,46 77,35 292,64 1100,5 1756 20,7 3,76 77,35 292,64 1100,5 1756 20,7 3,76 77,35 292,64 1100,5 1756 20,7 3,76 77,35 292,64 1100,5 1756 20,7 3,76 77,35 292,64 1100,5 1756 20,7 3,76 77,35 297,46 1014,5	41,45	43,84	44,06	41,48	48,53	45,65	45,43	48,77	43,06	41,47	44,05	45,91	45,58	46,13	45,41	6	
Dell 6 7 3 4 5 6 7 5 4 5 6 7 5 4 5 5 7 5 205 19,8 3,75 74,25 278,44 5 205 19,8 3,75 74,40 276,77 2 205 19,47 3,75 73,48 275,46 7 19,41 3,72 74,40 276,77 2 209 19,41 3,72 73,48 274,08 2 19,41 3,72 73,48 274,08 274,08 2 19,41 3,72 73,48 275,46 448,83 2 19,41 3,72 73,48 274,59 275,46 175 21,52 3,46 74,59 254,53 275,46 175 21,52 3,46 74,59 275,59 275,46 175 21,52 3,46 74,59 275,59 248,33 176 20,4 3,77 73,48 277,59 </td <td>921,6</td> <td>, 74P.</td> <td>3*156</td> <td>898,6</td> <td>1101,6</td> <td>1013,</td> <td>1014,</td> <td>1100,3</td> <td>890,6</td> <td>895,8</td> <td>983,5</td> <td>1027,5</td> <td>1022 ,3</td> <td>1029,6</td> <td>1044.</td> <td>9</td> <td></td>	921,6	, 74P.	3*156	898,6	1101,6	1013,	1014,	1100,3	890,6	895,8	983,5	1027,5	1022 ,3	1029,6	1044.	9	
belli 6 3 4 5 6 3 4 5 6 205 19,8 3,75 74,40 205 20,0 3,75 74,40 205 19,43 3,75 74,40 205 19,41 3,75 73,48 205 19,41 3,75 73,48 219 19,41 3,75 73,48 219 19,41 3,75 73,48 219 19,41 3,75 73,48 219 19,41 3,75 73,48 219 19,41 3,75 73,48 219 3,75 74,400 77,435 219 240 19,42 77,435 2195 21,57 3,76 74,400 2240 19,4 3,76 74,400 2440 19,4 3,76 74,400 2440 19,4 3,76 74,400 2440 24,4 3,76 74,400 254 20,4 3,76 74,400 <td>248,75</td> <td>263,09 248,75</td> <td>264,33</td> <td>248,91</td> <td>291,48</td> <td>273,80</td> <td>272,60</td> <td>292,64</td> <td>257, 59</td> <td>348,83</td> <td>264,31</td> <td>275,46</td> <td>274,08</td> <td>276,77</td> <td>278,44</td> <td>6</td> <td></td>	248,75	263,09 248,75	264,33	248,91	291,48	273,80	272,60	292,64	257, 59	348,83	264,31	275,46	274,08	276,77	278,44	6	
belli 6 3 4 5 3 4 5 205 19,8 3,75 205 19,8 3,72 205 19,7 3,75 205 19,7 3,75 205 19,7 3,75 205 19,7 3,75 209 19,7 3,75 219 19,1 3,75 219 29,1 3,76 219 29,1 3,76 219 29,1 3,76 219 29,1 3,76 240 19,2 3,76 240 19,7 3,76 240 19,7 3,76 240 20,4 3,76 256 20,4 3,76 264 20,4 3,76 264 20,4 3,76 264 20,4 3,76 264 20,4 3,50 264 20,4 3,50 264 20,3 3,50 264 20,3<	69,29 73,13	73,08	73,44	68,95	11.17	74,00	73,28	77,83	74,39	69,12	71,05	73,85	73,48	74,40	74,25	9	
belli 6 3 4 3 4 3 4 3 4 3 4 205 19,8 205 19,8 205 19,7 205 19,7 205 19,7 205 19,7 205 19,7 205 19,7 200 19,7 240 19,7 240 19,7 240 19,7 240 19,7 240 20,4 250 20,4 265 20,4 204 20,4 204 20,4 204 20,4 204 20,4 256 20,3 265 19,1 265 20,4 204 20,4 264 20,4 265 20,4 264 20,4 265 20,5 264 20,4	3,59	3,59	3,60	3,61	3,78	3,70	3,72	3,76	3,46	3,60	3,72	3,93	3,73	3,72	3,75	5	
0.911 0.911 <t< td=""><td>19,3</td><td>20,3</td><td>20,4</td><td>16,1</td><td>20,4</td><td>20,0</td><td>19,7</td><td>20,7</td><td>21.5</td><td>19,2</td><td>19,1</td><td>19,8</td><td>19.7</td><td>20,0</td><td>19,8</td><td>4</td><td>10</td></t<>	19,3	20,3	20,4	16,1	20,4	20,0	19,7	20,7	21.5	19,2	19,1	19,8	19.7	20,0	19,8	4	10
	265	255	204	265	176	192	240	156	175	250	173	219	205.	205	205	3	ali (
8,57 8,59 8,50 9,57 9,31 9,31 9,07 8,13 8,13 8,13 9,05 9,05 9,05	9,805	9,805	7,690	9,050	8,130	8,075	10,900	7,090	6,500	9,310	7,075	·9,090	8,500	8,575	8,995	cu	od otab
37 37 37 37 37 37 37 37 37 37 37 37 37 3	44	44	42	4	70	39	00 80	37	36	35	34	23	32	31	30	-	

