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1. Introduction

Today, the Self-Orgamzing feature Map (SOM) suggested by T. Kohonen is a 
standard approach for pattem recognition and clustering [Kohonen 2001]. Al- 
though the neural gas network approach by Martinetz and Schulten [1991] also 
gains increasing popularity, most of its applications are reported in technical fields 
like image analysis, so far. Applications in economics and particular in marketing 
are still rare.

The methodological basis of the Neural Gas Network (NGN) algorithm is vec- 
tor ąuantization. By means of this unsupervised process a vector space can be parti- 
tioned such that all data vectors are represented by a predefmed number of proto- 
types, the nodes of the respective network. An important difference between SOM 
and NGN results from the structure of the network. A SOM represents the input 
data by means of a predefmed grid, whereas NGN consists of nodes that can ffeely 
“move” in the data space, like gas molecules in the air. Accordingly, SOMs are 
able to obtain good vector ąuantization results if the network topology matches the 
topology of the data manifold. However, the latter is often unknown in advance, for 
instance in empirical market segmentation. So, NGN can outperform SOM when 
ąuantizing topologically arbitrarily structured data manifolds [Estćvez and Figue- 
roa 2006].

According to Questier et al. [2002] NGNs have eąual visualization power as 
the Kohonen SOMs and provide similar clustering results as £-means. Cottrell et al. 
[2006] even cali it a simple and highly effective algorithm for data clustering. On 
the other hand, NGN reąuires the specification of several control parameters, 
which can degenerate to a time-consuming task, particularly if high-dimensional
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data has to be analyzed. Above all, the a priori fixing of the number of nodes, or 
clusters, has initiated further developments. The most popular one may be the 
Growing Neural Gas Network (GNGN) suggested by Fritzke in 1995. Further de- 
velopments of this concept will be presented in the following.

The basie idea of recent growing neural gas-like networks is to create a new 
node if the input data suggests an enlargement of the neural network in favor of the 
data representation as a whole. In return, nodes with Iow “utility” with respect to 
the goodness of data representation are removed during the network adaptation 
process. The available algorithms differ, among other things, in the way of adding 
new nodes. The GNGN algorithm, for instance, repeatedly inserts a new node after 
a pre-specified number of adaptation cycles. Others, e.g., the so-called Grow When 
Required Network by Marsland et al. [2002, 2005] and the Self-controlled Grow
ing Neural Network (SGNN) by Decker [2005], add a new node if the fit of the 
node, which best matches the current input data, is lower than a dynamically adap- 
ted threshold. We refer to this by the term “activity” in the following. Since the 
number of parameters that have to be preset by the user in advance is less with 
SGNN, it features comparatively high autonomy regarding the dynamie controlling 
of the adaptation process.

2. The SGNN approach and its modifications

Before sketching the SGNN algorithm, some notation has to be introduced. The 
input data is represented by K  -dimensional vectors = (xj{, ..., xjk, ..., xjK),
where index j  ( j  = 1, ..., J )  refers to an individual data point or input signal. The 
neural network comprises H  nodes or prototypes which are represented by weight 
vectors % = (rjhl, ..., rjhk, ..., rjhK) . By means of vector ąuantization the J x K  
input space can be partitioned into an H x K  output space. The set of nodes is 
denoted by B and the set of connections in the neural network by C .

The SGNN approach starts from a neural network, which consists of only two 
nodes, w, and m2 . Both of them are operationalized by K  -dimensional weight 
vectors ą, and ą 2. In the beginning, the adaptation cycle counter / is set to zero 
and the set of connections between different nodes C is empty. For controlling the 
network growth and adaptation process, two intemal variables are needed, namely 
a firing counter yh (initialized with 0) and a variable wk (initialized with 1), which 
refers to the training reąuirement a node features during the adaptation process. 
Before starting the process, the user has to specify parameters eBest and . 
Both are needed to control the growth and weight adapting process extemally. The 
same applies to the age variable aMax. The maximum number of adaptation cycles 
L should be selected significantly greater than the ntunber of input vectors J . 
Starting from this initialization, a network adaptation cycle looks like this:
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1. Generate input vector x . and compute Euclidean distances

dist(Xj,i\h)
*=1

Vma e B.

