
Sebastian Ernst, Antoni Ligęza
AGH University of Science and Technology

Kraków, Poland
{ernst,ligeza}@agh.edu.pl

IMPROVEMENT OF ROUTE-PLANNING SYSTEMS
USING INTELLIGENT AND KNOWLEDGE-BASED

METHODS1

Abstract: Route planning is one of the major successful applications of automated planning (AI plan-
ning), a branch of Artificial Intelligence. However, classical planning methods are often too general
when it comes to adaptation to real-life conditions and situations. This article provides an overview and
suggestions for improvement of route-planning systems, particularly those used in urban conditions,
with the help of knowledge engineering and other intelligent techniques. It also describes a new approach
to route planning, based on the granular set theory, aimed at maintaining a set of paths instead of a single
one. Such approach can provide significant improvements in agility, as well as introduce interaction
with the user. Numerous enhancements of existing informed search algorithms are provided, along with
commentary and references. Furthermore, the article suggests new methods and approaches for urban
route planning, such as pre-computation of alternative routes, including guidelines for formal represen-
tation, solution robustness analysis and map abstraction with regard to decision-making points.

1. Introduction

Route planning and satellite navigation systems have been in use for several
years, and it is hard to overestimate their usefulness in the modern world. Their per-
formance is near-perfect in case of long journeys, but they suffer significant prob-
lems when used in urban conditions. The main reason is that they do not take the
traffic conditions and other characteristics of urban travel into account. Most systems
only use a limited set of criteria for finding the optimal route – usually they are lim-
ited to finding the shortest route or finding the theoretically quickest one – which is
performed by assuming the estimated travel time for route segments, according to
the road class, etc. This particular problem can be dealt with in two ways. One
method is to create an infrastructure for monitoring the traffic and use that real-time

1 This work is supported by MNiSW research grant N516 228635.

66 Sebastian Ernst, Antoni Ligęza

information to calculate a route that is optimal in practice. However, on-line traffic
monitoring systems are still very rare, and that approach does not provide prediction
of traffic changes as the travel progresses. Therefore, instead of monitoring the traf-
fic in real time, it was decided to develop a set of methods for predicting conditions
using artificial intelligence methods and knowledge describing the traffic characteris-
tics of a given city [Ernst, Ligęza 2006].

Another drawback of route planning systems, particularly noticeable in mobile
devices which are bound to provide real-time instructions for the driver, is the prob-
lem of re-planning. If the driver is forced to leave the previously calculated route,
either due to a sudden event, change of traffic conditions or simply failure to exer-
cise the instructions, the system has to calculate a new route. This has to be done
quickly, before the vehicle gets to the next decision point (junction).

While re-planning cannot be avoided whatsoever, measures can be taken to avoid
some situations which make re-planning necessary, and to assure that re-planning
will be feasible.

2. Prediction of traffic conditions

As already mentioned in the Introduction, travel time for route fragments are usu-
ally computed using the length of a given fragment and the estimated travel speed,
depending on the type of road (residential streets, collector roads, arterial roads).

Traffic camera footage and real-life observations have shown that the level of
traffic can be quite accurately approximated using two normal distribution functions
joined together (Fig. 1). That function has two peaks, one during the morning rush
hours, as lots of people drive to work, and another one in the afternoon, representing

Fig. 1. An example traffic intensity graph. Dots represent real-life data

Source: [Ernst, Ligęza 2006].

 Improvement of route-planning systems 67

their return home. Traffic data for the most important places in a city can then be
interpolated for other streets using flow simulation or queue network algorithms
[Helbing 1998].

The graph edge weights representing the travel times have to meet several con-
ditions. Firstly, the travel times must be greater than zero, to ensure that there are no
cycles with a zero or negative cost in the graph. In extreme cases, travel within the
city can take several hours. As traffic conditions may change during that period, the
algorithm has to use traffic level values for that exact moment. It is impossible for
the traveller to save time by waiting at any location without moving, the travel times
must satisfy the so-called FIFO property [Ahuja et al. 2002]. It is satisfied if for each
pair t1, t2 (t1< t2):

t1+dij(t1)≤ t2+dij(t2)

where dij(t1) is the time needed to travel from vertex i to vertex j at time t.

3. Existing algorithms for route planning

There are two different route planning situations in urban conditions. One occurs
when the planning process is conducted before the travel begins. This is usually done
by means of a route planning application or a web-based application. The other in-
volves usage of mobile real-time satellite navigation systems.

3.1. A priori planning

Existing AI algorithms can be used for a priori urban route planning. Traffic
conditions are incorporated into the edge weights, so it is possible to employ lite-
rally any shortest path algorithm to do the job [Ghallab et al. 2004].