Abdu - Zam. nr 1120/57 - 1500

*

and the second	10833.20	RANGE TO T	ALR.	AND THE	Sec. 1	The Parts	Server 1		140 3	AL STRATE	19 E.M.		64 /S 1		N. S.C.	and the second	
	31	6 = H	kG/mm2	7,218	9,211	5,957	7.200	6,084	6,201	6,673	6,406	6,102	6,803	6,900	7,166	6,621	
	30	$E_{3r} = \frac{C_{1}(a,p)}{2(a,p)}$	kG/un	7784	7647	8163	8025	8189	8149	8166	7385	7762	8078	8216	8403	8029	
	29	OIH	1/m	1,6463	1,6847	1,5570	1.5609	1,5851	1,6616	1,6452	1,6546	1,6166	1,5721	4,5721	1,5845	1,5814	e d'ante
	28	104 (<u>2</u>)	kG/ma	47285	45591	52426	51416	51663	49043	49653	47655	4-8013	51382	52260	51138	50774	0
	37 .	$n^* \overline{X_{a_f}^{a_f}})_i$	kc/mm	472645	Sunson	47183	565575	464972	441388	496326	428692	432120	513824	522602	51375	456971	Le 2 kG
	26	10/45/	acc/mm	41591	44504	51813	49167	48240	46512	48680	46492	46875	48311	50909	48701	48977	buigaen
	25	10/01	166/1003		44118												topne o
	24	10/25/01	IK A hunt		43956												ente wa
	. 23	10/4E/	RG/mm				49342					1400 1400					obelat
	22	10/25/0L	k@/mm	46667	42945		49645			48951			49296	54095	49296		de Jako
	21	10/42/01	lac/mm	1	1	1	1						T	1	1	1	Cual year
	20.	10/ <u>AT</u> /01	ke/mu	47244	43478	51282	50000	49180	46512	48730	46875	46875	49,180	51282	49587	43780	d outero
9	- 19	10/4P/	EG/mm	T	-	1	1	I	1		1	1	1	1	1	1	tia dob
.tabel.	38	10/20L	k6/nm	46296	45478	51020	49505	49020	#5729	48077	46296	46296	49020	50000	49020	49020	blices
de	-44	10/28/01	ked/min	45918	43689	49450	48913	48387	45392	46875	45454	45918	47872	49450	47872	47872	Wagas (
	dia			5	CU.	m	4	S	9	0	0	5	10	1	123	13	The second

aber - Telogue in the

m. hr 1120/67

	200	
ł	20	
1	2	
1	2	
1	125	
1	120	
1	12	
1 1 1	1126	
the second	1126	
A A A A	1126	
Color March	1126	
Color and	- 1126	
No. of the lot of the	- 112E	
and a second sec	11 11 I I	
C. C. C. L. C.	31 H 12	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ar 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Br 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ar 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ar 1120	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ar 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· Br 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1. 127 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	31 Br 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	BL BF 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13. Br 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	13. Br 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1131 Br 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1131 BF 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	am. ar 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	am ar 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Lama, ar 1126	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zama, ar 1126	
ちょう うううろ ころしてきの	Zam. ar 1126	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zama ar 1126	
ちょう ちょうしき こうちょう	Zam. ar 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Zama ar 1126	
ちゃう ちょうろう ち たいてきの	Zam. ar 1126	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- Zam. ar 1120	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Zam. ar 1120	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Zam. ar 1126	
ちゃ ちょうう ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち	- Zama, ar 1126	

- 24			
-		2	e)
18			
-			
- 1			
	-		2

				S. A.	States of	S. Martin	14号 新花	(Barris		7 -	and the second s			energy a		Tentilie	16-1-2
	31	6,169	5,976	6,340	6,935	5,872	7,668	7,437	7.316	7,424	6,032	7,201	6,885	6,350	6,210	7,396	6,392
	30	7625	7622	7653	7875	7683	4166	7736	7535	7390	4164	7326	7277	7338	7314	7190	String
	59	1,5085	1,5829	1,5106	1,6379	1,5957	1,8458	1,6598	1,6085	1,5724	1,6007	1,6055	1,6216	1,5988	1,6505	1,7043	1,5687
	28	47395	48152	50660	43078	48146	41792	46647	46848	46998	49443	45629	44878	45898	44316	42187	47465
「「「「「「「」」」	27	426559	385216	455940	576938	433316	459711	559768	562173	563980	444985	547543	538539	458984	1443757	505249	522117
a statisticality	26	46439	46929	49416	44025	47579	40221	44152	45476	45906	47540	43409	42545	43965	41965	40555	45555
「日本」の「日本」	25			100													
	24																
のないであるという	23							64244	46012								
	22				44025			1	1	46053		43478	42945			40462	
ないの	21	A CONTRACTOR			47445		39877	44520	45099	46429		43624	43046			41667	45454
	50	46512		49587	47619		41096	45454	46154	46512		43796	43165	43796	42553	40540	45454
	64.1	1	1	1	47474	47008	41045	#5#5#	46218	45218	46610	43651	42969	43651	42303	40146	4,5082
	13	45871	46729	49020	42170	46296	40984	4+5045	45454	45874	48077	43860	43860	45045	43103.	40650	54944
	17	44118	46392	48587	46392	45918	39823	44118	44554	45000	46875	44113	43269	43589	42056	41284	45454
	Tap	44	15	16	44	70	49	20	51	22	23	24	5	56	53	28	8

codon.

			100	T. S.S.	1	C. States	1010-12.7	1	- 34 J - 14	C. Clark	1223	Contraction of the			Selection of	10.00
51	6,783	6,506	6,513	6,929	5,621	7,895	5,083	5,087	7.704	6,193	5,356	7,635	6,108	9,249	8,278	6,875
30	7504	7455	7443	7319	6646	7353	7664	2549	2003	6414	7129	2043	7353	6718	7362	7307
50	1,5862	1,6085	1,6021	1,6119	1,6345	1,8488	1,8595	1,5052	1,6331	1,6348	1,5031	1,8431	1,7400	1,5698	1,8545	1,7970
28	47937	46351	44583	45407	39452	39664	41215	50155	43433	43732	47432	38214	42258	42798	39698	40661
27	527312	509863	490412	544380	276170	475974	208506	401244	521196	390359	474316	458572	338063	513579	475376	447267
26	45719	43833	430464	42711	42966	38474	39474	47570	42781	41609	46794	34559	41265	397755	23049	39394
25.																
24												a state				
23 .			and a second								the state				P. C. S.	
22		A Constant of the second se		45210		37838			42424			35176		40230	37838	
81	45775	43919	43046	43046		38690			42763			39235		39877	38235	396 34
20	45801	43796	42553	43796		38216			42253		46875	37736		39735	37975	39975
19	45454	44,000	42308	42969		34483			42308	41353	47003	77931		29568	12675	39558
18	64944	44643	43860	44643		39370		06464	43478	41322	47170	57879	40325	40984	39062	40984
42	45000	44554	42857	44113	43269	39130	4/14/62	47872	41667	42056	46875	37500	39130	39823	39461	40178
Ip	30	31	32	33	34	35	36	22	38	39	40	14	42	43	44	45

