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THE CLASSIFICATION OF POLISH MUTUAL
BALANCED FUNDS BASED ON THE MANAGEMENT
STYLE — QUANTILE REGRESSION APPROACH

Abstract: Style Analysis allows to assess impact of factors representing investments in asset
classes on funds’rate of returns. When distribution of return rates is asymmetric, the application
of classical Sharpe Style Analysis may lead to incorrect inference about model coefficients.
Quantile Style Analysis investigates dependencies between fund returns and the risk factors
for the quantile of the distribution. The paper’s aim is to investigate the impact of the
investments in the stocks and bonds on the balanced mutual funds returns by Quantile Style
Analysis and to assess the usefulness of the quantile approach to the style analysis of the
funds. We compare both the style shares for different quantiles for given fund and the funds
classifications according to the style shares obtained for quantile and classic approach.
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1. Introduction

The funds’ managers invest in assets with different risk characteristics to maximize
the portfolio’s expected rate of return. Performance attribution is an important part
of a fund’s portfolio management assessment. It compares the portfolio’s total rate of
return to the return from a benchmark portfolio and calculating an added value
defined as the excess return over the rate of return from the benchmark (market)
portfolio.

One of the statistical tools for the performance attribution of investment portfolios
consisting of different asset classes is a style analysis introduced by William Sharpe
in 1992. The term style means an investment strategy that allows a fund to reach
predefined results. The factor style analysis aims at attributing the fund’s rate of
return to rates of return from indices representing the fund’s investments in different
asset classes. Therefore it allows to establish the influence of the fund’s investments
in different asset classes on the fund’s total rate of return in a given period of time.

Standard linear model of the style analysis is multiple regression model of the
fund’s conditional expected rate of return on rates of return from indices representing
different asset classes. Its parameters (style shares) are estimated by the least squares
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method (LSM) subject to non-negativity and summing to one conditions. However
the classical regression offers only a partial view on the dependence between
variables since it focuses on the central part of dependent variable distribution. This
can potentially have serious consequences for the correct inference on the impact of
factors on changes of dependent variable, especially when the error term is non-
normal and heteroscedastic or when distribution is asymmetric or fat-tailed as well
as in the case of outliers or more general uncertainty over the shape or type of error
term distribution.

We generalize classic Sharpe style analysis models on quantile constrained
multiple regression models that are robust to classical Sharpe style analysis
assumption. The aim of the paper is to assess the impact of some factors (style shares)
on the whole conditional distribution of balanced mutual funds returns and to examine
whether the quantile approach is useful for style analysis of balanced mutual funds.
The usefulness of the quantile approach is examined from two perspectives. First,
we check if for a given fund structures of estimated style, shares are homogeneous
for different quantiles. Second, we examine if the funds differ according to the style
exposition for a given quantile and whether possible discrimination of the funds has
the same character for different parts of distribution.

For this reason we classify the funds according to the style shares obtained for
different quantiles and we compare the results with the classification obtained for
style shares from least squares approach.

2. Classical Sharpe style analysis model

The relationship between a fund’s rate of return and rates of return from indexes
representing different asset classes in period ¢, =1, 2, ..., T, is given by:

Rt::H1F;1+:H2F;z+-~-+ﬂk1:;k+€m 1)

where: R, — fund’s rate of return in period ¢,
F,i=1,2,..., k—arate of return from the index i in period 7,
B,i=1,2, ..., k—the i-th parameter of the model describing sensitivity of R,
to F_ (i-th style share),
& — error term.

LetR=(R,R,...,R),e=(¢,&y....e), F=(F,F, .., F), where F = (F,
F,, ..., F)) means a random vector of rates of returns from the indexes in period ¢.
A vector of unknown parameters B = (8, B, ..., B,)' represents the set of style shares
defining a portfolio of k asset classes. The Sharpe style analysis model main
assumptions are as follows: 1' g =1, p > 0, where 1 is k-dimensional vector of ones;
the error terms ¢, are independent and identically distributed random variables such
that E(¢) =0, D*(e) <oo,t=1, 2, ..., T; the vectors (R, F)) forevery t=1,2, ..., T
are independent and identically distributed; the vector F, and the error term ¢, are
uncorrelated for every =1, 2, ..., T.
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Normality assumption of the error term is necessary for classical inference on
statistical significance of the model’s parameters. In the case of non-normality least
squares estimators are not efficient. Moreover, variance estimates are incorrect,
which results in low power of classical significance tests.

