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Abstract 

Aim: This study aimed to develop and apply the novel HexGIN (Heterogeneous extension for Graph 
Isomorphism Network) model to the FinCEN Files case data and compare its performance with existing 
solutions, such as the SAGE-based graph neural network and Multi-Layer Perceptron (MLP), to 
demonstrate its potential advantages in the field of anti-money laundering systems (AML). 

Methodology: The research employed the FinCEN Files case data to develop and apply the HexGIN 
model in a beneficiary prediction task for a suspicious transactions graph. The model's performance 
was compared with the existing solutions in a series of cross-validation experiments. 

Results: The experimental results on the cross-validation data and test dataset indicate the potential 
advantages of HexGIN over the existing solutions, such as MLP and Graph SAGE. The proposed model 
outperformed other algorithms in terms of F1 score, precision, and ROC AUC in both training and 
testing phases. 

Implications and recommendations: The findings demonstrate the potential of heterogeneous graph 
neural networks and their highly expressive architectures, such as GIN, in AML. Further research is 
needed, in particular to combine the proposed model with other existing algorithms and test the 
solution on various money-laundering datasets. 

Originality/value: Unlike many AML studies that rely on synthetic or undisclosed data sources, this 
research was based on a publicly available, real, heterogeneous transaction dataset, being part of 
a larger investigation. The results indicate a promising direction for the development of modern hybrid 
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AML tools for analysing suspicious transactions, based on heterogeneous graph networks capable of 
handling various types of entities and their connections. 

Keywords: money laundering, deep learning, machine learning, network analysis, graphs 

1. Introduction 

The practice of concealing the source of funds obtained from illegal activities, such as drug trafficking, 
corruption, embezzlement and gambling, by converting it into a legitimate source, is commonly 
referred to as money laundering (Korejo et al., 2021). This type of criminal activity has significant 
negative effects on the economy and society, as it damages financial sector institutions critical for 
economic growth, promotes crime and corruption and undermines legitimate private-sector efforts 
(Ofoeda et al., 2022). One notable and recent example of money laundering was the FinCEN Files 
investigation, which exposed the role of global banks in the industrial-scale process of money 
laundering (Fitzgibbon & Hallman Ben, 2020; Lopez-de-Silanes et al., 2022). The investigation was 
conducted by the International Consortium of Investigative Journalists (ICIJ) and BuzzFeed News and 
involved more than 400 journalists from 110 news agencies in 88 countries (D’avino, 2023; Fitzgibbon 
& Hallman, 2020; Shiel & Starkman, 2020). The leaked documents include more than 2,100 suspicious 
activity reports (SARs) filed and sent by global banks to the USA Treasury Department’s intelligence 
unit, the Financial Crimes Enforcement Network (FinCEN). The involved banks moved more than 
$2 trillion in payments that were supposed to be suspicious, over the period of 18 years. The data 
utilised by journalists, analytical reports and summaries were made freely accessible online by ICIJ, 
thereby enabling other researchers to pursue additional clues and conduct a retrospective analysis of 
the material (Fitzgibbon & Hallman Ben, 2020). The FinCEN Files investigation was honoured as 
a finalist for the 2021 Pulitzer Prize in International Reporting (Hudson, 2020; Megha Rajagopalan, 
Alison Killing and Christo Buschek of BuzzFeed News – The Pulitzer Prizes, 2021). 

This case was also acknowledged as a significant advancement in the field of investigative journalism, 
owing to the application of modern analytical tools to uncover connections and correlations among 
the leaked papers (Haenens et al., 2022). One of these technologies was Neo4j, a graph database, 
which made it possible to efficiently query and analyse complicated relationships (Hunger et al., 2020). 

Over the years, various techniques have been developed for the automatic and intelligent detection 
of money laundering (Anti Money Laundering, AML) (Tundis et al., 2021). The systems encompass 
a range of methodologies including machine learning and deep learning (DL) (Alotibi et al., 2022). 

Traditional machine learning methodologies, encompassing simpler models such as regression variants, 
decision trees, ensemble methods including boosting trees, support vector machines (SVMs), rule-
based models, and Bayesian inference techniques (Chauhan & Singh, 2019; Kamath et al., 2018; Suyal 
et al., 2021), are recognised for their satisfactory performance. Nonetheless, these approaches exhibit 
inherent limitations, particularly their inability to directly leverage the structural relations between 
edges and vertices, and the lack of robustness against the local density or sparsity within transaction 
networks (Alarab et al., 2020; Silva et al., 2023; Weber et al., 2018). At the same time, Graph Neural 
Networks (GNNs) are naturally capable of processing such data, while preserving all the remaining 
capabilities of DL techniques (Weber et al., 2018). 

