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1. Introduction

In the last decade of the 20th century much research was devoted to obtaining 
morę accurate approximations of distributions used in classification rules. The 
main logie behind this was the belief that greater estimation accuracy leads to 
better predictive properties of classifiers. As was established Iater, in many cases, 
enhanced precision of estimation -  contrary to intuition -  does not necessarily 
bring better classification results. At issue here is the generałization property of a 
predictive model, i.e. the ability to retain a predictive power for observations 
outside a learning sample. It is not uncommon that conceptually simple models, 
1 ike naive bayesian classifiers or linear probability models outperform some 
sopliisticated regression methods in classification settings. The article presents the 
decomposition of the expected prediction error in classification introduced by 
J.H. Friedman [4], which can be used to explain this phenomenon. A simulation 
example of error calculation via Friedman’s decomposition is also given.

2. Prediction models

In a traditional prediction problem it is most ofiten assumed that a continuous 
dependent variable Y is stochastically associated with non-random explanatory
vectorX = ^Aj X 2 ... X  ̂  through a function Y -  / (X ) + £, f  e C1 where £ is a 

random component, such that £(f|X) = 0. In order to minimise the expected pre­
diction error (with the assumption of the squared loss function) it suffices to esti- 
mate a conditional expected value (regression function) / (x )  = £(f|X  = x) point-
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wise. Then the prediction problem amounts to the approximation of the function 
/(X) using a training sample T = {xi , y i}^. In a classification problem, with Y 
assuming a finite set of values decoded as G = { 1 , 2 , g}, one models conditional 
probabilities P{Y = &|X) = p/c(X) k = l ,2, . . . ,g  or their monotonie transforma-
tions. The squared loss function is replaced by a matrix-defined loss function of the 
form [Z,(/, y)] where L(i,j)  is a cost incurred when predicting Y = j  while in
reality Y = i It is usually assumed, that L(i,i)< 0 and L(i,j)>  0, V i , j  eG . The 
optimal decision function is the Bayes classifier (see [1, p. 65]):

g
d*(x) = arg min Y  L(i, k)pt (x),

k m

/  8where, according to Bayes theorem, /?,-(x) = ^  ?r,./>(x|r) and
/  r= I

= P{Y = /), i = 1,2,. ,.,g . Now the task is to estimate either p,(x) in a direct 
fashion, or , tt;-, and insert them into Bayes theorem equation. An estimator

of the Bayes classifier will be further denoted by d{x).

3. Bias-variance trade-off in regression setting

The precision of distribution estimation is a function of model complexity, 
which depends on the number of parameters (parametric models), or some para- 
meters assuming prespecified values (nonparametric models). The generał rule is 
that an inerease in model complexity results in expected prediction error decrease 
within learning sample. Enhanced data fit does not usually guarantee that the 
results would be as satisfactory in a test sample -  an overfitted model often loses 
its generałization properties, leading to an inereased prediction error. Described 
mechanism characterizes a phenomenon called bias-variance trade-off, which 
insists that one should seek an optimal degree of model complexity that minimizes 
the expected prediction error on independent test sample data. The most favorable 
point lies somewhere between two extreme models, as depicted in figurę 1.

The tool that allows an analitical description of the phenomenon is the decom­
position of the expected prediction error into three components: random compo- 
nent, bias and variance (noise-bias-variance decomposition). The expected predi­
ction error will be further denoted by Err and in regression it can be written as

z (r ,/(X ))LErr = E ( 1)
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Fig. 1. Prediction error as model complexity function

Source: [5, p. 194].

where /( • )  denotes regression function and f  (•) is a loss function, that penalizes 
discrepancies between real value Y and its prediction /(X ). Squared loss function 
is the most popular choice of statisticians. In classification one has

Err = E \L [Y ,d {x Ą  (2)

Let’s first consider the well-known case of regression. Suppose that the 
predictive dependency between features Y and X can be written as

Y = f ( X )  + e,

where /(X ) is a deterministic function, £ -  random component, such that 
E(£ | X)  = 0 . The model has the property of f { x ) = E(Y \ X  = x ) . Having at one’s
disposal a training sample T = {xj, y i}" the task is to find the best estimator of

/(x |7’) = JE(y]X = x ,* e r ) .  (3)

Lefs notę, that at point X = x the function /(x |f )  is a random variable, as 
training sample T is also random. It is assumed that the value of the function at 
every point x follows a certain distribution /?(/|x) with known expected value and
variance:
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A  #  A  /  A  t  A

£ / w = \ f p ( f \ * y } ,

Varf (x) = J ( /  -  E f ( x ) f  p(f \x)df  .