Wdn - Zam, nr 1120/57 - 1590

- 149 -Wyniki badań kontrol nych wykonanych na zginarce 8 Tabela .1 2 3 24 马 7 6 8 9 N = sha M28=35Pr 6= Pr Lip h sh \$ h² min 3 mm² mm³ kG/mm² kG mm mm kG mm 34,34 3,750 1 9,7 3,54 121,56 20,26 131,25 6,48 38,12 2 4,500 10,8 134,56 3,53 22,43 157,50 7,02 12,2 3 4.730 3,56 43,43 154.61 25,77 165,55 6.42 51,10 4 5,350 14,0 3,65 186,51 31,08 187,25 6,02 5 4,990 11,1 3,76 41.74 156,94 26,16 174.65 6.68 6 4,000 10,9 3,64 144,43 140,00 39,68 24,07 5,82 167,73 7 4,550 11,8 3,77 44.49 27,95 159,25 5,70 4,750 10.0 3,53 35,30 124.61 20,77 166,25 8,00 9 5,750 201,25 10,9 3,52 38,37 135,06 22,51 8,94 10 4,500 10,0 3,53 35,30 124,01 20,77 157,50 7,58 11 13,050 29,6 109,52 405,22 3,70 67,54 456,75 6,76 12 11,000 28,8 3,57 102,82 61,18 367,07 385,00 6,29 13 12,010 29,1 3,54 103.01 364,65 60,77 420,35 6,92 14 14,300 31,3 3,65 114,24 416,98 500,50 69,50 7,20 15 9,950 24,6 3,55 87,33 310,02 51,67 348,25 6,74 16 13,405 110,54 29,4 3,76 415,65 69,27 469,17 6,77

- 100
| | - | | 10000 | - | | - Andrew | See. | E 27 | 200 | ALL ST | The | 4 | | 10.000 | 1000 | C. C | 10000 | 1000 | S. P.Y. | Part and | - |
|-------|--------------|-------------------|----------|-----|-------|----------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--|--------|--------|---------|----------|------------------|
| | 4 | ant = t | MAD+dAD= | Do | 30,0 | 52,5 | 81,5 | 0*86 | 114,5 | 123,0 | 128,5 | 133.5 | 137,0 | 139.5 | 14.1,5 | 143,0 | 144,0 | 145,0 | 745,5 | 146,0 | peratur |
| | 6 4 | 42 | 2 | Do | 9,0 | 31,5 | 60,5 | 77.0 | 93,5 | 102,0. | 107,5 | 112,5 | 116,0 | 118,5 | 120,5 | 122,0 | 123,0 | 124,0 | 124.5 | 125,0 | kowi tem |
| | 5 | AV1=YAA | | шV | 5,19 | 19,30 | 36,05 | 45,90 | 54,70 | 59,50 | 62,90 | 55,50 | 67,20 | 68,50 | 69,50 | 70,20 | 20,90 | 71,30 | 71,60 | 71,80 | ego spad |
| | 4 | AA = | 5,9 | mA | 0,846 | 3,151 | 5,897. | 7,500 | 8,941 | 9,726 | 10,277 | 10,713 | 10,990 | 11,200 | 11,361 | 11,485 | 11,585 | 649*11 | 11,695 | 11,726 | #1adając |
| | 5 | h _{én} = | = 12 241 | TUT | 3,30 | 12,29 | 23,00 | 29,25 | 34,87 | 37,93 | 40,08 | 41,78 | 42,86 | 43,68 | 44,31 | 64.44 | 45,18 | 45,43 | 45,610 | 45,73 | cis odpo |
| | | wykr. | 10 | 46, | 2,5 | 31,4 | 22,0 | 29,0 | 38,3 | 36,5 | 38,5 | 40,4 | 41,5 | 42.5 | 43,0 | 43,4 | 43,8 | 44.0 | 44,3 | 44.7 | napię |
| | | syt.z | 6 | 45 | 2.5 | 9.6 | 18,0 | 25,55 | 31,44 | 36,0 | 39,5 | 42,0 | 45,2 | 44,2 | 12.24 | 45,9 | 46,3 | 46,7 | 47,0 | 47.1 | cha od |
| | | ej adc
este t | 80 | 29 | 2,5 | 10,0 | 20,0 | 27,0 | 32,5 | 36,5 | 38,5 | 40,0 | 41,0 | 43,5 | 42,0 | 42,4 | 42,8 | 42,3 | 42,8 | 42,8 | napied |
| | Long and | wietln. | 7 | 49 | 2,6 | 8#5 | 12,5 | 35,0 | 30,0 | 34,0 | 37,0 | 39,0 | 404 | 41,9 | 42,8 | 43,0 | 43,5 | 44,0 | 1ª 11 | 44.9 | padki
21 = |
| | South States | tanki s | 9 | 54 | 4,0 | 17,0 | 29,0 | 36,5 | 41,0 | 44.0 | 46,0 | 47.5 | 48,4 | 49,2 | 49,8 | 50,4 | 51,0 | 51,2 | 51.3 | 51,5 | 1590 s
228 - |
| | CU. | da pla
adkami | 15 | 42 | 4.0 | 12,5 | 26,0 | 0.65 | 35,0 | 37,8 | 39.5 | 40,8 | 41,3 | 42.54 | 43,0 | 45,4 | 43,8 | 43,9 | 43,9 | 43,9 | odejm
go tj. |
| | | chylen
ych sp | 4 | 30 | 4,56 | 17,0 | 27,0 | 34+0 | 38,0 | 40 | 41,8 | 43,0 | 43,8 | 44,2 | 44.7 | 45,0 | 45.1 | 45.2 | 45,2 | 45,2 | conano
tavove |
| | | ków wy
odowan | 3 | 44 | 3,0 | 12,5 | 26,5 | 29,0 | 34,0 | 37,5 | 39.5. | 41,3 | 42,8 | 43,5 | 44,3 | 44.7 | 45,1 | 45,96 | 45,8 | 45,8 | abod na |
| a 12 | | r spad | 2 | 28 | 4.5 | 14,5 | 23,0 | 29,0 | 35,0 | 39,0 | 40.5 | 42,0 | 42,8 | 43.4 | 44,0 | 44,2 | h* 717 | 44.6 | 44,8 | 44,6 | n rubr |
| Tabel | | Fonia. | 1 | 48 | 2,8 | 10,0 | 21,0 | 28,5 | 33.5 | 38,0 | 40*0 | 41,8 | 43,0 | 44.2 | 45 | 45.5 | 46 | 45+3 | 46,8 | 45,8 | senta
czętło |
| | T | N at | Tod | X | 1 | 2 | 3 | 4 | 5 | 9 | - 4 | 8 | 9 | 10 | 11 | 12 | 1346 | 14 | 15 | 16 | Oblic
na po |