The presented study makes a two-fold contribution to the field of money laundering detection using 
graph neural networks. Firstly, it aimed to develop and apply a novel extension of Graph Isomorphism 
Networks (GIN) called HexGIN (Heterogeneous extension for Graph Isomorphism Network) to the 
publicly available FinCEN Files case data. The proposed approach leverages the flexibility and 
expressiveness of GIN (Xu et al., 2018) to handle varying entity types and dimensionality. Its 
performance is compared with established solutions such as SAGE-based GNN (Hamilton et al., 2017) 
and Multi-Layer Perceptron (MLP). By demonstrating the potential advantages of HexGIN, this paper 
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contributes to the development of more effective AML systems. The heterogeneous application of very 
flexible and expressive Graph Isomorphism Networks (GIN) for such tasks has not yet been extensively 
explored. 

Secondly, unlike previous research (Johannessen & Jullum, 2023; Song & Gu, 2023) that relied on 
different assumptions, such as edge-feature utilisation, and extends other GNN architectures, the 
presented approach focuses on developing a heterogeneous GIN that can effectively handle graph-
structured data. Moreover, this study employed the publicly available, already graph-enhanced FinCEN 
files investigation data, which is not subject to legal restrictions or synthetic data limitations. This 
allows for a more realistic evaluation of the proposed solution and its comparison to existing 
algorithms. 

The research hypothesis is that the more flexible architecture of HexGIN will outperform traditional 
machine learning models such as MLP, which operate on flattened tabular data, and less expressive 
GNN models, e.g. heterogeneous Graph SAGE. 

The remainder of this paper is organized as follows: 

1. Literature Review, is divided into two parts: an analysis of anti-money laundering tools and 
a review of the relevant graph neural networks literature, providing a comprehensive background 
for the study. 

2. Methodology, details the preparation and structure of the FinCEN Files data, followed by an  
in-depth explanation of the HexGIN model mechanics, outlining the methodology employed in this 
research. 

3. Results, presents a comparative study between HexGIN, SAGE, and MLP, applied to the FinCEN 
case files, highlighting the performance and potential advantages of the proposed HexGIN model. 

4. Discussion and Conclusions, summarises the key findings, discusses the implications of the 
research, and suggests potential avenues for future work in the field of money laundering 
detection using graph neural networks. 

2. Literature Review 

2.1. Money Laundering 

Money laundering is a broad term that lacks a single international definition, as interpretations vary 
among jurisdictions and organizations. The concept, however, has been well-known since its colloquial 
mentions during the US Watergate scandal (Korejo et al., 2021). Despite the absence of a universally 
accepted definition, money laundering consistently exhibits several key elements across various legal 
acts. These shared elements are discernible in definitions provided by the following institutions: the 
European Union Parliament and Council Directive 2015/849, which establishes a legal framework to 
combat money laundering and terrorist financing (The European Parliament, 2015); the American Anti-
-Money Laundering Act (AMLA) of 2020, a US law that penalises money laundering activities and 
strengthens regulatory oversight (Thornberry, 2021); the United Nations Convention Against 
Corruption, an international treaty that establishes criminal offences related to corruption, including 
money laundering (UN General Assembly, 2003); the International Financial Action Task Force (FATF), 
an intergovernmental organization that issues recommendations and standards for combating money 
laundering and terrorist financing (FATF, 2022). 

As defined by the aforementioned institutions, the key elements of money laundering can be 
summarised as follows: 

1. Criminal origin of funds: money laundering pertains to the proceeds derived from criminal activities. 
2. Conversion or transfer: the process entails converting or transferring funds to render them 

ostensibly legitimate. 



An Analysis of Novel Money Laundering Data Using Heterogeneous Graph Isomorphism Networks…  35 
 

3. Concealment or disguise: the primary objective is to obfuscate or camouflage the source, 
ownership, or control of the illicit funds. 

4. Utilisation of financial systems: money laundering typically capitalises on financial system 
mechanisms to accomplish its objectives. 

2.2. AML Systems 

As the global financial system becomes more intricate, the need for advanced anti-money laundering 
(AML) measures has grown (Han et al., 2020). With the advancement of machine learning algorithms, 
numerous approaches have been proposed over the years, although a detailed presentation of these 
methods is beyond the scope of this study. A systematic literature review of over a hundred papers 
published by American and Chinese researchers between 1994 and 2014 outlined the taxonomy of 
typical AML approaches, including rule-based or risk-based policies, link analysis, outlier detection, risk 
classification, and graph analytics (Han et al., 2020). 

Rule-based and risk-based approaches, while easy to understand and implement, lack flexibility and 
adaptability (Han et al., 2020). Association rule mining algorithms can help address these limitations 
(Drezewski et al., 2016). Risk classification and outlier detection (considered to be typical machine 
learning tasks) employ machine learning techniques such as Support Vector Machines, Random Forest, 
Decision Trees, Bayesian approaches, Gradient Boosting, and regression (Alsuwailem & Saudagar, 
2020; Tundis et al., 2021). Link and graph analytics involve the analysis of data in a graph format, using 
classic graph topology and structure analysis (Dumitrescu et al., 2022), and hybrid graph machine 
learning pipelines (Eddin et al., 2021).  