2. Determine the best (uhs ) and the second best matching node ( uhr ), such 
that

Kes, = argmindist(Xj,% ) and hSeconi= argmin dist(Xj,i\h).
Ae {1...... H )  * € (1 .......H )\h Bv,

3. If the nodes uh and u. are not connected, then"Bał "Stcond 7

C = CKj{(hBat,hSaond)} and = 0, else aĥ ĥ  = 0.

4. Compute the activity of the best matching node according to:

V ,  =expM w <(x,,i|^  )).

5. Compute thresholds for both the activity (i.e. vnres) and the training re- 
ąuirement (i.e. wnra) of uĥ  :

If vŁ < vnres then v71„. =Thres
f t w + y , ,

/+ i
w,Thres

M  ln(/ + l)
\B\

6. If vAj > vThra or wh > wnres then go to step 7, else create a new node 
uĥ  with = i( i iA + x; ) , update the topological structure of the network 
regarding B and C , set yhfi = 0, whf/ = 1, and go to step 8.

7. Adapt the best matching node and all the nodes to which it is connected:

= + Ałlw  With Al« ^  =£BesM,JXj “ V , ) ,

=n*, + An*, with =eSecondwhj(xJ ) v/j,. with (hBest,ht)e  C.

8. Update the control variables:

= y ^  + 1’ = ~ ~ 7 7 ’ ak*A =ah„A +1 V/,i with (hBesnh,)z C.
y*Bu. 1

9. Delete all connections (h.,hr)e  C with aAA > aMax and all nodes u^e  B 

which are not connected to any other node uA (i * i 1) and satisfy yA <|5|.
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10. Increase the adaptation cycle counter l by 1,
11. If / < L then go to step 1, else stop and create connectivity matrix

1, if nodes «A| and are connected

Hence, matrix C describes the finał topological structure of the neural net
work. Each node -  or morę precisely -  the associated weight vectors can be inter- 
preted as prototypes, which represent a certain pattem in the data set considered. 
Similar prototypes are connected either directly or by a smali number of edges in 
the implicit connectivity graph. In the neural network terminology the clusters are 
represented by Voronoi regions and the weight vectors equal the centroids.

The flexible structure of the SGNN algorithm enables modifications serving 
different objectives. The first one, called Growing Neural Network with Autono- 
mous Parameter Specification (GNNAPS), was driven by the intention of simplify- 
ing the parameterization and increasing the average adaptation speed. The only 
extemal parameter to be set by the user -  besides the maximum number of adapta
tion cycles L -  is the compression level (j) . Choosing a <p value close to 1 implies 
an intensive compression of the data, whereas the opposite happens if <f) ap- 
proaches 0. Moreover, in order to intemally compute appropriate values for the 
leaming parameters eBesl and , a variable SMax is introduced, which refers to 
the “diameter” of the data base to be analyzed. We define

We use the distance between the first input vector and the origin as a default. 
The relation between eBest and £&eW on the one hand and <j>, SMax as well as L 
on the other hand can be modeled using a logistic function. The maximum age of a 
connection is defined as aUtu = |5| - 1 .  Further details are given in Decker [2006].

The basie motivation underlying the second modification, called Growing Neu
ral Network with integrated testing for Cluster-wise Normality (GNNCN), was to 
find Gaussian clusters. In the current version of GNNCN, we apply the well-known 
Mardia test to verify the Gaussian assumption [Mardia 1970; Schwager 1985]. The 
suggested principle bears resemblance to the G-means approach by Hamerly and 
Elkan [2003].