Let r, and f, mean realizations of random variable R, and random vector F.
Assume that matrix F has a rank 4. In general the model (1) can be written as:
E(R, [f,) =1,'B. A vector of least squares estimators of Sharpe style shares is a vector

Psunk that solves the following optimization problem:
minlzT:(r —f,'b)’ 2)
beR* T =1 ! !

under conditions: 1' b= 1, b > 0, where 1 is k-dimensional vector of ones.

The product of estimated parameters and the rates of return from the indexes
represent an ideal market portfolio, also known as a passive portfolio. Rates of return
from the passive part correspond to rates of return from a portfolio style, whereas
rates of return from the active part correspond to the model’s random errors.
An investor’s ability to select assets with returns higher than the market return in
a given period is called a selection effect. Since this effect represents part of the
return that exceeds return from a portfolio of randomly selected assets it could be
attributed to active portfolio management strategy. On the other hand an allocation
effect represents passive management strategy. In this context it could be said that
passive managers can provide their customers only with an “investment style”,
whereas active ones provide both style and selection [Sharpe 1992].

Knowledge of estimators’ of the model’s parameters is essential for the interval
estimation and testing hypothesis on the parameters’ significance that are necessary
for correct inference on the factors impact on the fund’s rate of returns. The constraints
imposed on the vector of the style coefficients, especially the non-negativity
constraint, causes the fact that the exact distribution of the least squares estimates is
unknown. Therefore non-standard estimation methods that account for the model
risk as well as the estimation risk should be applied. The most widely used methods
of this kind are Bayesian style analysis and Andrews asymptotic confidence intervals
[Kim, White, Stone 2005]. Both approaches, based on the least squares estimation of
conditional expected value of a dependent variable, give a statistically-correct
confidence intervals as well as parameters significance tests, but the Andrews method
is more sensitive for parameters that have a true value of 0 (these methods were
employed for the style analysis of Polish mutual and pension funds in [Orwat 2008,
2009, 2011]). Employing quantile multiple regression for the style analysis aims at
extracting additional information from the whole distribution of rates of return
conditional quantiles.
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3. Quantile regression

We analyse a problem of estimation of a vector of parameters B for a sample of
independent observations 7, #=1, 2, ..., T of a sequence of random variables R , R,
..., R, taken with distribution P(R <r)=3(r—f 'B), where f=(f, f,,...f,) is a
column (7 x k) matrix of observations F and the distribution J is unknown. Then a
sample z-th quantile 0 < 7 <1 is a solution of the following optimization problem:

%n{ >l —bl+ Y (1—r)|rt—b|}. )

te{t:r; 2b} te{t:n; <b}
3.1. Quantile regression model

Linear quantile multiple regression' of order z 0 < 7 <1 can be stated as:
R=BF +B7F,+..+BVF, +&”, t=1,2,..,T, 4)

where: B8, i=1,2, ..., k— i-th model’s parameter,

& — error term.

The only assumption that lies under the model (4) is a conditional distribution
of r-th quantile: O, (R [f,) =1 'B"", where p* =(4",4",... A7) and Q, (¢ [f,)=0.
A distribution of independent random variables & is left unspecified, which is the
main virtue of the method as far as robustness to outliers is concerned. If p(7) is
independent from 7, then the quantile model collapses to a model E(R|ft)=ft 'B with
a constant variance of a fit error. Otherwise the model implies the variance that a
quantile of distribution of R, depends on f, .