Graph Neural Networks (GNNs) are a class of deep learning models designed to handle graph data, 
offering advantages such as the utilisation of relations between vertices, robustness to irregular 
structures, and processing large-scale sparse structures (Wu et al., 2021). The Graph Convolution 
Network (GCN) architecture (Kipf & Welling, 2017) laid the foundation for the widely used nowadays, 
message-passing procedure (MPNN) (Gilmer et al., 2017) and its later variations. A meta-analysis of 
papers on GNNs (Wu et al., 2021) identified over forty such variants, with notable models including 
Graph Attention Network (GAT) (Velickovic et al., 2017), GraphSAGE (Hamilton et al., 2017), and Graph 
Isomorphism Network (GIN) (Xu et al., 2018). The latter was theoretically proven to be expressive 
enough to reflect the Weisfeiler-Lehman graph isomorphism test (Shervashidze et al., 2011) through 
the application of nested MLP networks. 

Recent developments have focused on heterogeneous graphs, which consist of various node types and 
relations (Shi, 2022). Such networks can model numerous real-world connections and are used to 
represent knowledge bases (Paulheim, 2017). A systematic survey (Yang et al., 2020) presented over 
thirty variants of heterogeneous architectures, differing in the way of aggregation and message passing 
details. Incorporating heterogeneous relations while maintaining stability and generalisation 
capabilities is considered to be a critical research aspect in this area (Shi, 2022; Wu et al., 2021).  

GNNs have been applied to money laundering detection in cryptocurrency trading, using convolutional 
GNN architectures (Alarab et al., 2020) or self-supervision mechanisms (Lo et al., 2023). Comparisons 
between classic machine learning methods, GNN variants, and hybrid approaches show that the latter 
performs better in terms of prediction accuracy (Silva et al., 2023). Recent studies aimed to extend 
sophisticated GNN architectures to handle heterogeneous data in AML detection problems 
(Johannessen & Jullum, 2023). However, unlike the research presented in this paper, these latest 
studies are either based on homogeneous data sources (Alarab et al., 2020) – without varying the types 
of nodes and relations, heterogeneous datasets undisclosed due to legal reasons (Johannessen & 
Jullum, 2023), or the homogeneous datasets generated using a simulator (Silva et al., 2023). 
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3. Methodology 

3.1. The Data 

The FinCEN case files, published by the International Consortium of Investigative Journalists (ICIJ), 
consist of transactions log dataset and (partially anonymised) PDF files with details. These files describe 
Suspicious Activity Reports (SARs) submitted by banks (Díaz-Struck & Armendariz, n.d.).  During the 
investigation, the records were transformed into a graph format. The logical schema of the graph can 
be illustrated as shown in Figure 1 with the nodes of various colors representing graph vertices, while 
labelled edges represent various types of relations. These elements combined constitute the 
heterogeneous transactions graph. 

 

Fig. 1. Logical schema of the graph 

Source: own work. 

A Filing represents a money transfer initiated by an Entity, such as a bank or financial institution, 
mentioned by name in the files. Another Entity fills the transfer records and sends them. Multiple 
parties, including banks and institutions, can potentially be involved in processing the transfer, 
constituting the “concerns” relationship. The final Entity, that receives the transfer, is its beneficiary. 
Each Entity is characterised by its name, international code, and the country in which it is registered. 
The graph data structure described above was used directly as the input for training models. 

The dataset contains suspicious activity records (SAR) that are yet to be verified by financial institutions, 
therefore it does not contain fraudulent/non-fraudulent labels. The research problem and task for the 
model was therefore formulated as the beneficiary prediction task – the goal of the model was be to 
learn the money flow patterns, and to correctly recognise the most probable money receiver given 
some part of the structure (e.g. the originator and some concerned parties).  

The FinCEN case files dataset contains 2742 unique entities, 4507 unique filings and 131 countries, 
with 4501 filing to beneficiary relationships and 24491 filing-concerns-entity relationships. Entities, 
filings, and names of countries were converted into a unique ID, used by the model to learn numerical 
representation (embedding) – e.g. “HSBC bank” converted to id = 3. 

To effectively capture the inherent complexity of the data, it was structured as a heterogeneous graph. 
This representation employs adjacency matrices to illustrate the relations in a two-dimensional form, 
differentiating between source and target entities for each edge type, alongside matrices that detail 
the attributes of these connections. Figure 2 below provides an illustration of the graph's symbolic 
representation, as inputted into the model: 



An Analysis of Novel Money Laundering Data Using Heterogeneous Graph Isomorphism Networks…  37 
 

 
Fig. 2. Symbolic heterogeneous graph representation in the model 

Source: own work. 

with X ∈ ℝN×d  being matrices for each vertex type (entity, filing) capturing their attributes  
(N – number of vertices of given type, d – dimensionality of attributes for that entity) and edge_index 
∈ ℕ2×|E| is the adjacency matrix for each relation type where |E| is the number of connections in that 
type of relation. 