(4a)

(4b)

The decomposition of the error (1) at a point x with the assumption of the 
squared loss function can be shown as:

Err(x) = E Y, T (T - /(x ) )  |X = x = £ y[T - /(x ) ]2 + £ r [ / ( x ) - / ( x ) ]  =

= E y [ Y - f ( x ) ] 2 + £ r [ / ( x ) - £ r /(x ) ]2 + [£ r / ( x ) - / ( x ) ] 2 = (5)

= Var(e |X = x) + Varf (x) + Bias2 (f  (x) j.

The first term in the second and third linę of (5) is an irreducible component of 
the prediction error (i.e. the variance of Y around its mean/(X)), resulting from the

random naturę of T. The terms £7-^/(x) -  ^ t’/ ( x)| and £ 7'/ ( x ) - / ( x ) J  are

dependent only on the real mean /(X ) and its estimator /(X ).
r - ~ n2

ET / ( x ) - £ r /(x )  is the variance of / (X ) , characterizing sensitivity of /(X ) 

to changes in a learning sample (new observations). E Tf ( x ) ~  / (x ) j  -  the

square of the bias -  is the square of a value, by which the mean estimate /(X ) 
differs from its actual mean/(X). It is additionally assumed, that learning samples 
are of the same size and each time drawn from the same distribution p(X, Y ) .

For a given bias, increase in a sample size usually leads to a drop in variance. 
As large samples are common, in practice it is bias that constitutes the main pro- 
portion of prediction error. This observation aroused interest in morę flexible me­
thods, that aim at bias reduction and simultaneously prevent a model from overfit- 
ting (increased variance). Such approach turned out to be successful in regression, 
but brought disappointing results in classification setting. Startling research results 
(see [2; 4]), stating that simple methods in a classification problem are no worse or 
often perform better than morę sophisticated ones, encouraged new direction of 
research and explain their resilience. The next paragraph presents the decomposi­
tion of the expected prediction error in classification by J.H. Friedman that pro- 
vides a coherent conceptual framework elucidating specifics of a supervised classi­
fication problem and indicating new ways of improving classifiers. A concise 
account of other approaches to bias-variance decomposition in supervised classifi­
cation may be found in [6].
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4. Bias-variance trade-off in classification setting 
-  Friedman’s decomposition

The decomposition of the expected prediction error was proposed by 
J.H. Friedman in 1997 (see [4, pp. 55-77]). It concerns the case of two categories 
decoded as a random variable Y, which assumes two values 0 and 1, Y e {0,1}, and 
zero-one loss function (the decomposition can be generałized into any loss 
function). It is assumed that at every point x the variable Y follows a distribution 
defined by probabilities

Err{x) = n 0P(r/(x) = l|oj + 7i\P{d{x) = 0|l) = P^Y* ć?(x)|X = xj. (7)

Considering the fact that there are only two categories, Bayes classifier and its 
approximation can be written as

The classifier estimate (9) has the fuli form rf(x|r) = l(p(x\T) > 1/2), but the
shorter notation will be kept for clarity.

Expanding (7) one obtains

point x -  the analogue of the random componenfs variance in regression 
decomposition. Then one can write:

(6)

The expected prediction error in independent test sample has the form

d*(x) = / (p I(x)> 1/2), 
d ( x ) - / ( p l(x)>l/2).

( 8)

(9)

£/r(x) = p(r*</(x)) =

= p [y  = d* (x))p(d(x) * d*{x)) + p (y * d*(x))p[d(x) = d*(x)J =

= P[Y = d*(x)]p[d(x) * d* (x)) + P[Y * d* (x ) |l -  p[d(x) * d*(x))J = (10) 

= P(t/(x) * d* (x)) P(Y = d*(x)) -  p [y  * d* (x))J + p [y  * d *(x)) =

= P[d{x) * d * (x)) 1 -2 p{Y * d *  (x))J + p [y  d* (x)).