The model’s estimation stage? is performed for a given quantile of order z.
Assuming that observations ., t=1,2,...,T are treated as a random sample of the
regression process u#, =7, —f,'B with unknown distribution I, Koenker and Basset
[1978] defined a z-th quantile regression estimator, which solves the following
problem:

min| >zl —f'b[+ > (A-7)|; -1 b|. (5)
bR etr =1, by teltn, <f,'b}

The problem (5) has always a solution; for continuous distributions it is unique.
Since the problem (5) can be transformed to a linear optimization problem its solution
can be found using an internal point method [Portnoy, Koenker 1997]. The approach
is regarded as non-classic method due to its robustness. Like robust estimation, the

! The quantile regression models analysed in the paper do not have a constant.

2 Semi-parametric character of estimation of the model (4) follows from the fact that the error term
distribution is left unspecified. Parametric approach is also available provided the error term follows
asymmetric Laplace distribution.
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quantile approach detects relationships missed by traditional data analysis. Robust
estimates detect the influence of the bulk of the data, whereas quantile estimates
detect the influence of co-variates on alternate parts of the conditional distribution.
Applications of the quantile regression method for Polish capital market can be
found in [Trzpiot 2008, 2009a, b, ¢, 2010] among others.

4. Quantile style analysis model

Using the notation introduced earlier and generalizing classic Sharpe style analysis
model to the quantile multiple regression the following quantile style analysis (QSA
model) model can be obtained:?

R, = ﬂl(T)El + ﬂz(r)F;z ot ﬂtEcT)Ek + 8;(T)5 t=1,2,... T, (©)

where: R, — fund’s rate of return in period ¢,
F,,i=12,...,k —rate of return from the i-th style index in period ¢,
B — i-th model’s parameter representing sensitivity of the conditional z-th
quantile 0 < 7 < 1 of dependent variable R to the i-th independent
variable F,
& — error terms.

Assumptions of the model are as follows: 1'B” =1, >0, Q(R|f)=f B,
Q.(¢”|f)=0. Hence the quantile of rate of return from the fund’s portfolio is linear
function of a style exposition [Koenker, Ng 2005].

Parameter estimators of the model (6) are solutions to the problem (5) with
respect to the following standard conditions: 1'b =1, b > 0.

5. Hierarchical classification methods

In the set theory classification is defined as a non-empty family of subsets
K,,i=1,2, .., kover aset of objects K that satisfies the conditions:

k
K K, =¢, |JK =K, i}, i,j=12, ..k (7)
i=1
where ¢ is an empty set. Hence classification is treated as a set of classes taken from
the set of classified objects.

Hierarchical grouping procedures can be described with the following scheme:
given a distance matrix for the set of objects it is initially assumed that every object
forms a separate class. Then a pair of classes is found for which the distance between

3 If k=1, f =1 for all ¢, the problem (5) collapses to (3) and the smallest absolute error equals the
median.
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them is the shortest. They are merged and form one new class. Then the new distance
matrix is calculated. The procedure continues until there is only one class left.
Differences between methods come from different ways of calculating the distance
between the classes. The most popular methods are: single linkage, complete single,
unweighted pair-group average, weighted pair-group average, unweighted pair-
group centroid, weighted pair-group centroid and Ward’s method.

6. Results of empirical analysis

The management style of all of the 13 Polish Balanced Mutual Funds (PMBF)
operating on the market during the whole period 02.01.2002-30.06.2008 was
analysed. These were: Aviva Investors FIO subfundusz Aviva Investors Zrownowa-
zony (AVI), BPH FIO Subfundusz BPH Aktywnego Zarzadzania (BPH), Arka BZ
WBK Zréwnowazony FIO (BZW), DWS Polska FIO Zrownowazony (DWS), ING
FIO Zréwnowazony (ING), KBC Beta SFIO (KBC), Legg Mason Zrownowazony
Srodkowoeuropejski FIO (LEG), Millennium FIO Subfundusz Zréwnowazony
(MIL), Novo FIO Subfundusz Novo Zréwnowazonego Wzrostu (NOV), Pioneer
Zréwnowazony FIO (PIO), PKO Zréwnowazony FIO (PKO), Skarbiec FIO
Zrownowazony (SKA), OFI Union Investment Zrownowazony (UNI).