Following the methodology outlined in (Hamilton, 2020; Hamilton et al., 2017), the dataset was divided 
into disjoint subgraphs with a split ratio for training/validation at 75 percent and testing at 25 percent. 
The process begins with the random selection of initial nodes to form a connected subgraph followed 
by the random allocation of edges across different datasets, namely training, validation, and testing. 
The training set encompasses a subset of edges, establishing the foundational framework crucial for 
message passing across all phases. The validation set includes edges for use during both validation (for 
quality checks) and testing (message passing), in addition to training edges. These validation edges are 
vital for model tuning and initial quality assessments but are excluded from message passing during 
the training phase to ensure data integrity and prevent information leakage. The testing set contains 
separate edges designated for final model evaluation post-training and validation phases, ensuring 
a rigorous assessment of the model’s performance on unseen data. 

Figure 3 visualises this concept, showing nodes A, B, C, D, E, F in a connected subgraph. The solid black 
lines represent the training edges, the long-dashed red lines denote the validation edges, and the 
short-dashed blue lines indicate the testing edges. 

 
Fig. 3. Edge split example – a complete graph 

Source: own work. 
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Figure 4 shows the evolution of the split and adding edges during subsequent phases. 

 

Fig. 4. Train-validation-test split 

Source: own work. 

To accommodate the heterogeneous nature of the FinCEN files graph, which features diverse types of 
nodes and edges, a specialised splitting strategy called HGTLoader (Hu et al., 2020) was employed. This 
technique aims to preserve, as much as possible, the original proportions of node and edge types 
within each subset, akin to stratified sampling. 

3.2. Proposed Model 

The model proposed in this study extends the expressive and flexible Graph Isomorphism Network 
(GIN) architecture, initially designed for homogeneous graphs. The original model was formalised as in 
equation (1)  below (Xu et al., 2018): 

ℎ𝑣𝑣
(𝑘𝑘) = 𝑀𝑀𝑀𝑀𝑃𝑃(𝑘𝑘) ��1 + ϵ(𝑘𝑘)� ⋅ ℎ𝑣𝑣

(𝑘𝑘−1) +� ℎ𝑢𝑢
(𝑘𝑘−1)

𝑢𝑢∈ 𝒩𝒩(𝑣𝑣)
�  , (1) 

where 𝑘𝑘 ∈ ℕ is the current iteration (step) of building numerical representation, MLP is any multi-
layer-perceptron neural network, 𝑣𝑣 is the graph vertex for which neural representation is being 
constructed, ϵ ∈ ℝ is the learnable parameter of weight assigned to node v, 𝒩𝒩(v) being the set of 
nodes in the direct neighbourhood of v (connected to it), and ℎ𝑣𝑣

(𝑘𝑘−1),ℎ𝑢𝑢
(𝑘𝑘−1) ∈ ℝ𝑑𝑑, are d-dimensional 

embeddings (vectors of representation) for nodes v, u from previous iteration. Such a formulation 
assumes, that dimensionality of ℎ𝑣𝑣

(𝑘𝑘−1) and aggregated neighbouring nodes ∑ ℎ𝑢𝑢
(𝑘𝑘−1)

𝑢𝑢∈ 𝒩𝒩(𝑣𝑣) must be 
the same and equal to d, so the summation can be performed, therefore the GIN model is applicable 
to homogeneous graphs only. Visually, equation (1) can be depicted as in Figure 2. 
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Fig. 5. The process of obtaining node representation in the GIN network 

Source: own work. 

Each coloured set of squares represents a vector of given dimensionality for a specific node in the 
network. A change of colour indicates a change of mapping – the result of a specific function 
application. The vectors for nodes 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3  have the same dimensionality, so the summation is 
possible. 

The proposed HexGIN model modifies the equation for the node embedding function to incorporate 
two factors: heterogeneity of relations (neighbours of node v can be connected via different link types) 
and different dimensionality of the neighbours’ embeddings. The updated formulation of equation (1) 
combines elements from R-GCN networks (Schlichtkrull et al., 2017), which defined the notion of the 
aggregation of heterogeneous relations, with the concept of mappings concatenation (Z. Hu et al., 
2020).  

A heterogeneous graph is defined as 𝒢𝒢 = {V, E}, where V is a set of vertices and E is a set of edges, 
where additionally each vertex 𝑣𝑣 ∈ 𝑉𝑉 and edge 𝑒𝑒 ∈ 𝐸𝐸 are associated with specific mapping functions: 
𝜙𝜙(𝑣𝑣):  𝑉𝑉 →  𝒜𝒜, 𝜑𝜑(𝑒𝑒):𝐸𝐸 → ℛ, where ℛ is a set of relations in the graph, and 𝒜𝒜 is a set of allowed node 
types (Shi, 2022). For such graphs, the HexGIN model can be formalised using a message passing 
framework (Gilmer et al., 2017; Hamilton, 2020), with a set of three equations presented below. 