A Gaussian structure of the clusters is useful in market segmentation and con- 
sumer typology, for instance, sińce it eases the interpretation of the cluster centers 
as consumer profiles. Insofar, the extent to which the objects belonging to the indi-

SMax = max{dh , ..., dj } , with n < J  and
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vidual clusters are normally distributed can be used as an indicator for the overall 
ąuality of the obtained segmentation.

In GNNCN we use the Gaussian distribution of the Voronoi regions as a new 
stopping criterion for the growth and adaptation process. Therefore, we modified 
the Mardia formulas of the kurtosis d%"‘ and the skewness df™ by integrating the 
weight vectors of the current adaptation cycle:

jkurt
dh

d skew
h

Z ((x» -  *1* y s h ‘1(x„ -  *1*) ')2 and
nsNh

•Z Z ((X»-1U)S;I(Xn'-%)')\
neNh n'eNh

where Sh denotes the cluster-specific sample covariance matrix and Nh is the set 
of input vectors assigned to node uh. The corresponding p  -values are:

r f " = 2 ( i d) with y r =  i £ ~ K [
yjSK(K + 2) / 1 Nh |

_ skew
Ph = \ - P with b f" Nk \d ftw! 6 VA.

The test statistic for the sample kurtosis is asymptotically standard normally 
distributed, whereas the one for the sample skewness is asymptotically chi-square 
distributed.

The hypothesis of multivariate normality can be rejected if df™ is very large 
or if d ^n is either very large or very smali. Moreover, the term 1 -  eBat is replaced 
by the significance level a  of the Mardia test. Further details are given in Decker 
et al. [2006].

The different approaches are compared in the following by using the well- 
known ąuantization error [Kohonen 2001]

P M \ = Z Jj=\ dist(xj > ̂ ) with rrij = arg min dist(Xj, )
h

and the compactness [Marsland et al. 2002]

PM2 = Z  ̂ i Z ^ A ^ K ’1̂ ) -

The first measure shows how the neural network minimizes the distances be
tween the centroids and the cluster elements, whereas the second one penalizes the 
neural network for neighboring connections between nodes that are placed far apart
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on the connectivity graph. In generał, minimizing both measures leads to an ac- 
ceptable mapping of the data.

3. Some evidence of network performance

We make use of two synthetic 2D data sets to show strengths and weaknesses 
of the relevant algorithms in pattem recognition and clustering. The first data set 
contains morę than 19 000 data points which define seven different graphical ob
jects (see the gray background images in Figurę 1). Especially the two single lines 
are worth to be considered closely due to their significantly differing numbers of 
data points. The horizontal linę represents 7260 data points, whereas the vertical 
one consists of only 100 points. But the crucial thing is the varying density of the 
horizontal linę. The morę one goes to the right on this linę, the morę points are 
underlying the respective section of the linę. Thus, we have high numbers of morę 
or less identical data points here. In contrast to this, each of the five black rectan- 
gles in the chessboard pattem, as well as the dotted rectangle on the left hand side, 
have been generated with 1600 data points. The second data set comprises seven 
data clouds, each of them consisting of 1000 approximately bivariate normally 
distributed data points.

Applying the GNGN algorithm by Fritzke [1995] to the first data set provides 
the result given on the left hand side of Figurę 1. The extemal parameters are in 
linę with the author’s suggestions. On the right hand side, the GNNAPS output for 
compression level 0 = 0.15 can be seen.

At a first glance, both representations look rather similar. However, the perform
ance measures PMY and PM2 indicate significant differences, particularly when 
considering the ąuantization error, which is remarkably lower for GNGN. The reason 
for this becomes obvious when examining the horizontal linę. Since this object or 
region represents almost 40 percent of the data, it attracts a comparatively large 
number of nodes (see [Hammer et al. 2007] for a recent discussion of magnification 
in connection with the NGN approach). This, at least partly, happens at the expense 
of the representation of other objects, for instance, the wavy linę at the top and the 
large oval in the lower right comer. In contrast to this, the results provided by 
GNNAPS are morę balanced, particularly when taking into account that the size of 
the nodes indicates the relative ąuantity of data points they represent.