Wdn - Zam. nt 1120/37 - 1590

Carl Carl

Tabela 14

Ta	10 ³ . x		Δt	• X = 6.	<u>× m</u> 0 ₀	po upływi	e ozasu			and the second	
	m	948	328	728	6.42	548	412	302	302	32	na początku
1	1,8465	0,2690	0,2610	0,2460	0,2270	0,2110	0,1810	0,1505	0,0970	0,0553	0,00386
2	1,7542	0,2000	0,1790	0,1535	0,1270	0,1062	0,0859	6,0588	0,0386	0,0298	
3	1,6619	0,1410	0,1148	0,0882	0,0631	0,0515	0,0365	0,0274	0,0224	a shafty	
4	1,5696	0,0955	0,0680	0,0478	0,0325	0,0243	0,0202	0,0172			
5	1,4773	0,0612	0,0398	0,0251	0,0170	0,0148	0,0132				
6	1,3850	0,0405	0,0221	0,0145	0,0111	0,0097				Service A	
7	1,2927	0,0226	0,0129	0,0084	0,0071						
8	1,2004	0,0137	0,0078	0,0055					the state of		
9	1,1081	0,0083	0,0033			a aller		A STATISTICS			
10	1,0158	0,0055	0,0025								
11	0,9235	0,0028							and shares		
12	0,8312	0,0021									
13	0,7389	0,0001						Sec. 21			Maria Maria
	and the states	and the second									

Tabela 16

Tabela 17

.

2.0.1

Lp	Δt _{skr} . °c	10 ³ E _{max} = = <i>B</i> at _{skr}	$10^{3}\overline{E} = -h_{sr}$	10 ³ = 40 ⁻⁶ . .f _M .0,503	10 ³ /Ē+Ē/	10 ³ ε _{max} = =Σε _i
1	- 30	0,294	0,023	0,003	0,026	0,268
2.	52,5	0,514	0,027	0,004	0,031	0,483
3	81,5	0,799	0,034	0,005	0,039	0,760
4	98,0	0,960	0,042	0,006	0,048	0,912
5	114,5	1,122	0,049	0,007	0,056	1,066
6	123	1,205	0,057	0,008	0,065	1,140
7	133,5	1,308	0,071 ·	0,010	0,081	1,227
8	141,5	1,387	0,087	0,012	0,099	1,288
9	146,0	1,431	0,110	0,015	0,125	1,306

Lp .	△ h _{0,12}	Nr pon.
1	20	36
5	17	40
3	18	39
4	18	51
5	17	34
6	20,5	37
7	22	19
8	12	38
9	24	20
10	23	33
śred.	.19,15	
△ ♥ = -	19,15.6,12	= 30,1 mV

z wykr.84 - $\Delta t \approx 50$ °C

Wdn - Zam. nr 1120/57 - 1500

Obliczenie średniej rozbieżności wyników pomiarów 6 i E przeprowadzonych dla t = 20 °C Tabela 18 bR 6 b2 26 Lp Obliczenie Uwag1 -230 +0.391 152.881 1 52.900 2 +2.384 5683.456 -367 134.689 - rozbieżność 5 1:(6) średniej aryt J = 414831 = ± 194,5 3 22.201 -0.870 756.900 +149 metycznej dla jednego pomia ru E względ-4 + 11 121 +0.373 139.129 nie 6 30.625 -0.744 553.535 5 +175 $\int_{\mathbf{r}E} = \frac{194.5}{12} = \pm 56$ 6 +135 18.225 -0.626 391.876 rE(6) - średnia roz-bieżność wyników pomia-2 +152 23.104 -0,154 23.716 rów E lub 6 -129 16.641 -0.421 177.241 8 - względna warbE(G) **6** = <u>8525186</u> = 0,88 9 -252 63.504 -0.725 525.625 tošć odchylki. danego wyniku Domiaru E lub 10 # 64 4.095 -0,024 576 6 od srednie. arytnetycznej 21 +202 40.804 +0,073 5.329 JE6 = 0,88 = 0,254 12 7.921 + 89 114.921 +0.339 - 1 474.331 -0,004 8525.186

Obliczenie średniej rozbieżności wyników pomiarów 6 i B przeprowadzonych dla t = 120 °C