Given a node v, 𝑅𝑅(𝑣𝑣) ∈ ℛ  – a set of relations, connecting v to its neighbours, with 𝑟𝑟 ∈ 𝑅𝑅(𝑣𝑣) being 
a concrete relation, 𝑁𝑁𝑟𝑟(𝑣𝑣) – a set of v’s neighbours within that relation, ℎ𝑢𝑢,𝑟𝑟

(𝑘𝑘−1) ∈  ℝ𝑑𝑑 – neighbor’s u 
embedding from previous iteration, and ℎ𝑣𝑣

(𝑘𝑘−1) ∈ ℝ𝑡𝑡 previous t-dimensional embedding for node v, 
thus one can define the following equations, constituting HexGIN model: (2)  defines a message 
(numerical vector) sent by v’s neighbours, (3)  aggregates incoming neighbour messages, and (4) 
formulates new representation of v. 

𝑚𝑚𝑢𝑢,𝑟𝑟 ∈𝒩𝒩𝑟𝑟(𝑣𝑣)
(𝑘𝑘) = 𝛷𝛷𝑟𝑟

(𝑘𝑘) �ℎ𝑢𝑢,𝑟𝑟
(𝑘𝑘−1)�  , (2) 

𝑚𝑚𝑣𝑣
(𝑘𝑘) = ||𝑟𝑟∈𝑅𝑅(𝑣𝑣) 𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢∈𝒩𝒩𝑟𝑟(𝑣𝑣) �𝑚𝑚𝑢𝑢,𝑟𝑟

(𝑘𝑘)� , (3) 

ℎ𝑣𝑣
(𝑘𝑘) = 𝛷𝛷𝑣𝑣

(𝑘𝑘) ��1 + 𝜖𝜖(𝑘𝑘)�ℎ𝑣𝑣
(𝑘𝑘−1) || 𝑚𝑚𝑣𝑣

(𝑘𝑘)� , (4) 

𝛷𝛷𝑟𝑟
(𝑘𝑘): ℝ𝑑𝑑′ → ℝ𝑑𝑑 is any neural network capable of handling simple matrix of features for mapping nodes 

connected via relation r from their initial dimensionality to a new dimensionality 𝑑𝑑′. The result of this 
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operation is each node’s u (connected via relation r) message 𝑚𝑚𝑢𝑢,𝑟𝑟 ∈𝒩𝒩𝑟𝑟(𝑣𝑣)
(𝑘𝑘) ∈ ℝ𝑑𝑑′ . 𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢∈𝒩𝒩𝑟𝑟(𝑣𝑣):ℝ𝑑𝑑′ →

ℝ𝑑𝑑′ is any function that aggregates these messages of neighbours within relation r without changing 
their dimensionality (e.g. summation, averaging, etc.). ||𝑟𝑟∈𝑅𝑅(𝑣𝑣) is the vector concatenation operator, that 
stacks those aggregated embeddings together, resulting in a composite message vector 𝑚𝑚𝑣𝑣

(𝑘𝑘) ∈ ℝ𝑓𝑓 with 
new dimensionality f, being a result of concatenation. 𝛷𝛷𝑣𝑣

(𝑘𝑘):ℝ(𝑓𝑓+𝑡𝑡) →  ℝ𝑡𝑡′   is a node-update neural 
network that maps nodes from (3) , concatenated with previous node v embedding, to a new 
dimensionality 𝑡𝑡′. Graphically, the HexGIN operation can be depicted as in Figure 3. 

 
Fig. 6. HexGIN message formulation 

Source: own work. 

The various node types are indicated by various colours. Coloured squares depict vectors of features 
of each node type. The blue nodes (relation 1), are mapped by 𝛷𝛷𝑟𝑟1 into new dimensionality (yellow) 
and all such remapped nodes are then aggregated using summation. The same applies to the green 
node (relation 2) transformed by 𝛷𝛷𝑟𝑟2. 

It can be shown that in a certain setup, HexGIN can be formally equivalent to the original GIN network, 
sharing its properties. Due to space limitations, this relation is presented in the additional materials. 

3.3. Experimental Design 

The primary goal of the study was to identify the beneficiaries of each transaction within the FinCEN 
files case data. To achieve this objective, the experiment was formulated as a link-prediction task 
(Hamilton, 2020), where the model should predict the existence of the “benefits” relationship between 
a filing and an entity, given the remaining structure of the graph: the initiator and filer entities, as well 
as the concerned parties.  
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The following models were selected for the study: Graph SAGE (Hamilton et al., 2017) graph neural 
network model, transformed to handle heterogeneous data; a Multi-Layer Perceptron (MLP) neural 
network featuring a feedforward architecture, beginning with embedding lookup layers for categorical 
data and followed by simple densely connected layers, as benchmark (Goodfellow et al., 2016); and 
proposed novel HexGIN. All the models had the same structure for the initial layers: embeddings and 
preprocessing, differing only in the way of handling message passing in the graphs (in the case of Graph 
SAGE and HexGIN) or vectors (for MLP). The other architecture hyperparameters were tuned 
automatically during the inner loop of cross validation, with the goal to maximise the achieved scores. 
The models in the study made predictions on native graph data, while the MLP operated on ‘flattened’ 
information, as it is unable to handle graph structures. For the MLP, each set of elements 
(e.g. ��v1, filed, filing1�, �filing1, concerns, u1��) were concatenated together to form a single vector. 
Due to space limitations, the models’ architecture and implementation details are presented in the 
appendix.  