From Table 1, it can be seen how the performance measures of GNGN and 
GNNAPS successively improve, the morę adaptation cycles are passed. But the 
interesting point concems the node generation process. Already after L = 100 000 
cycles, GNNAPS converges to the finał number of nodes, which seems to be aro- 
und 182. However, whereas GNNAPS determines the size of the network morę or 
less autonomously, the growth process of GNGN has to be controlled by implicitly 
defining the freąuency of adding new nodes in advance.



23



24

Table 1. Performance of GNGN (each first row) and GNNAPS 
(each second row) depending on the number of adaptation cycles

L H PM, PMi
1 000 73 57 254.6 809.2

' 71 29 606.0 970.2
10 000 174 17 607.2 1250.6

172 19 386.0 1441.5
100 000 186 12 958.1 896.9

187 18 394.5 1139.3
1 000 000 179 12 691.0 866.5

178 18 155.8 822.5
5 000 000 180 12 427.3 846.4

179 18 762.8 803.5
10 000 000 182 12 422.5 870.4

181 17 343.5 801.6

Table 2. Pattem representation with GNNCN (for a=  0.01)

h ..kurt
Pk

_skew
Pk . ^

1 0.63 0.86

4 k
2 0.38 0.02
3 0.63 0.83
4 0.77 0.30
5 0.23 0.62
6 0.02 0.38
7 0.02 0.49

In order to demonstrate the performance of the GNNCN algorithm we make 
use of the second 2D data set. The p  -values for both the kurtosis and the skewness 
regarding the seven clusters are depicted in Table 2, together with the resulting data 
representation. Obviously, the Gaussian assumption can not be rejected at the one 
percent level. The associated performance values are PM, =17 375.7 and
PM2 =146.8. For GNGN (with P = 106), we get PM, =17 582.0 and 
PM2 =149.4, which points to a slightly poorer performance. By the way, applying 
k-means (with h = 7) to this data set provides very similar results.

In the recent past, the clustering on streaming data has been increasingly dis- 
cussed in the relevant literaturę (see, e.g., [Orłowska et al. 2006]). Data streams can 
occur in retailing (in terms of point of sale scanner data), travel business (in terms 
of online booking profiles), e-commerce (in terms of customer click streams), and 
many other fields. The key issue in these applications is the necessity of getting 
along with one pass. In the present case this means that each new data point initi- 
ates exactly one adaptation cycle. Static clustering algorithms, such as £-means, are 
not suited for this kind of data, at least in their basie implementation.
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Using the second 2D data set, it can be shown that the algorithms considered 
here are largely insensitive to the ordering of the input data. For demonstration 
purposes the GNNAPS algorithm is used in the following. The left diagram in Fig
urę 2 shows the results we get when 100 randomly drawn data points are succes- 
sively arriving and initiating one adaptation cycle each. By repeating this experi- 
ment 20 times, the illustrated performance profiles result. Less astonishing, the 
shortness of the data streams leads to varying values regarding PM, (bar profile) 
and PM2 (linę profile). However, if the data stream consists of 1000 input signals 
the results of the different runs are already converging, as to be seen from the right 
diagram. If the one-pass adaptation includes all 7000 data points the performance 
measures approach the above-mentioned GNNCN results.
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Fig. 2. Performance when clustering on streaming data with GNNAPS
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4. Applications in empirical marketing research

4.1. Consumer or household typology

The first example stems from lifestyle analysis, a typical domain for applying 
clustering algorithms. Following Brassington and Pettitt [2005] lifestyle segmenta- 
tion methods can open the door to a better-tailored, morę subtle offering to the cus- 
tomer on all aspects of the marketing mix. In such applications the a priori fixing of 
the number of clusters or segments is extremely difficult, if not even impossible.