It is, of course, possible to use any general shortest path search procedure, al-
though for performance considerations we shall focus on informed search methods.
Of those, the most widely known algorithm – A* search – seems well-suited to this
purpose [Ramalingam, Reps 1991]. It is, however, important to notice that as the
travel progresses, time advances as well, and that edge weights have to be updated
so that they represent the traffic conditions at any given moment.

Selection of an appropriate heuristic function is very important for informed search
methods. In our case, the weights of the graph edges ought to represent real-life
travel time through a road segment. A heuristic function should therefore estimate
the estimated travel time from a given point to the destination with maximum possi-
ble accuracy. The heuristic function does not take the traffic characteristics of streets
into account, as that would require solving a route-planning sub-problem and there-
fore impact the performance. The nature of heuristic functions is not to use the
search domain data itself, but instead to utilize some other kind of knowledge.

68 Sebastian Ernst, Antoni Ligęza

If the search domain is a map, the most obvious heuristic function refers to the
distance between points, such as the straight-line or Manhattan distance metrics. For
the A* algorithm to provide an optimal result, the heuristic function must be admis-
sible – it must not overestimate the time required to get to the destination [Russell,
Norvig 1995]. Because our heuristics are based on distance, they also have to take
the speed into account, as the result must reflect the travel time. In order to obtain an
admissible – optimistic – heuristic, the speed used for the calculations has to be the
maximum allowed speed in the region where the search is performed.

3.2. Adaptive search

For the classic re-planning problem, the route needs to be constantly adjusted as
the travel progresses. There are two common conditions causing this. One – as men-
tioned in the Introduction – occurs when the driver of the vehicle, for some reason,
leaves the previously calculated route. The other cause for adjustments is the flow of
time. The planning algorithm assumes that travel through respective route segments
takes a certain amount of time. If the times are longer or shorter, the estimated times
of arrival at certain points are no longer synchronized with the real arrival times,
hence the need to alter the graph edge weights as well.

However, performance of repeated heuristic search can be improved. The idea
here is to modify the heuristics in every subsequent search, so that it becomes more
accurate, but maintains the properties of the original one – it remains admissible and
monotonic.

One such algorithm, proposed by Koenig and Likhachev [2006], is called Adaptive
A*. Here, gd[s] represents the goal distance of vertex s. Predictably, f* = gd[sstart] is
the length of the shortest path from sstart to sgoal. In the original A* algorithm. There-
fore, f [s] = g[s] + h[s], so f*–g[s] can be used as the new, more accurate heuristic.
As it is never smaller than the original h[s] heuristic, it dominates it and should result
in reduction of the number of states visited in subsequent searches. The authors fur-
ther prove that the new heuristics are monotonically non-decreasing, and therefore
become more “informed” over time, while maintaining the features of being consis-
tent and admissible [Koenig, Likhachev 2006].

3.3. Incremental heuristic search

Incremental search is a common technique used for improving the performance
of subsequent similar search operations. The basic idea of incremental search is that
when changes are introduced in the search graph (i.e., the topology is altered or the
edge weights are modified), the new search is not started “from scratch.” Instead, the
start distances (costs of the shortest path from the starting vertex to a given goal
vertex) from the previous search are analyzed in order to identify those which could
have changed after the graph had been altered.

 Improvement of route-planning systems 69

One of the most popular uninformed incremental search algorithms is the
DynamicSWSF-FP algorithm [Ramalingam, Reps 1991]. However, as it was al-
ready pointed out, urban route planning should be based on an informed (heuristic)
search algorithm. Article [Koenig et al. 2004b] describes an algorithm, based on the
classic A*, utilizing incremental search.

Lifelong Planning A* (LPA*) repeatedly searches for shortest paths between two
vertices in graphs with dynamically assigned edge weights. As the modifications of
weights are arbitrary, the algorithm seems well-suited for application in urban route
planning. It maintains two estimates of the start distance: g(s) and rhs(s) (based on
the g estimates of the successors) for each graph vertex s.

Initially, the shortest path is computed by a standard A* algorithm, generating
pairs of equal estimates for each vertex. When the weight of any edge is changed, the
UpdateVertex procedure is called for the destination vertex of that edge. The rhs es-
timate for that vertex is updated to reflect the updated weight, and, if changed, the
vertex is added to a priority queue, according to the f and g values of a vertex in A*.
When all the edges have been processed, the shortest path is recomputed. This time,
only the vertices from the priority queue are taken into account, in order of priority.
Estimates for those vertices are again made equal, and all the successors of each
vertex are added to the priority queue [Koenig et al. 2004a].

Authors of the algorithm admit that LPA* could prove less efficient than A*,
especially in the case when a large percentage of edges have had their weights mo-
dified, i.e. when the overlap between the old and the new search trees is small. In
order to improve computational performance, it seems a good idea not to re-compute
the shortest path every time there is a time mismatch. There are two ways of doing
this. One – quite obvious – is to define the minimum time gap length triggering the
edge weight update. However, that could be a problem for route segments with high-
ly dynamic characteristics. Therefore, it is more advisable to compute the difference
of the previous and the current travel time for each street segment, and update it only
if it exceeds a certain value.