To create a binary prediction experiment, negative samples (Levy & Goldberg, 2014; Mikolov et al., 
2013) were added to the dataset. The number of these samples was equal to positive ones. In this 
context, the negative samples help with the model learning as to which connections exist and which 
not. On each dataset (train/validation/test) separately, they are obtained by adding malformed 
versions of existing connections, constructed by creating non-existing ones. For example, if on training 
dataset there exists  a set of connections ��v1, filed, filing1�, �filing1, concerns, u1��, then a negative 
(non-existing or fictitious) sample could be ��v1, filed, filing2�, �filing2, concerns, u1�� . Using this 
technique, the model can better learn to distinguish between positive and negative instances, 
ultimately enhancing its ability to make accurate predictions as shown in (Herghelegiu & Lu, 2021; Liu 
et al., 2022; Yang et al., 2023). 

In each cross-validation fold, the task of models was to perform embedding of vertices (turn their 
unique identifiers/names to numerical vectors), indicated as colored, square bars in Figures 2 and  3, 
considering the whole graph structure (using equations (2), (3), (4)) and then carry out a binary 
classification of the edges between filings and beneficiaries. Predictions should minimise binary-cross 
entropy loss function by setting the probability of positive (existing) connection to a high value and 
reducing the probability of non-existing (fictitious) connections. The formal definition of loss function J 
is given by equation (5) below – a general binary cross entropy function used in machine learning 
systems (Ho & Wookey, 2020): 

𝐽𝐽 =  −
1
𝑀𝑀
��𝑦𝑦𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙�𝑦𝑦𝜃𝜃(𝑥𝑥𝑚𝑚)� + (1 − 𝑦𝑦𝑚𝑚) 𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝑦𝑦𝜃𝜃(𝑥𝑥𝑚𝑚)��
𝑀𝑀

𝑚𝑚=1

, (5) 

where M is the number of all relation predictions, 𝑦𝑦𝑚𝑚 is the expected relation label (existing = 
1 /fictitious = 0), 𝑦𝑦𝜃𝜃(⋅) is the HexGIN model prediction given parameters 𝜃𝜃 and 𝑥𝑥𝑚𝑚  is a graph data 
input (initial vertex IDs for filing, entity and country, as well as the graph neighbourhood information).  

All the models start with random numbers (embeddings) for each unique ID for entities, filings, and 
relations. Graph SAGE and HexGIN, iteratively, during message passing (equations (2), (3) (4) for 
HexGIN) update these numerical representations so that they can be used during link prediction. Given 
two vertices 𝑣𝑣,𝑢𝑢 (for example filing 1 and entity 1) and relation 𝑟𝑟 (for example benefits), the models 
perform a non-linear mapping to 0/1 value indicating whether there should be a link or not, attempting 
to minimise loss function (5).  

Each model was tested using 10 times repeated 10-fold cross-validation (resulting in 100 attempts per 
model), with random restarts each time and random training graph division into train and validation 
part, for the better estimation of average predictive quality on unseen data (Bates et al., 2023; 
Bouthillier et al., 2021; Kohavi, 1995; Raschka, 2018). Such a method is advised for deep learning 
models, as it allows assessing the two sources of variance and instability of predictions – the data 
(random division of dataset multiple times) and model (random weights initialisation) (Bouthillier et al., 
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2021; Raschka, 2018). On each fold, 30% of the edges were used for supervision in a transduction split 
(Hamilton et al., 2017).  

4. Results 

Statistical comparisons of cross-validation results are subject to controversies in statistical and data 
science literature. Some authors indicated that most tests assume independence of samples (scores), 
which is clearly violated during such experiments (Bates et al., 2023; Vanwinckelen & Blockeel, 2012; 
Wong & Yeh, 2020). Other authors suggested that independence assumption violation can be ignored, 
when proper p-value corrections or if different additional techniques are applied (Demšar, 2006, 2008). 
However, graph cross-validation requires careful sample selection that does not break the structure of 
the graph (e.g. introducing artificial, disconnected subgraphs) or leak connections between sets 
(Leskovec & Faloutsos, 2006; Leskovec & Sosič, 2016), which supports even more strongly skepticism 
against the statistical tests.  