Tabela 19

Ip	DE	b ² E	36	9 ² 6	Obliczenie	Uwagi
1	+343	117.649	-0,155	24.025		
2	- 63	3.969	-0,607	368.449		E(6) - rozbieżność średniej
3	- 64	4.096	-0,800	640.000	$\delta_{\rm E} = \frac{876234}{9} = 176$	dla jednego pomiaru E
14	- 33	1.089	-0,436	190.096		względnie 6 ⁻
5	+189	35.721	+0,159	25.281	$\sigma_{\rm rE} = \frac{176}{10} = 55,5$	SrE(6) - średnia roz- bieżność wy-
6	- 3	-9	-0,304	817.216		ników pomia- rów E lub 6
7	+ 28	784	+0,892	795.664	h DODAEG	b-/~1 - wzgledna war-
8	+ 50	2.500	+0,661	436.921	$f_6 = \frac{4009120}{9} = 0,564$	ki danego wy-
9	-151	22,801	+0,540	291.600		niku pomlaru E lub 5 od
10	-296	87.616	+0,648	419.904	0,210 16 = 0,210	tmetycznej
Suna	0	275.234	-0,002	4009.156		

Obliczenie średniej rozbieżności wyników pomiarów 6 i E przeprowadzonych dla t = 220 °C

+

Tebele 20

Top	.b _E	b _L ²	pe	b26	Oblicuenie	Uwagi
2	+513	263.169	-0,603	363,609		Grun - rozbieżność
2	- 75	5.625	+0,646	417.316		E(6) średniej aryt- metycznej dla
3	-124	15.376	+0,250	62,500	$\sigma_{\rm E}^{-} = \frac{452943}{9} = 225$	jednego ponia- ru E względnie
	- 63	3.969	-0,285	81,225		C Contente and
5	- 87	7.569	-0,425	180,625	$\sigma_{\rm TE} = \frac{225}{10} = 71$	rE(6) - srednia rozoie ność wyników pomiarów E lub
6	-211	44.521	+0,761	579.121		Б
7	+ 45	2.025	-0,243	59.049	~ 1796874 - 0 MAT	bE(6) - względna war-
B	+203	41.209	+0,148	21.904	06 = 9	danego wyniku pomiaru E lub
9	+ 34	2.916	-0,129	16.641		5 od średnie; arytmetycznej.
no de	-258	66.564	-0,122	14.884	°r6 10	
Bratte	- 3	452.943	-0,002	1796+874		

dla t = $320 °C$		Uwagi		 √_{B(6)} - rozbieżność śmedniej 	arytmetycznej dla jednego	poniaru E wzglydnie 6		Jra(s) - Srednia roz-	ników pomie- rów E lub 6			D _E (6)- WZGlędna war- tość odch72-	ki danego wy- niku pomia-	od kredniej	nej.	*
ników pomiarów 61 E przeprowadzonych		Obilczenie		4040041			UCC	$\sigma_{\rm TBB} = \frac{\pi 2 V}{13} = 70.5$			$\sigma_{\rm G}^{\rm c} = \frac{15174812}{12} = 1_{\rm s}046$			$\sigma_{\rm TG} = \frac{1 \times 0446}{13} = 0,29$		
oieżności wy		De B	68.644	1094.116	1413.721	1915.456	2496,400	1075.369	226.576	657,0721	937.024	312.481	338°724	2595.321	43.264	13174.817
niej rozl		pe	+0,262	940*1-	+1,189	-1,384	-1,580	+1,037	-0,476	-0,811	+0,968	-0*226	+9,582	+1,611	+0,208	100'0+
czenie śred	21	N H	12.996	312.481	16,384	210.681	118.336	12.544	3.136	5°776	26,244	21,904	237.169	24.649	10.404	1012.714
11dQ	a bela	\mathbf{b}_{E}	+114	-559	+128	4459	+344	-112	- 56	- 76	-162	+148	487	+157	+102	0
	E	IR	1	5	R	4	5	o	2	00	6	10	11	12	13	Syma

Wdn - Zong, nr 1129/57 - 1500

Rys.66. Fotografia próbek szkła w świetle spolaryzowanym

Rys.67. Fotografia stoiska badawczego podstawowego

Rys.68. Fotografia dilatometru

Rys.69. Fotografia stoiska do badania doraźnej wytrzymałości na zginanie Groraz modułu Yunga E.

Rys. 70 - kepie z edcinków taśny filmewej zawierające: x) mement zetknięcia płytki studzącej z badaną próbką szkła

x)x) przebieg studzenia x)x)x) mement zdjęcia płytki studzącej z badaną próbką szkła.

- 159 -

Rys.71. Pęknięcia wywołane studzeniem przy maksymalnym spadku temperatury powierzchni
 $\varDelta \, {\rm t_{skr}} \, = \, 146 \,\, ^{\circ}{\rm C}$

- 161 -Rys. 72. Pekniecia wywołane stadzeniem przy maksymalnym spadku temperatury pewierzehni At 10 °C

Rys.73. Peknięcia wywołane studzeniem przy maksymalnym spadku temperatury pewierzehni At = 102 °C

Rys. 74. Pekniesia wywołane studzeniem podszas pomiaru kontrolnego I.

(At skr = 98°C)

Rys. 75. Pęhnięcia wywołano studzeniem podezas pomiaru kontrolnogo II. (A t = 96°C)

- 162 -

- 163 -VIII. WYNIKI CECHOVANIA PRZYRZADOW ZABACZNIK II

Vdn - Zam. nr 1120/67 - 1500

VI. WYNIKI CECHOWANIA PRZYRZADOW (załącznik II)

1. Wskaźniki do termopar

i termopar.

- 1.1. Schemat blokowy aparatury do cechowania wskaźników
 - 2-3 4-5 Rys 76 7-8
 - Opis:

r

*

- 1. Kompensator Siemens Halskie typ Rapsa kl 0,2 nr3053607
- 2. Galwanometr Ri = 150 Ω Ci = 2,2.10 A/działkę nr757894
- 3. Transformator zasilający
- 4. Przełącznik
- 5. Badany wskaźnik lub termopara
- 6. Ogniwo normalne 10183 V UNRRA Nr 50
- 7. Bateria akumulatorów
- 8. Opornica regulacyjna.