4. Alternative routes and solution robustness

To avoid the necessity of re-planning, multiple alternative routes can be calculat-
ed in advance. Generation of a set of suboptimal plans can be performed using in-
formed search methods, such as A*, IDA*, etc., provided that multiple solutions,
instead of just the best one, are maintained in the memory. When considering two or
more paths, the paths can intersect at certain nodes, creating a possibility to switch
between plans during plan execution. Therefore, no re-computation will be necessa-
ry, as the alternative plans have already been determined. It is therefore necessary to
develop a formal way of representing a set of suboptimal plans. A robust plan is a
bundle of plans with numerous switching points, providing the possibility to dynam-
ically alter the selected plan, thus ensuring that the goal is reached in a time as close
to the optimal solution as possible.

70 Sebastian Ernst, Antoni Ligęza

Let us assume that we have a set of paths (plans), intersecting at certain nodes.
The basic element of any plan is a set of one or more paths joining two of such nodes.
Such a structure will be called a bunch. An elementary bunch is a set of graph edges,
connecting two selected nodes. A bunch in general will therefore be a set of paths
between two graph nodes.

Any node which is the beginning of two or more edges will be referred to as a
branching node or a switching node. Branching nodes provide the possibility to
switch to an alternative route. The chances to achieve the goal node for such nodes
can be roughly estimated as the sum of the numbers of paths of a certain length di-
vided by the path length. That number shall be called the robustness factor for a given
node, and can be used in the decision-making process when choosing from among
the calculated alternative routes.

5. Multiple levels of map abstraction

Map abstraction and refinement is a technique widely used in computer game
logic programming, in order to optimize the doings of the characters controlled by
the computer. Theoretically, this approach also can be used for urban route plan-
ning.

5.1. Existing algorithms

Authors of [Sturtevant, Buro 2005] proposed a method of improving the perform-
ance of path-finding by using several levels of abstraction. The algorithm, Partial
Refinement A* (PRA*), begins with the most abstract version of input data. Then it
executes a loop, reducing the abstraction level in each iteration. The loop performs
an A* search and then truncates the obtained path to a given length. This way, only
part of the search graph is refined at a time, hence the name.

The biggest problem here is the selection of abstraction levels and preparation of
abstract data. Grid-type maps can be easily subjected to abstraction, e.g. by joining
adjacent cells. Commonly used map file formats incorporate a system of levels, nor-
mally used to reduce the number of details displayed at lower zoom levels. This
usually amounts to removal of “less significant” streets.

5.2. Application in route planning

The approach of removing streets (edges) of lower rank in higher abstraction
levels is somehow contrary to the idea of calculating alternative routes, optimal in
situations of high levels of traffic.

A slightly different approach to map abstraction is proposed here. In practical
environments the planning process should be made hierarchical. It is important to

 Improvement of route-planning systems 71

determine alternative landmark nodes through which a solution must pass. Such
landmarks can be specified by bridge over a river to pass, frontier passes, tunnels,
etc. To accomplish that, the granular set approach can be applied [Ligęza 2003].

Application in urban conditions makes it easy to determine natural divisions of
the map (city). Usually, the number of ways of getting from one section to the other
is limited – if a city is divided with a river and the start of the journey is on another
side of the river than the goal, the driver will have to choose one of the available
bridges to cross it. An example of a very abstract graph, used to find the possible
connections between two sides of a river in a real city, is shown on Fig. 2.

Fig. 2. A highly abstract map of Kraków, showing the relatively low number of possible places
for crossing the river

Source: own elaboration.

Landmark nodes can be explicitly specified by the end-user as places of pref-
erence, or they can be computed automatically using certain heuristic functions (e.g.
functions based on the concept of distance) or external rules.

6. Rule-based planning

The next step for the aforementioned approaches is the introduction of rule-
based planning. This approach involves partitioning of the graph, similarly to the
approach described in section 5, but with the use of formal definitions.

The approach includes definitions of partitions, partition links, neighboring par-
titions and traversal plans. The concept is quite self-explanatory and intuitive, but it

72 Sebastian Ernst, Antoni Ligęza

is worth to note that a partition link is a node connecting two neighboring partitions,
and thus is the way of getting from one partition to another.

Currently, it is assumed that the process of map partitioning is performed man-
ually, using expert knowledge. The primary guideline for partitioning the map is ap-
propriate selection of abstraction levels and partition boundaries. This means that
significant obstacles, such as landmarks, should be omitted using proper partitioning
schemes. A classical example of this case is an irregular lake, which has to be avoid-
ed by going on either side of it. If the obstacle itself is not considered a partition
boundary (i.e., a partition is missing), the selection of the partition link can be sub-
optimal and result in a non-optimal solution.