For demonstration purposes a data set is used which was provided by the Ger
man ZUMA Institute [Papastefanou et al. 2001], and which comprises 61 Likert- 
scaled statements (5-point scalę) characterizing the individual lifestyles of 1000 
German households as well as four demographic variables (different quasi-metric 
scales). A considerable number of statements are concemed with nutrition behav- 
ior. A typical statement reads as follows: “Multivitamin juices are an important 
supplement to daily nutrition”. Rating this statement with 1 means “I strongly dis- 
agree”, whereas 5 means “I strongly agree”. The individual ratings are represented 
by the input vectors xy, where, e.g., x10 =(4,3,2, ...) indicates that household 10
responded “4” to statement 1, “3” to statement 2, and so on.

Applying the GNNCN algorithm to this data (with ar = 0.01) leads to an 11- 
-cluster solution which satisfies with respect to the relevant performance measures 
and the interpretability of the resulting cluster centroids and weight vectors respec- 
tively. Figurę 3 illustrates the weight profile of cluster 10 (i.e.
łl,o = (jjl0,, ..., tj]0 65) ) which obviously represents rather conservative consumers.
The Iow value for statement 5, for example, indicates that the members of this clus
ter typically do not like to try new products. But seemingly, according to statement 
10 and 27, the respective respondents like to stay at home and prefer hearty plain 
farę, whereas vegetarian food is strictly rejected according to statement 41. The 
average net income of these households (see item 63) is rather Iow compared to 
other segments.

4.2. Market basket analysis

A second field of application is market basket analysis based on point of sale 
scanner data. According to Russell and Petersen [2000], market basket analysis 
focuses on the decision process by which consumers select items from a given set 
of product categories on the same shopping trip. Morę technically speaking, it aims 
at uncovering interrelations between choices of different products purchased in a 
specific retail storę such as a supermarket [Giudici and Passerone 2002]. Investiga- 
tions of this kind can be useful for the category management and the micromarket- 
ing in retail Stores [Mild and Reutterer 2003].
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Fig. 3. Profile of lifestyle cluster 10

The data for this study has been provided by a large German supermarket Cha
in. In the following, the basie SGNN approach is used to study the cross-category 
purchase behavior conceming 200 product categories by analyzing almost 89 700 
market baskets. Each market basket is characterized by the occurrence or non- 
occurrence of the individual product categories. In the case of binary coded scanner 
data, an input vector x10 =(1,0,1, ...) would indicate that market basket 10 con- 
tains at least one item of product category 1, no item of category 2, and so on.

As to be expected, the neural network uncovers well-known and easy to ex- 
plain cross-category dependences, for instance conceming the product categories 
“noodles” and “ready-to-serve sauces”. The interdependency graph depicted in 
Figurę 4 has to be read as follows: Two product categories are connected by an 
edge, if both have weights larger than a user-defined display level, say 0.25, for at 
least one node (prototype) in the underlying neural network. By varying the display 
level the user can determine the degree of differentiation in the graph. If the level is 
set to a Iow value the weak relations are displayed as well. The higher the display 
level, the less relations (edges) are shown. Further details about this representation 
techniąue are provided by Decker [2005].

But the SGNN approach is also able to uncover morę complex and hardly fore- 
seeable cross-category dependencies as illustrated by the oval graph in Figurę 4. 
The cross-category purchase effects coming from the dairy assortment depicted on 
the right side may provide useful insights regarding possible starting points of 
promotional activities. The large number of edges emanating from product cate
gory 59 marks fruit yoghurt as a top selling product, which is predestinated for 
sales promotions aiming at the initiation of cross-category purchases. By this
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means, SGNN-based market basket analysis can also help to establish product list
ing decisions of the category management on a broader basis.