Let ErrB(x) = P(Y*d*(x))  denote the irreducible bayesian error ratę at a

Err{x) = p (ć/(x) ź  d*(x)J\ -2ErrB(x)] + ErrB(x). ( U )
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From (11) it is seen that the bias and the variance influence the expected 
prediction error not additively, as in regression, but in a multiplicative way. The 
expected prediction error consists of a noise component and the product of two
elements: one which depends on the noise and P{d(x) * r/*(x)|X = x) -  the

analogue of Ey[f(x)  -  / (x)j from (5).

One can also notice that for a given training sample T the error Y*d(x)  is 
determined by an agreement between the decision (9) and the bayesian decision 
(8). In case of an agreement, the Bayesian error ErrB(x) = p [y * c/*(x|7’)j = 

= min{'p|(x), 1 -  £>i(x)} is incurred, otherwise one can expect an increased error 

ratę p [y  * t/(x|7’)) = max{/?|(x), 1 -  /?|(x)} = |2/?[(x) -  l| + ErrB(x), which can be 
jointly written as

p {y  * d (x|r)) = |2Pl (x) -  l|/(^(x|r)) + ErrB (x). (12)

Averaging (12) over all possible samples T one concludes that equivalently to 
(11) Err(x) may be shown as

Err(x) = |2p!(x) -  l|P ^(x) * c/*(x)|X = xj + ErrB(x). (13)

Friedman argues that it is reasonable to assume a normal distribution of the 
estimate P|(x). One has therefore p\(x) ~ N(Ep\(x),Varp\(x)), where Ep\(x) and

Varp\(x) can be written in analogy to (4a-b), and the term P^d(x) ^ r/*(x)|X = xj
can be expressed as

00 0,5

P(d I(px < 1/2) | c(p\)dp\ + I{px > 1/2) \c (p x)dpx. (14)
0,5 -oo

Equation (14) restricts calculation to a specific point X = x and c[p\) denotes 
a density function of variable p \ . Alternatively to (14) one has

P(d(x)± d*(x)\X = x j * 0
sign(l/2 -  pi (*)){Ep\ (x) -  1/2) 

j Y a r p ^ )
(15)

where <£(•) is the standard normal cumulative distribution function.
The value sign(l/2 -  p\(x))(Epl (x) -  1/2) can be thought of as the boundary 

bias, for it is dependent on P](x) through its location against the boundary 1/2. 
From (15) it is elear that if both Ep\(x) and /?](x) are on the same side of the
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boundary 1/2, then the boundary bias is negative and lowering the variance should 
cause the bias to decrease down to the minimal Bayes error ratę. If Ep\(x) and 
Pl(x) are on the opposite sides of the boundary, then the bias is positive and it 
seems advisable to increase the variance, as it leads to a drop in prediction error 
(see [5], p. 223). It is naturally preferable that the boundary bias be negative. If this 
is the case, then the classification error decreases as the value \Ep\ (x) - 1/2| 
increases, irrespective of the bias p\ -  Ep\. This notice supports conclusion, that 
the main concern in a two-class supervised classification problem is not keeping 
the bias smali, but retaining Iow variance, provided the boundary bias is predo- 
minantly negative.

Some highly biased methods (in the sense of the sąuared loss function) produce 
satisfying results in classification setting. Friedman points at a group of methods, 
which large bias is caused by excessive smoothing (oversmoothing). It is said, that 
a method is oversmoothing, when the estimate

P\(x) = (1 -  «W )Pi (*) + a(x)y

has a tendency to assume values close to the mean value of the dependent variable 
Y, which takes place when a(\)  -  where ar(x) e[0 ,1] is a smoothing parameter -  
assumes values close to 1. As long as the decision boundary equals y,  the 
boundary bias remains negative (in our case the sample is balanced, i.e. y = 1/2). 
One such method is the nearest neighbours method, in which the approximation of 
P l  ( x ) consists in averaging class indicators of the k  closest observations in a train­
ing sample. When k —> n then a(x) —> 1, which entails Pi(x) —> y .