After the input domain has been divided into partitions and sub-partitions, input
data is compiled into traversal rules. A single traversal rule includes the partition ID,
enter and exit link IDs, the computed traversal cost, optional validity values and the
path to follow.

A traversal plan is therefore a series of traversal rules, leading from the start
partition to the destination partition. Such approach allows pre-calculation of route
segments while maintaining reasonable storage requirements. Figure 3 shows an
example division of a planning problems into sub-problems.

Fig. 3. An example division of a planning problem into subproblems

 Improvement of route-planning systems 73

Article [Ernst, Ligęza 2008] decribes an algorithm which can be used to solve
a planning problem using the rule-based method. The algorithm consists of two proce-
dures, Calculate point-to-point route and Traverse entire partition. For the example
shown on Fig. 3, the execution is as follows: first, the Calculate point-to-point route
algorithm is used to solve the following subproblems: START→B, START→C,
I→GOAL, J→GOAL; then, use the Traverse entire partition algorithm to solve the
following subproblems: B→E, C→F, C→G, E→F, F→H, F→J, G→J, H→I. The
algorithms have been described in detail in the aforementioned article.

7. Conclusion

Current route planning systems perform quite well in long-distance journey
planning, but often provide unfeasible solutions in urban conditions. In this article,
we have provided an overview of possible enhancements of route planning systems
by utilising artificial intelligence and knowledge engineering methods. Application
of those methods should make it possible to avoid some shortcomings of urban na-
vigation systems.

Obviously, the methods presented herein require refinement and calibration be-
fore they are put to use in practical applications. Numerous combinations of the
presented approaches are possible, for instance bunches described in section 4 can be
enhanced with additional rules used to derive the plan execution strategy.

Moreover, pre-computation of alternative routes can be joined with map abstrac-
tion methods described within the article to divide the problem into smaller sub-prob-
lems, and therefore enable buffering of sub-problem solutions as well as make the
plan generation problem feasible for parallel computing.

References

Ahuja R.K., Orlin J.B., Palottino S. and Scutellá M.G (2002). Dynamic shortest paths minimizing
travel times and costs. In: MIT Sloan Working Paper No. 4390-02, Research Paper Series, MIT
Sloan School of Management.

Helbing D. (1998). Fundamentals of Traffic Flow. University of Stuttgart.
Ernst S., Ligęza A. (2006). Application of knowledge engineering methods for urban route planning. In:

Proceedings of the “Inżynieria wiedzy i systemy ekspertowe” conference. Wrocław, Poland.
Ernst S, LigęzaA. (2008). A rule-based approach to robust granular planning. In: Proceedings of the

International Multiconference on Computer Science and Information Technology. Wisła, Poland.
Ghallab M., Nau D., Traverso P. (2004). Automated Planning: Theory and Practice. Morgan Kaufmann

Publishers, San Francisco.
Koenig S., Likhachev M. (2006). A new principle for incremental heuristic search: Theoretical results.

In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS),
Cumbria, UK.

Koenig S., Likhachev M., Furcy D. (2004a). Lifelong planning A*. AI Magazine, vol. 155, no. 1-2, pp.
93-146.

74 Sebastian Ernst, Antoni Ligęza

Koenig S., Likhachev M., Liu Y., Furcy D. (2004b). Incremental heuristic search in Artificial Intelli-
gence. AI Magazine, vol. 25, no. 2, pp. 99-112.

Ligęza A. (2003). Granular sets and granular relations for algebraic knowledge management. In: Smart
Engineering Systems Design. Eds. C.H. Dagli et al. ASME Press, New York, vol. 13, pp. 169-
174.

Ramalingam G., Reps T. (1991). On the computational complexity of incremental algorithms. Com-
puter Sciences Department, University of Wisconsin.

Russell S.J., Norvig P. (1995). Artificial Intelligence: A Modern Approach. Prentice Hall, New Jersey,
USA.

Sturtevant M., Buro M. (2005). Partial pathfinding using map abstraction and refinement. In: Twentieth
National Conference on Artificial Intelligence. Pittsburgh.

	IMPROVEMENT OF ROUTE-PLANNING SYSTEMS USING INTELLIGENT AND KNOWLEDGE-BASED METHODS
	1. Introduction
	2. Prediction of traffic conditions
	3. Existing algorithms for route planning
	3.1. A priori planning
	3.2. Adaptive search
	3.3. Incremental heuristic search

	4. Alternative routes and solution robustness
	5. Multiple levels of map abstraction
	5.1. Existing algorithms
	5.2. Application in route planning

	6. Rule-based planning
	7. Conclusion
	References