In every model logarithms of monthly rates of return from a fund’s participation
unit prices are treated as dependent variables. The set of independent variables is the
same for all models and consists of logarithms of monthly rates of return from the
indexes representing a fund’s investments in different classes of stocks and bonds.
Among the independent variables there are the rates of return from sector stock sub-
indices: WIG-banks (WIG-, ), WIG-construction (WIG-, ), WIG-informatics
(WIG-, ), WIG-food (WIG—SPO) and WIG-telecommunication (WIG- ); as well as

Table 1. Correlation matrix of independent variables in the Sharpe style analysis models

WIG-, | WIG-,, | WIG-, | WIG- | WIG-, PS DS
WIG-, . 1.00 0.65 0.67 0.58 0.60 0.19 0.26
WIG-,,, 0.65 1.00 0.65 0.65 0.38 0.01 0.08
WIG-, . 0.67 0.65 1.00 0.57 0.51 0.08 0.14
WIG-, 0.58 0.65 0.57 1.00 0.34 0.10 0.08
WIG-, 0.60 0.38 0.51 0.34 1.00 | —0.03 0.13
PS 0.19 0.01 0.08 0.10 0.03 1.00 0.50
DS 0.26 0.08 0.14 0.08 0.13 0.50 1.00

Significant coefficients (significant level 0.05) are in bold.

Source: own calculations.
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rates of return from the following bond accounting prices: 5-year fixed interest bonds
(PS) and 10-year fixed interest bonds (DS).* The rates of return from sector indices
WIG do not exhibit strong correlation with the rates of return from bonds. The
correlation coefficients between the sector indices are different from 0 at the 0.05
significance level. This is also the case for correlation between sector indices and
bonds PS and Ds (see Table 1).

Now, we discuss results for two example funds in detail to explain the idea of the
research. For example for two funds, the Sharpe style analysis models obtained from
the least squares estimation with parameters restrictions can be written as:

oy =0.17 WIG,,, +0.09 WIG,,,, +0.07 WIG,, +0.09 WIG._ + ®)
+0.08 WIG,,, +0.14 PS+0.35 DS,

Fops =0.16 WIG,,, +0.09 WIG,,,, +0.06 WIG, , +0.07 WIG_, +

9
+0.07 WIG,,, +0.23 PS+0.31DS. ©)

The results of the interval estimation and testing procedures based on the Andrews
approach [Orwat 2011] are presented in Table 2. At the 0.05 significance level all
parameters are different from 0. The set of independent variables given below is the
result of carrying out the models’ re-specification procedure that ruled out all
variables that do not affect the endogenous variable in a statistically significant
way.

Table 2. Results of the least squares with constrains estimation, interval estimation
and testing procedures for parameters of models (8) and (9)

95% Andrews 95% Andrews
Style confidence intervals Style | confidence intervals
Index share p-value | share p-value
UNI lower upper DWS lower upper
bound bound bound bound
WIG-, | 0.17 0.107 0.247 0 0.16 0.020 0.262 0
WIG-_, | 0.09 0.013 0.163 0 0.09 0.002 0.163 0.01
WIG- | 0.07 0.031 0.115 0 0.06 0.000 0.138 0.03
WIG- | 0.09 0.008 0.166 0.01 0.07 0.013 0.140 0.02
WIG-, | 0.08 0.024 0.157 0 0.07 0.001 0.148 0.02
PS 0.14 0.088 0.148 0.05 0.23 0.059 0.405 0.05
DS 0.35 0.302 0.581 0 0.31 0.130 0.568 0
R? 0.7885 0.7233

Source: own calculations.

4 The monthly accounting prices of bonds were calculated from daily prices, which were average
prices for all bonds of a given type quoted in that day.
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The value of the style shares estimated by the least squares approach suggest that
the funds do not differ significantly according to the style (see Figures 1 and 2).

% B WIG-ban
35% 32% ™ WIG-bud
—¢ "1 9% \9% O WIG-inf
SR Rilads % 0 WIG-spo
7 % mWiG-tel
9% ) 7% OPS
15% g, 29 T T oDS
Figure 1. Style shares OLS for UNI fund Figure 2. Style shares OLS for DWS fund
Source: own calculations. Source: own calculations.