The following points recap some generał conclusions that can be used in 
practice.
• Decomposition of the expected prediction error is much morę complex in 

supervised classification setting and unveils complicated, non-additive inter- 
play between its components;

• Friedmairs analysis, despite a two-class limitation, helps to explain the compe- 
titivness of classifiers, which base on biased probability estimators (ex. naive 
Bayes classifier, linear probability model);

• Morę accurate probability estimation does not necessarily lead to better classi­
fication results;

• Imposition of a constraint p j(x )e [0 ,1] might decrease estimation bias, but 
simultaneously it may pose the danger of a boundary bias rise;

• It seems that in practical applications (ex. credit scoring) one should use accu­
rate classification methods to generate a score, but if there is only a need for a 
classification decision, the aforementioned, simple methods would suffice.
The next section gives an example of Friedman’s decomposition for three

econometric models.
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5. Comparison of econometric models with different bias 
via Friedman’s decomposition -  simulated data example

In this paragraph Friedman’s decomposition of the expected prediction error 
will be used to compare classification properties of three econometric models: 
linear probability model (LPM), linear Iogistic regression model (GLM-Logit) and 
generalized additive Iogistic regression model (GAM-Logit). Linear probability 
models represent a class of simple, highly biased models. Linear Iogistic regression 
models are morę advanced and less biased models. Generalized additive Iogistic 
regression models represent a group of new methods with Iow bias and adjustable 
variance. Using the generalized linear models notation 77 = g[ii(y|x)] (in case of

binary data £(f|X  = x) = />i(x)), where 77 is a predictor (function of X) and g(») is 
a link function, the three models may be written as follows:
• LPM: 77 = ccq + a tX,  g[.E,(y|Ar)J = E[y\X ) (identity function),

• GLM-Logit: i1=a0+alX,  g[£(y|A)]=logit[£(ylJY )]= ln [^ (^ ^ )/(l-£ (^^ ))],

.  GAM-Logit: 77=a+f (X) ,  g[£(ylA ')]=logit[£(y|Jf)]=ln[£(y|^)/(l-£(y|^))' .

In GAM-Logit/ ( • )  is a smooth and nonparametric function, while a, a \ 
are parameters. In this simulation example the ordinary least squares estimator was 
used for LPM, maximum likelihood estimator for GLM-Logit and iteratively re- 
-weighted least squares algorithm estimator (see [3, p. 240]) with a smoothing 
spline as a scatterplot smoother for GAM-Logit. Three degrees of freedom were 
assumed for GAM-Logit smoothing spline. LPM and GLM-Logit models were 
both estimated using glm package in R-project environment. Gam package was 
used to estimate generalized additive logit models.

FriedmaiTs expected prediction error decomposition will be used to estimate 
classification properties of the three classifiers. A mean deviation of residuals will 
be employed to bias measurement.

Suppose that X  is non-random and takes values on the real linę [0; 1] at 0,001 
intervals starting from 0 (i.e. X] =0, *2 = 0,001, X]ooo = 0,999), and the T-gene- 
rating mechanism has the following form (T e {0; 1}):

P(Y = 1|^) = 0,81{X e[0; 0,5)) + 0 ,2 /(*  e[0,5; 1]),

then the best classifier is given by

P\ (x) > 0,5 if x e [0; 0,5) and pi (x) < 0,5 if x e [0,5; 1],
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and Bayes classifier can be written as £/*(x) = /{ re [0 ; 0,5)}. The calculations 
of Err will be carried out in the proximity of a boundary 1/2, at the point x = 0,45. 
At this point the Bayes error ErrB(0,45) = 0,2. The approximate value of

</(0,45)*<T(0,45;>]may be obtained from (14). One then has

0,5
Pp(0,45) * d* (0,45)]« j c(px )dpx. (16)

-CO

Following Friedman, the distribution of /?i(0,45) will be modelled by normal 
distribution with expected value and standard deviation estimated in a simulation 
fashion. The simulation results are based on 10.000 replications.

Figurę 2 shows mean estimates p x with two standard deviations confidence 
bands for the three models, depicting the variability of the estimates p x.

Figurę 3 shows the plots of the estimated probability density for the three 
distributions and Table 1 summarizes the simulation results. The last column 
contains areas under the probability density function plots of c(px) on (-oo;0,5J. 
The distribution of p x is characterized by the parameters given in the first two 
columns.

Table 1. Simulation results at point x = 0,45 (10.000 replicates)

Model Ef>\ / A - yVar p]
10000

l0_4 Y}yi~P \i\
i=1

Pp(0,45) * l]

LPM 0.5400 0,0405 0,4721 0,1619
GLM-Logit 0,5499 0,0568 0,4645 0,1903
GAM-Logit 0,6077 0,0821 0,4162 0,0948

Table 2 contains the estimates of the expected prediction error in classification 
and its components. As an example the error for the linear probability model was 
calculated using the equation (11):

Err(0,45) = 0,1619 x (1 -  2 x 0,2) + 0,2 = 0,2971.