The available weights J)hk can be used to analyze existing asymmetries in pur- 
chasing behavior [Decker and Monien 2003], Therefore, the probability of observ- 
ing product category PCk in a market basket that corresponds to pattem h can be 
defined as follows:

P(PCt \uh)= ** Vh,k.
2 j A'=1̂A’*

If we further define the probability of realizing a market basket pattem h as 
P(uh) = \Nh\ / J , with J  sufficiently large, then the a posteriori probability 
P(uh | PCk) of realizing a market basket pattem h, provided product category 
PCk is already included in the basket, can be estimated by applying the Bayes 
theorem:

P{uh \PCk) = P(PCk \uh) P ( u h)

Y . , „ n p c .
V*,*.

4.3. Missing value imputation

Many databases resulting from surveys (e.g. in market research) or experiments 
(e.g. in the social or natural Sciences) are characterized by the problem of incom- 
pleteness in terms of missing values. While several data analysis methods can deal 
with incomplete data matrices, a considerable number of methods still reąuire 
complete data matrices. So, imputation is often the only feasible option.

In the last decade multiple imputation methods have been intensively discussed 
in the literaturę [Allison 2001; Rubin 2004] and are now available in popular statis- 
tical packages such as SAS® and S-Plus®. Multiple imputation is a well-established 
techniąue for analyzing data sets where some units have incomplete observations 
[Carpenter et al. 2006]. The method is valid provided the data are missing at ran
dom (MAR) or completely at random (MCAR).

One of the most popular multiple imputation techniąues is the Markov Chain 
Monte Carlo (MCMC) method, particularly when the missingness is morę compli- 
cated [Horton and Lipsitz 2001]. The MCMC method requires the Gaussian as- 
sumption [SAS 2003], but there is some evidence [Schafer 1997] that the infer- 
ences tend to be robust to minor departures from normality. A major advantage of 
MCMC is its ability to handle arbitrary pattems of missing data. Therefore, MCMC 
is used as a benchmark for a SGNN-based imputation approach.
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Two different data sets are considered to provide a morę comprehensive picture 
of how the suggested approach works. The first one comprises the average prices 
(in cents per pound) of K  = 5 consumer goods in J  = 23 cities in the United States 
[Sharma 1996]. For this 23x5 data set the Gaussian assumption cannot be rejected 
at the 10 percent level according to Mardia’s test of multivariate normality [Mardia 
1970], The second one was generated from the well-known Iris data set by Fisher 
[1936] with K = 4 flower attributes and J  = 150 observations. Both data sets are 
converted into incomplete data matrices by randomly deleting a certain number of 
values (according to the MC AR defmition).

Before applying the SGNN approach to the problem at hand, a slight modifica- 
tion of the formula for computing the distances between the input vectors x . and
the individual weight vectors is appropriate:

dist(\j,i\h) = K
z jk

I K
Z(*y*(*y* - ' I h k ) ) 1 > with z jk  =
k=\

Vj,k.

0, if xjk is missing
1, else

In doing so, we take into account that the distances between the input vectors 
and the weight vectors directly depend on the number of observed and missing 
values respectively. Additionally weighting these distances with the reciprocal 
share of observed values improves the comparability with those distances that re- 
sult from complete input vectors. The whole procedurę consists of four steps:

1. Read the whole, but incomplete J x K  data matrix X .
2. Delete all incomplete input vectors.
3. Adapt SGNN to the reduced data matrix X'
4. Complete X by imputing values from that weight vectors which have a 

minimal distance to the respective incomplete input vectors.
Table 3 shows the imputations for six (i.e. 5 %) randomly missing values. The tme 

values are given in the first row, followed by the imputations we get when applying the 
modified SGNN approach. In case of MCMC the multiple imputation tool provided by 
the SAS® procedurę MI was applied. The confidence level was set to 0.05 and the num
ber of imputations was limited to 5. Both values eąual the SAS® defaults. In the last row 
of the table, the means of the above MCMC imputations are listed.