1.2. Wyniki cechowania wskaźnika profilowego do termopar nr fabr.2203146

Tabela 23

15P

			Served Trade of the second
Wska	zanie	Wskaz	anie
przyrządu bad oc	an. ! przyrz.kontro ! mV	ol. przyrz. badaneg	go !ppzyrz.kontr. ! mV
40	0	400	10,0
100	1,75	500	13,0
200	4,5	600	15,7
300	7,3		

- 165 -

Wyniki cechowania są naniesione w formie wykresu na rys.nr 77 1.3. Wyniki cechowania wskaźnika profilowego do termopar nr fabr.2508514.

anie	Wskazs	nie
! przyrz.kontr. ! mV	! przyrz. badan.	! przyrz. kontr. ! mV
0	500	27,0
5,1	600	32,4
10,8	700	38,4
16,2	800	45,0
21,5		
	anie przyrz.kontr. mV 0 5,1 10,8 16,2 21,5	a n i e W s k a z s ! przyrz.kontr. ! przyrz. badan. ! mV ? OC 0 500 5,1 600 10,8 700 16,2 800 21,5 21,5

Ta	be	la	24
----	----	----	----

Wyniki cechowania są ujęte w formie wykresu na rys 78

1.4. Wyniki cechowania wskaźnika M 128 Nr fabr. 00 0747

o zakresie 0 - 45 mV kl l.

Wskaźnik sprawdzono na kompensatorze w całym zakresie pomiarowym nastawiając bodziec wg Kompensatora poczym przełączano się na badany wskaźnik. Nie stwierdzono żadnych odchyłek, tak że przy dokładnym odczycie można uznać klasę przyrządu na 0,5.

2. Termopary i stosy termopar

2.1. Charakterystyka termoelementów Cu-konst o grubości

drutów ø = 0,6 i ø 0,2 mm

Charakterystykę termopar zdjęto w układzie blokowym aparatury jak w poz.l.l., z tym, że pod pozycją 5 schematu blokowego (rys 76) umieszczono termoparę. Koniec termopary przyłączono do aparatury kontrolnej zaś spoinę umieszczono

w kąpieli olejowej w ultratermostacie Höplera (nr VI-274). Temperaturę kąpieli sprawdzono wzorcowym termometrem rtęciowym (nr 726) o dokładności 0,1 °C. Zimne końce termopary umieszczono w kąpieli wodnej, której temperaturę kontrolowano wzorcowym termometrem rtęciowym (nr 728) o dokładności 0,1 °C. Wyniki cechowania są ujęte w poniższej tabelce.

Tabela 25

Lp		temper spoiny oc	. 1	temp.zi- mnych końców oc		różnica temperat	S.T.E. termoele mentu Ø 0,6	S.T.E. termoel. Ø 0,2 mV	Uwagi
1	:	2		3	:	4	5	6	7
1		41		31		10	0,35	0,36	lp 1 7 6
2	1	51	ł	31		20	0,78	0,79	zimne koń-
3		62		31,5		30,5	1,19	1,19	ce umiesze czone w o-
4		72		31,5		40,5	1,59	1,61	którego
5		82		32		50	2,06	2,07	temperatu- ra rośnie
6		92		32		60	2,44	2,47	
7		115		25		90	3,75	3,77	lp 7 🗲 13
8		175		25		150	6,52	6,55	zimne koń-
9		205		25		180	7,86	7,88	ce umiesz- czone
10		229		25		204	9,24	9,26	w kąpieli wodnej
11		260		25		235	11,12	11,15	w termo- stacie
12		280		25		255	12,32	12,35	
13		305		25		280	14,15	14,19	

Silach Ponieważ różnice w^vtermoelektrycznych (STE) termopar o grubościach drutów Ø = 0,2 mm są minimalne sporządzono tylko jeden wykres dla obu termopar (rys. 79).

2.2. Charakterystyka stosu termopar dolnego

2.2.1. Schemat pomiarowy

Punkty pomiarowe oznaczono jak na załączonym niżej rys. 80.

51	 -	termopera s	tosu doll	nego		×.	
t2		temperatura	ramki,	w której	zamocowano	zimne	koń-
		ce termopar	stosu				

t₃, t₁₀ - temperatury zimnych końców termopar stosu t_w - termopara kontrolna Cu-konst

2.2.2. Przebieg cechowania

Spoiny termopar stosu umieszczono na klocku stalowym przełożonym cienką tkaniną lnianą dla uniknięcia zwarcia przewodów termoelementów. Spoiny te dociśnięto do klocka płytką dociskową. Klocek metalowy umieszczono na piecyku elektrycznym. Cechowanie stosu odbyło się więc w warunkach bardzo zbliżonych do warunków pomiaru badanego na urządzeniu podstawowym.

Temperaturę zimnych końców termopar stosu mierzono za pomocą termopar Cu-konst wykonanych z tego samego drutu co termopara kontrolna o charakterystyce rys. 79.

Do pomiaru temperatury spoin termopar użyto jako termometru kontrolnego termopary Cu-konst o zdjętej na kompensatorze charakterystyce (rys.nr 79).

2.2.3. Wyniki cechowania

Wskazania termopar odczytano na galwanometrze w mV i odczyty te umieszczono w tabeli26. Wyniki z tej tabeli naniesiono na wykres umieszczony pod rys.nr 82. (Tabela 26 załączona obok).

2.3. Charakterystyka górnego stosu termopar

Górny stos termopar składa się z 21 sztuk termopar Cu-konst. Termoelementy te zostały umocowane w filcowej płytce obszytej tkaniną lnianą. (Patrz tys. 16).

2.3.1. Przebieg cechowania.

Płytkę dociskową z termoparami cechowano równocześnie ze stosem dolnym na klocku stalowym dociskając bezpośrednio płytkę do klocka. Klocek ten ogrzewano grzejnikiem elektrycznym. Jako termometru wzorcowego użyto termoelementu Cu-konst o zna-

- 168 -

2.3.3. Wyniki cechowania

Poniżej podaje się wyniki cechowania stosu górnego w formie tabeli 27. i tabeli 28. Wyniki z tych obu tabel naniesiono na wykres umieszczony na rys.84.