Table 2. Expected prediction error in classification and its components at point x = 0,45

Model Boundary bias i/g«(l/2 -  p|(x))(£p|(x) -  1/2) V 'arp, ErrH £/r(0,45)

LPM -0,0400 0,0405 0,2 0,2971
GLM-Logit -0,0499 0,0568 0,2 0,3142
GAM-Logit -0,1077 0,0821 0,2 0,2569



60 Piotr Michalski



Bias-Variance I rade-off in Supervised Classification 61

From tables 1 and 2 one sees that at point x -  0,45 the boundary bias is nega- 
tive in each case. The boundary bias of LPM and GLM-Logit are nearly equal and, 
as expected, LPM has the highest boundary bias, while GAM-Logit -  the smallest. 
The GAM-Logit estimates are the most volatile, while the estimates of LPM -  the 
most stable.

Fig. 3. Probability estimate density function c(jó(0,45)) of linear probability model (LPM), 
linear Iogistic regression model (GLM-Logit) and additive Iogistic regression model (GAM-Logit).

The values (16) are equal to the areas under the function plot to the left of the dotted linę

In the simulation experiment the linear probability model, which has the 
greatest bias (in the sense of the sąuared loss function), gave lower classification 
error ratę than less biased linear logit model. This is caused by the smaller variance 
of the linear probability model, which neutralized the effect of a greater boundary 
bias. Although the GAM-Logit has the greatest variance, it gives lower boundary 
bias and the overall prediction error is the lowest of the three models. Figurę 4 
shows the expected prediction error estimated for the whole realm of X  The 
conclusion is that the Err differences between the three models are immaterial.

Let now change the 7-generating mechanism to the form:

P(Y = l|x) = 0,9Ą x  e[0; 0,340]) + 0,2l (X  e[0341; 0,669]) + 0,9l (X  e [0,670; 0,999]),
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so that probability P(Y = l|A") is not a monotonically changing function of X. This
is often the case in real classification problems, where some of the explanatory 
variables are nominants. The expected prediction error estimates, boundary bias 
and variance for the three models in the new scenario are shown in figurę 5.

0.50 

0,45 

0,40 

L 0,35 

0,30 

0,25

0,20

Fig. 4. Expecled prediction error estimates for the whole realm of X  in the first scenario

The problematic area for LPM and GLM-Logit is X  e [0,341; 0,669], where the 
so called „masking” phenomenon occurs -  the positive boundary bias is accom- 
panied by Iow variance of the estimate of p\ and Err -  \ -  ErrB. Two possible 
Solutions to the problem are:

1) discretization of the variableX (most often used in business practice) within 
LPM or GLM-Logit;

2) using morę accurate models like GAM-Logit, which -  despite high variabi- 
lity -  keep boundary bias negative.

The simulation results are, therefore, consistent with the claim, that there are 
classification situations, where simple probability estimators remain still compe- 
titive (figurę 4 is an example). One of the prereąuisites is that the variables are 
stimulants or destimulants. In other case one should resort to morę flexible models 
to obtain negative bias.
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WYMIENNOŚĆ WARIANCJI I OBCIĄŻENIA W MODELU 
KLASYFIKACJI POD NADZOREM

Streszczenie

W artykule zaprezentowano podejście do dekompozycji oczekiwanego błędu predykcji w klasy­
fikacji według J.H. Friedmana. Dekompozycja ta ujawnia multiplikatywną wymienność wariancji i 
obciążenia w modelu klasyfikacji pod nadzorem oraz pozwala wyjaśnić klasyfikacyjną konkurencyj­
n o ś ć  prostych, obciążonych modeli, takich jak np. liniowy model prawdopodobieństwa. W artykule 
przedstawiono również symulacyjny przykład obliczenia oczekiwanego błędu predykcji w klasyfi­
kacji za pomocą dekompozycji Friedmana, porównujący trzy modele ekonometryczne o różnym 
obciążeniu.

Piotr Michalski -  mgr, doktorant w Katedrze Ekonometrii Uniwersytetu Ekonomicznego we 
Wrocławiu.
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