In light of these considerations, the presented study employed a percentile-based bootstrap method 
for establishing confidence intervals during model comparison (Raschka, 2018). For each model and 
the corresponding training metric, which includes 100 scores from repeated 10 x 10 cross-validation 
with varying random seeds per model, percentile-based 95% bootstrap confidence intervals were 
generated through resampling 1,000 times (Bouthillier et al., 2021; Raschka, 2018). This process 
yielded a vector of resampled metrics for each model, represented as Metricmodel ∈ ℝ1000 . With 
significance level 𝛼𝛼 = 0.05 , the 2.5th percentile 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼/2)  and 97.5th ( 𝛼𝛼ℎ𝑖𝑖𝑖𝑖ℎ = 1 − 𝛼𝛼/2 ) 
percentile values within this vector were then determined as the limits of the confidence intervals, 
denoted as �𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙 × Metricmodel, 𝛼𝛼ℎ𝑖𝑖𝑖𝑖ℎ × Metricmodel� .This approach, which does not require 
parametric assumptions, is favoured for its computational efficacy and reliance on model scores 
derived from varied data samples (Koźniewski et al., 2016; Noma et al., 2021; Raschka, 2018). Table 1 
and Figure 4 summarise the mean training metrics scored by each model, their standard deviation (in 
brackets with +/– sign) and bootstrap 95% confidence intervals (in square brackets – low and high 
values).  

Table 1. Training scores of each model 

Model\Metric F1 score ROC AUC Precision Recall 

HexGIN 
0.864 (± 0.04) 

[0.855; 0.871] 

0.921 (± 0.02) 

[0.915; 0.926] 

0.819 (± 0.02) 

[0.813; 0.824] 

0.924 (± 0.09) 

[0.909; 0.939] 

MLP 
0.828 (± 0.04) 

[0.817; 0.834] 

0.896 (± 0.03) 

[0.887; 0.901] 

0.721 (± 0.05) 

[0.723; 0.733] 

0.966 (± 0.09) 

[0.941; 0.979] 

Graph SAGE 
0.849 (± 0.03) 

[0.84; 0.854] 

0.864 (± 0.02) 

[0.864; 0.874] 

0.774 (± 0.02) 

[0.769; 0.779] 

0.946 (± 0.08) 

[0.928; 0.959] 

Source: own work. 

The bold font indicates the highest result for a given metric. 
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Fig. 7. Confidence intervals for bootstrapped metrics 

Source: own work. 

Finally, the test scores were obtained by training each model on the whole available training and 
validation data and predicting beneficiary connections on the test set. The results are presented in the 
table below. 

Table 2. Test scores of models 

Model F1 score ROC AUC Precision Recall 

HexGIN 0.756 0.813 0.766 0.758 

MLP 0.637 0.695 0.659 0.497 

Graph SAGE 0.726 0.783 0.741 0.73 

Source: own work. 

The bold font indicates the highest result for the given metric. 

5. Discussion and Conclusions 

The experimental results show the superior performance of the proposed HexGIN model compared to 
the existing solutions, such as MLP and heterogeneous Graph SAGE. During the training phase, HexGIN 
outperformed (with non-overlapping confidence interval values) the other models in terms of F1 score, 
precision, and ROC AUC. On the final test set, the proposed solution surpassed other algorithms across 
all metrics. It should be noted that, despite the use of overfitting-prevention measures such as 
neurons' dropout, regularisation and early stopping, there was a difference between the overall test 
results and the training. This can be attributed to the fact that the testing subgraph, separated from 
training/validation (Hamilton et al., 2017) was smaller and may not exhibit all the same structural 
properties due to some nodes' extraction. This issue is usually mitigated with the help of predefined 
public train-test splits in various datasets (Hu et al., 2020), but this was not possible in the study, as 
the FinCEN files lacked predefined label assignments. Variance of all the studied models was relatively 
low and comparable, indicating stable and consistent predictions from run to run. 

A noteworthy aspect of the new architecture is its ability to utilise the native heterogeneous graph 
representation and structure of the data while keeping the original GIN formulation, whereas MLP 
relied on a flattened vectors’ representation, converting the graph into a tabular format. This highlights 
the potential benefits of using graph-based models for tasks involving intricate relations and 
heterogeneous data structures. This tendency was visible in almost all the metrics, where GraphSAGE, 
also representing a graph neural networks family of models, outperformed the MLP model. 
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In relation to the research goals, the results support the hypothesis that the more flexible architecture 
outperforms the MLP and less expressive GNN architecture. By extending the Graph Isomorphism 
Network architecture and incorporating heterogeneous relations handling, HexGIN offers a flexible 
and expressive solution for analysing graph-enhanced data. 

 
Fig. 8. Model predictions analysis 

Source: own work. 

Apart from the raw training/validation/testing scores analysis, the HexGIN results can be interpreted 
in terms of the graph structure importance and patterns. The technique referred to as “gradient-
attribution” introduced by Meta’s CAPTUM (Kokhlikyan et al., 2020) was used to explain model test 
predictions. The goal was to search for graph edges (transactions) that have the strongest weight of 
the evidence, helpful in making the correct predictions. CAPTUM iteratively changes the graph 
structure by removing certain edges and evaluating the model loss and gradients (Hao, 2023). Gradient 
change indicates the transaction’s significance for correct prediction. Figure 8, based on part of the 
test data (only a subset for presentation clarity), presents the simplified results of that process.  
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1. Green nodes represent banks. 
2. Blue nodes represent filings (money transfers).  
3. Edge thickness corresponds to the gradient importance. 
4. Edge colour represents the prediction results: black – not a subject of prediction only message 

passing, green – correct classification, red – incorrect classification. 