> 2.4.2. Charakterystyka termopary Fe-konst o grubości. drutów Ø = 0,6.

Termopar z tego drutu użyto do dilatometru, zginarki i do pomiaru temperatury próbki.

2.4.1. Przebieg cechowania

Spoiny termopary badanej i wzorcowej umieszczono wbloku

metalowym podgrzewanym w piecu oporowym muflowym z termoregulacją. Pomiar przeprowadzono wg schematu blokowego umieszczonego na rys. 76.

Jako termometru wzorcowego użyto termopary Pt-Pt-Rh. atestowanej przez Główny Urząd Miar.

Wyniki cechowania ujęto w tabeli29 i naniesiono na wykres umieszczony na rys.85.

	Lp	! Termoparia wzorcowa ! Pt-Pt-Rh	! termopara bad. ! Fe-konst			
m		! odczyt na !odpowiadająca różni- ! kompensatorze ! ba temperatur ! mV ! °C ! !	! S.T.E. !odpowiadająca !danej różnicy !temperatur ! mV			
	l	0,64 100	5,04			
	2	1,01 150	7,38			
	3	1,42 200	9,80			
	4	1,86 250	12,14			
	5	2,31 300	15,21			
	6	2,77 350	17,68			
	7	3,24 400	20,37			
	8	3,72 450	22,77			
	9	4,21 500	25,36			

Tabela 29

3. Wzmacniacz WF-70

Ze względu na zakres pomiarowy pętlicy dobrano drogą prób odpowiednie wzmocnienie dołączając na wyjściu napięciowym wzmacniacza opór łączny 202 A (opór regulacyjny # opór pętlicy).

W takim układzie cechowano wzmacniacz używając jako bodźca na wejściu napięciowym ukumulatora o napięciu 2 v

- 170 -

połączonego z oporem regulacyjnym R. Do cechowania użyto dwu woltomierzy produkcji Zakładów A3 typu TIME-2 kl 0,5 o zakresach pomiarowych 0-3 V i 0-60 mV. Przyrząd I o numerze fabr.5302150 i przyrząd DD o nr. fabr.5307483.

3.2. Przebieg cechowania

Przesuwając zwieracz opornicy R zmieniano bodziec. Napięcie to odczytywano na przyrządzie I. Przy ustalonym napięciu wejściowym robiono odczyt napięcia wyjściowego na przyrządzie II. Odczyty przyrządów oraz wyniki obliczeń podano w załączonej w dziale VII tabeli nr 30.

May-

Wyniki cechowania dolnego

stosu termopar Cu-konst /12 szt.termopar/

Tabela 26

	Pomiar temp.ternop.wzorcową				STE stost	Pomiar ców st	różnie cosu a t	y temp.m	liędzy t zenia	emp.zimn;	ych koń-	temp.zim.	różnatemp na stosie
ър	mV	∆ t _w ,	to	t _w oo	πV	t ₂	tlo	$b_{BT} = \frac{t_2 + t_1 \rho}{2}$	to °C	t _{śr} mV	téroc	tzs=stift	At _s oc
1	0,00	0	17,8	17,8	0,00	40	40	40	17,8	0,00	0,0	17,8	0,0
2	3,22	65	18,2	83,2	25,51	53	52	52,5	18,0	0,38	10,0	.28,0	55,2
3	4,64	95	18,2	113,2	40,55	54	53	53,5	18,2	0,40	18,8	29,0	84,2
4	5,27	107	18,3	125,3	45,22	59	58	58,5	18,3	0,55	14,5	32,8	92,5
5	6,85	139	18,3	157,3	61,03	65	63	64,0	18,3	0,70	18,0	36,3	121,0
6	7,57	157	18,5	175,5	67,90	72	61	61,5	18,6	0,65	17,0	35,6	139,9
7	10,06	204	19,0	223,0	94,90	75	75	75, 0	19,5	1,00	26,0	45,5	197.5
8	11,65	237	19,9	256,9	111,13	80	79	79,5	20,2	1,10	28,0	48,2	208,7
9	12,01	243	20,0	263,0	114,70	82	79	- 80,5	20,4	1,15	29,5	49,9	213,1
10	12,08	245	20,1	265,1	115,70	82	80	.81,0	20,6	1,20	30,5	51,1	214,0
	and the second	ELESY- z r.85								odçayt. rys.77	odezyt. rys.79		
	Opér wewnętrzny stosu przy: $t = 15$ °C $R_{ad} = 27,7 \alpha$												