Table 3. Missing value imputation for the price data

True values 100.80 25.30 63.30 60.20 87.10 41.50 MPD
SGNN 99.50 26.10 65.40 60.80 85.07 39.41 2.689
MCMC 1 101.32 30.69 72.96 69.68 83.79 37.00 11.245
MCMC 2 100.45 33.13 78.91 96.31 76.28 51.86 25.554
MCMC 3 103.25 30.60 74.41 67.64 87.26 40.41 9.350
MCMC 4 98.02 29.91 81.30 80.75 100.81 54.03 21.581
MCMC 5 104.59 32.56 65.44 62.93 96.73 54.69 13.868
MCMC 0 101.53 31.38 74.60 75.46 88.97 47.60 14.133



31

In order to compare the goodness of imputation, the Mean Percentage Deviation

100 y  \truevalue-imputedvalue\ 
no. o f m.v. ,v- | truevalue \

is given in the last column (m. v. = “missing values”). Both the computed imputa
tion values and the MPD values indicate that the considered methods are able to 
generate acceptable results. However, the SGNN approach seems to slightly out- 
perform the benchmark, also when considering the averaged MCMC values given 
in the last row of the table.

For further analyzing the performance of both approaches, the number of missing 
values in the data set has been varied systematically. The MPD values for different 
numbers of missing values are displayed in Table 4. The results confirm the impres- 
sion we already got from Table 3. From the MPD values, which result when using 
the means of the five MCMC values (see last row), the conclusion can be drawn that 
the SGNN approach mostly keeps pace with the best MCMC imputation.

Table 4. MPD values for different numbers of missing values (price data)

No. of m. v. 1 2 3 4 5 10 15 20 25
SGNN 4.56 6.64 4.82 7.31 10.98 8.73 10.53 9.65 9.46
MCMC 1 4.43 4.53 6.89 17.01 13.00 13.11 11.73 13.40 11.59
MCMC 2 3.05 4.06 4.70 11.43 7.38 11.04 13.44 10.25 11.48
MCMC 3 4.17 10.17 10.62 7.05 14.85 14.94 12.41 12.37 10.55
MCMC 4 13.68 6.91 3.89 10.72 11.66 14.81 14.71 14.84 12.37
MCMC 5 1.70 5.13 5.59 16.86 7.27 14.93 9.44 12.50 10.75
MCMC 0 5.41 4.46 4.47 9.31 7.87 8.63 10.04 11.06 9.15

Table 5. MPD values for different percentages of missing values (Iris data)

No. of m. v. 68 61 58 58 68 54 77 64 66 64 Mean
SGNN 9.39 10.97 11.19 8.95 11.33 10.58 10.84 8.12 11.48 12.68 10.55
MCMC 1 20.08 14.30 20.51 12.41 24.68 15.96 15.30 12.24 13.80 5.54

17.33

MCMC 2 13.41 14.52 17.02 12.93 20.40 10.64 16.82 14.64 17.93 17.20
MCMC 3 19.26 20.42 20.62 16.76 26.02 20.77 22.30 14.10 13.10 17.70
MCMC 4 16.71 15.41 18.38 15.48 19.85 21.24 17.57 12.13 16.14 20.69
MCMC 5 17.96 15.19 21.64 15.72 19.48 32.01 15.23 10.44 21.30 22.49
MCMC 0 13.66 9.74 11.98 11.20 15.77 14.33 11.72 9.84 13.23 16.57 12.80

No. of m. v. 116 129 114 126 113 113 109 117 120 105 Mean
SGNN 10.19 11.38 16.65 10.53 11.33 8.71 10.96 21.44 18.75 12.38 13.23
MCMC 1 21.51 16.03 23.53 20.54 20.76 21.36 22.38 22.52 19.86 23.64