The central part of the figure (zoomed out) presents the overview of the subgraph, with nodes forming 
clear sub-clusters connected via thick (therefore significant for prediction) money transfers. Two 
regions were enlarged. On the left-hand side: a large cluster centred around the Lithuanian bank, 
participating as a beneficiary or concerned party in multiple transactions with Chinese financial 
institutions. A single, thick transfer in the middle connects it with the Spanish bank, participating in 
multiple transactions with Russian institutions. Due to their data volume and complexity, such 
visualisations should be investigated by experts using interactive tools, published together with this 
work. A close inspection of the formed clusters and their weight of evidence can provide very useful 
information for investigators, especially if combined with another set of algorithms such as weighted 
community detection (Liu et al., 2020). 

This study is part of broader research on the use of heterogeneous graph neural networks as tools 
supporting decision-making. Incorporating heterogeneous relations into GNNs while deepening the 
network without sacrificing stability and generalisation capabilities is considered one of the most 
critical research aspects in this area (Shi, 2022; Wu et al., 2021). The results of this study, as well as 
others focused on building AML tools with graph neural networks, confirm that such a combination 
could lead to the development of a new class of accurate, modern systems. 

The experiment was limited to a single, publicly available dataset on money laundering. Due to the 
sensitivity of personal data, as well as the confidentiality of legal proceedings, examples of datasets on 
this topic are limited, and published research papers often cannot disclose source data, either. Many 
papers rely on synthetic data or homogeneous datasets, in which all the nodes and relations are the 
same, therefore limiting the possibility to directly compare them. Other heterogeneous datasets 
(e.g. molecules, citation networks or social media graphs) do not necessarily exhibit similar 
characteristics as money laundering networks. It would be beneficial to repeat this study on multiple 
realistic AML databases with various model configurations, to check the performance. Additionally, 
the inclusion and combination of ideas from other implementations, such as edge-attributes 
(Johannessen & Jullum, 2023) or variants of GNN transformers (Song & Gu, 2023) could lead to better 
prediction scores on such datasets. 
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Wykorzystanie heterogenicznych grafowych sieci izomorficznych  
w analizie danych związanych z praniem brudnych pieniędzy.  
Studium przypadku FinCEN 

Streszczenie 

Cel: Celem niniejszej analizy jest opracowanie i zastosowanie nowego modelu HexGIN (heterogeniczne 
rozszerzenie dla izomorfizmu sieci grafowych) do danych z dochodzenia dziennikarskiego FinCEN oraz 
porównanie jego jakości predykcji z istniejącymi rozwiązaniami, takimi jak sieć SAGE i wielowarstwowa 
sieć neuronowa (MLP). 

Metodyka: W badaniach wykorzystano dane ze śledztwa FinCEN do opracowania i zastosowania 
modelu HexGIN w zadaniu przewidywania beneficjenta sieci powiązanych transakcji finansowych. 
Skuteczność modelu porównano z istniejącymi rozwiązaniami wykorzystującymi sieci neuronowe grafu 
w serii eksperymentów z walidacją krzyżową. 

Wyniki: Eksperymentalne wyniki na danych walidacji krzyżowej i zestawie testowym potwierdzają 
potencjalne zalety HexGIN w porównaniu z istniejącymi rozwiązaniami, takimi jak MLP i SAGE. 
Proponowany model przewyższa inne algorytmy pod względem wyniku miary F1, precyzji i ROC AUC, 
w fazie zarówno treningowej, jak i testowej. 

Implikacje i rekomendacje: Wyniki pokazują potencjał heterogenicznych grafowych sieci i ich wysoce 
ekspresyjnych implementacji, takich jak GIN, w analizie transakcji finansowych. Potrzebne są dalsze 
badania, zwłaszcza w celu połączenia proponowanego modelu z innymi istniejącymi algorytmami 
i przetestowania rozwiązania na różnych zestawach danych dotyczących problemu prania brudnych 
pieniędzy. 

Oryginalność/wartość: W przeciwieństwie do wielu badań, które opierają się na syntetycznych lub 
nieujawnionych źródłach danych związanych z praniem brudnych pieniędzy, to studium przypadku 
opiera się na publicznie dostępnych, rzeczywistych, heterogenicznych danych transakcyjnych, 
będących częścią większego śledztwa dziennikarskiego. Wyniki wskazują obiecujący kierunek dla 
rozwoju nowoczesnych hybrydowych narzędzi do analizy podejrzanych transakcji, opartych na 
heterogenicznych sieciach grafowych. 

Słowa kluczowe: pranie brudnych pieniędzy, uczenie głębokie, analiza sieci, grafy 
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