t =120 °C R_{sd} = 26,5 A

Wdu - Zam. nr 1120/57 - 1500

Tabe	la 27	W.	miki cech	owania górn umieszczonj	nego stosu vch w płyte	termopar C ce dociskow	u-konst /2' ej/	1 stt term	opar		and the second
Lp	temperat. Na wzopcu	Odegyty na ku nr 220	a wskaźni– 5146	Odczyt.śr. temp.z.k	konc.termo pary Cu-ko	BTE termo pary Cu-ko	roż.temp. m.ten.zim	temp.zimn. Rońc.stosu	różn.tem. na sto- sie	stosi	Un
	tw C	t5	ty	$t_{br} = \frac{t_s + t_s}{2}$	to	tsr mV	Ater °C	ty = atis + to	At s=tw-tzs	mV.	ta
1	17,8	40	40	40,0	17,8	0,00	0,00	17,8	0,0	0,0	A DI
2	83,2	59	61	60,0	18,0	0,60	14,2	32,2	51,0	31,2	poku
3	113,2	61	57	64,0	18,2	0,68	17,0	35,2	78,0	47,7	TH
4	125,3	64	73	68,5	18,3	0,80	20,5	38,8	86,5	52,5	bu
5	157,3	- 71	69	70,0	18,3	0,87	21,8	40,1	117,2	72,0	STO
6	175,5	92	74	83,0	18,6	1,22	30,5	49,1	125,4	79,2	TOW
Charles .	obliczenie w tab.26	the second		A REAL		odezyt.z	odezyt. z				000
and the survey of the survey o	and the second se	and the second second second	A STATE AND AND AND A STATE OF A	A STATE OF THE STATE OF THE STATE OF	And the second se		A A A A A A A A A A A A A A A A A A A	Contraction of the second second second	a stand and a stand of the stan	the state of the second second	Party of the second
Tat	vela	i i i				1					
T _{at}	t _w °C	too	At nv	At5 TV	At, W	4 t ₅ °c	1 t7 °C	t5 ≈ t7	⊿ t ₄	Uwagi	
Tak Lp 1	t _w °d 36	to °c 27	4 t ₄ mV 5,4	4 t5 mV 0,00	At, mV 0,00	4t5°C	1 t7 °C	t5 ≈ t7 27,0	4 t4 9	Uwagi cech	0-
Tal Lp 1 2	2021a t _w °C 36 48	to °0 27 27,4	Δ ^t ₄ mV 5,4 11,8	4 t ₅ mV 0,00 0,03	At, mV 0,00 0,03	4t, °C 0,0 0,8	1 t7 °C 0,0 0,9	t5 ≈ t7 27,0 28,2	⊿ t ₄ 9 19,8	Uwagi cech want	0-
Tal Lp 1 2 3	xela t _w °c 36 48 51	to °C 27 27,4 27,4 27,8	Δ [±] 4 mV 5,4 11,8 18,4	A t ₅ mV 0,00 0,03 0,10	4t, mV 0,00 0,03 0,10	4t5°C 0,0 0,8 2,8	1 t7 °C 0,0 0,9 2,8	t5 ≈ t7 27,0 28,2 30,6	4 t4 9 19,8 30,4	Uwagi cech wand w wodz	0- 1e
Tal Lp 1 2 3 4	xela t _w °c 36 48 61 70	to ⁰ c 27 27,4 27,8 28,2	A t ₄ mV 5,4 11,8 18,4 23,6	At ₅ mV 0,00 0,03 0,10 0,10	At, mV 0,00 0,03 0,10 0,12	4t5°C 0,0 0,8 2,8 2,8	At ₇ °C 0,0 0,9 2,8 3,4	$t_5 \approx t_7$ 27,0 28,2 30,6 31,3	4 t4 9 19,8 30,4 38,7	Uwagi cech wanc w wodz	ie ie
Tal Lp 1 2 3 4 5	xela t _w °c 36 48 61 70 81	to ⁰ c 27 27,4 27,8 28,2 28,5	Δ [±] 4 mV 5,4 11,8 18,4 23,6 29,5	At5 mV 0,00 0,03 0,10 0,10 0,12	At, mV 0,00 0,03 0,10 0,12 0,12	4t ₅ °0 0,0 0,8 2,8 2,8 3,4	At.7 °C 0,0 0,9 2,8 3,4 3,4	$t_5 \approx t_7$ 27,0 28,2 30,6 31,3 32,0	4 t4 9 19,8 30,4 38,7 49,0	Uwagi cech want w wodz	0-
Tal Lp 1 2 3 4 5 6	xela t _w °C 35 48 51 70 81 85	to ⁰ 0 27 27,4 27,4 27,8 28,2 28,6 29,0	Δ ^t ₄ mV 5,4 11,8 18,4 23,6 29,5 31,8	4 t ₅ mV 0,00 0,03 0,10 0,10 0,12 0,13	At, mV 0,00 0,03 0,10 0,12 0,12 0,12 0,13	4t5°C 0,0 0,8 2,8 2,8 2,8 3,4 , 3,7	△t ₇ °0 0,0 0,9 2,8 3,4 3,4 3,7	$t_5 \approx t_7$ 27,0 28,2 30,6 31,3 32,0 32,7	4 t4 9 19,8 30,4 38,7 49,0 52,3	Uwasi cech want w wodz	0- 1e

Tabela 30

	the second s		and the second se	and some in which it					
Lp	Przyrząd I		Przyfzą	d II	Mnoznik napięcia X	Prad wyjściowy	wzmocnie nie Y		
	dzią- łek	my .	działek	A	-	I mA	mV/mA		
1	c	0	0	0		0	31- 1944 ¹		
2	5	4	3,3	0,132	33,00	0,652	6,14		
Ø	20	8	6,7	0,268	38,50	1,32	6,06		
4	15	12	10.0	0,398	33,15	1,97	6,09		
5	20	16	13,2	0,528	33,00	2,61	6,13		
6	25	20	16,4	0,656	32,80	3,25	6,15		
7	30	24	19,8	0,792	33,00	3,92	6,14		
8	35	28	23,1	0,922	32,90	4,56	6,14		
9	40	32	26,5	1,060	33,15	5,25	6,10		
10	45	36	30,0	1,198	33,25	5,83	6,17		
11	50	40	33,1	1,325.	33,10	6,56	6,10		
12	55	44	36,2	1,452	38,00	7,19	6,12		
13.1	60	48	39,8	1,592	33,15	7,88	6,10		
14	65	52	43,0	1,720	33,10	8,52	6,10		
15	70 -	56	'46,4	1,856	33,15	9,20	6,09		

- 180 -

Vartości średnie:

10

Encentă napiecia X = 33,09

Wzmocnienie I = 6,12 my/mA

1

Y

7. Mechanizm prowadzący 8. Pokrywa z uchwytem 9. Ptytka do obciążników 10. Zderzak zabezpieczający 11. Opory grzejne 12. Śruba do regulacji poziomu 13. Podstawa 9

10

11

12

(13)

C.

Stoisko do badania wytrzymałości szkła przez zginanie

Rys. 22

Atpw - różnica temperatur na początku okresu wstępnego pamiarów głównych. Atpp – różnica temperatur na początku okresu podstawowego pomiarów głównych. Δtρwκ – różnica temperatur na początku okresu wstępnega pomiorów kontrolnych. Atpw st°C

AT-X °Cm