20.89

MCMC 2 14.44 16.29 24.11 16.22 20.47 21.14 21.72 30.21 22.11 23.13
MCMC 3 16.61 17.91 25.94 16.91 22.50 18.37 21.17 25.84 24.21 27.84
MCMC 4 16.51 16.81 22.43 17.56 16.55 16.74 17.11 23.11 23.55 20.14
MCMC 5 19.10 18.65 24.97 17.91 21.23 16.52 23.50 33.25 18.55 21.14
MCMC 0 13.80 12.43 15.92 12.61 15.74 12.28 15.76 21.40 15.67 17.95 15.36
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But what happens if the data do not or not completely satisfy the Gaussian as- 
sumption? To answer this ąuestion the Iris data set was used. Table 5 shows the 
MPD values for approximately 10 percent (upper błock) and 20 percent (lower 
błock) of missing values respectively. In both cases the results show a certain supe- 
riority of the SGNN approach, particularly when considering the non-weighted 
averages of the MPD ’s in the last column.

Further experiments with the above data sets, but also with a 1400x10 syn- 
thetic data set, largely support the estimation that growing neural gas-like net- 
works, such as SGNN, constitute a promising altemative for missing value imputa
tion if the data are Gaussian distributed, as well as in cases where this assumption 
does not hołd. However, before being able to draw morę generał implications from 
this, additional simulations using different data sets and including further imputa
tion methods are necessary.

5. Conclusion and outlook

In the present paper basie concepts of different growing neural-gas like net- 
works have been outlined, and it was demonstrated that the available algorithms 
can be easily adapted to varying clustering tasks. The selected examples have 
shown that the presented approaches work ąuite well, even if the data sets are large 
or if the data are generated dynamically. At the same time the application of the 
algorithms promoted in this paper reąuires only little knowledge about the structure 
of the data to be analyzed.

But there are still a couple of white spots which have to be filled in the futurę. This, 
for instance, concems the systematic investigation of the topology preservation capa- 
bihty and the additional inclusion of sophisticated criteria for determining the optimal 
number of nodes, such as the minimum description length (see [Qin and Suganthan 
2004]) for a GNGN based approach). Analyzing the performance of the algorithms on 
high-dimensional data streams is also up to futurę research. Finally, magnification 
control is a topie that gains importance if the data to be analyzed is characterized by 
different density regions (see [Hammer et al. 2007]) for a recent discussion of this 
problem in the NGN context). Altogether, the development of NGN based algorithms 
which are not only capable of reliably determining the “natural” number of clusters but 
are also insensitive to parameter initialization, the presence of outliers and the ordering 
of the input data is a challenging task for futurę research.
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ROZWÓJ SIECI NEURONOWYCH TYPU „GAS”
I ICH ZASTOSOWANIE DO ANALIZY DANYCH I KLASYFIKACJI 

W BADANIACH MARKETINGOWYCH

Streszczenie

Artykuł przedstawia najnowsze osiągnięcia teoretyczne w obszarze sieci neuronowych typu 
„gas” i wskazuje, jak ta stosunkowo nowa i skuteczna klasa algorytmów może być zastosowana do 
analizy danych i klasyfikacji. Możliwość reprezentowania różnych struktur danych jest użyteczna w 
klasyfikacji, np. w segmentacji rynku. W artykule przedstawiona jest efektywność różnych algoryt
mów w rozpoznawaniu obrazów i klasyfikacji na przykładzie hipotetycznych oraz rzeczywistych 
danych marketingowych. Omawiane zastosowania obejmują typologie konsumentów, analizę koszy
ka rynkowego oraz kwestię brakujących danych.


	GROWING NEURAL GAS-LIKE NETWORKS AND THEIR APPLICATION TO DATA ANALYSIS AND CLUSTERING IN MARKETING
	1. Introduction
	2. The SGNN approach and its modifications
	3. Some evidence of network performance
	4. Applications in empirical marketing research
	4.1. Consumer or household typology
	4.2. Market basket analysis
	4.3. Missing value imputation

	5. Conclusion and outlook
	References