However the comparative analysis of the style for different part of the distribution
(for the quantiles of different order) suggests the opposite conclusions (Figures 3
and 4).
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Figure 3. Style shares of UNI fund for different quantile orders

Source: own calculations.
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Figure 4. Style shares of DWS fund for different quantile orders

Source: own calculations.

As we expect the structure of shares obtained from least squares method is similar
to shares obtained for quantile of order 0.5 (compare 4" bar of Figure 3 with Figure
1 and 4" bar Figure 4 with Figure 2). However the structure of shares for middle
quantiles significantly differs from those estimated for extreme ones (for example
for quantiles of order 0.05 and 0.95 — compare bars 1 and 7" on Figure 3). Estimated
style shares for the quantiles of different order (0.05; 0.1; 0.25; 0.5; 0.75; 0.9; 0.95)
depict significant heterogeneity of the funds’ style expositions in the whole conditional
distribution of returns. This is the case for both funds DWS and UNL

Moreover, the two analyzed funds differ also for a given quantile order (compare
bars of Figures 3 and 4, respectively). For example for the quantile of order 0.25 the
structure of style shares of UNI fund considerably differs from the structure of style
shares of the DWS fund. Namely for UNI fund, low returns (for 25" quantile) in
22% can be attributed to investment in bonds with maturity of 5 years. For DWS it
is 64.5%. Impact of yields from 10 year bonds on low returns of UNI fund is
estimated at 32.8%, whereas for DWS they are negligible. Important differences
can be also noticed for these two funds as far as exposition for stock returns is
concerned.

The results of style shares analysis obtained from LSM for all funds are given in
Table 3. The results for quantile models are collected in Table 4. By analyzing the
numbers in the tables one can easily extend previous findings obtained for UNI and
DWS funds to other funds.
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Table 3. Least squares style shares

Index | AVI | BPH | BZW | DWS | ING | KBC | LEG | MIL | NOV | PIO | PKO | SKA | UNI
WIG-, | 0.06 | 0.13 | 025 | 0.16 | 0.20 | 0.20 | 0.15 [ 0.10 | 0.13 | 0.25 | 0.10 | 0.11 | 0.17

WIG-, , | 0.07 | 0.10 | 0.12 | 0.09 | 0.08 | 0.12 | 0.05 | 0.07 | 0.09 | 0.06 | 0.07 | 0.06 | 0.09

WIG-. 0.03 | 0.00 | 0.07 | 0.06 | 0.08 | 0.03 | 0.04 | 0.06 | 0.06 | 0.07 | 0.03 | 0.10 | 0.07

inf
WIG-_ | 0.07 | 0.09 | 0.04 | 0.07 | 0.07 | 0.10 | 0.05 | 0.07 | 0.05 | 0.05 | 0.07 | 0.06 | 0.09
WIG-, | 0.09 | 0.03 | 0.11 | 0.07 | 0.06 | 0.16 | 0.11 [ 0.08 | 0.06 | 0.08 | 0.06 | 0.10 | 0.08

PS 022021 | 0.17 | 023 | 028 | 0.29 | 0.21 [ 0.25] 0.30 | 0.21 | 0.30 | 0.24 | 0.15
DS 045|044 | 024 | 031 | 022 0.09 | 039 (038|031 | 028 | 037 | 0.34 | 0.35

Source: own calculations.

Table 4. Quantile style analysis shares

Order | Index |AVI|BPH | BZW | DWS | ING | KBC | LEG | MIL | NOV | PIO | PKO | SKA | UNI

1 2 3 4 5 6 7 8 9 10 11 12 | 13 14 15
WIG-, ~[0.04] 0.11 | 0.11 | 0.06 | 0.14 | 0.15 | 0.08 | 0.04 | 0.04 [0.26] 0.08 | 0.06 | 0.11
WIG-, , [0.01]0.02 | 0.12 | 0.02 | 0.05| 0.07 | 0.01 | 0.02 | 0.07 [0.00| 0.00 | 0.02 | 0.02
WIG-, . 10.07|0.10 | 0.13 | 0.06 | 0.11 | 0.08 | 0.04 | 0.13 | 0.09 |0.11| 0.05 | 0.12 | 0.09
0.05 |WIG-_  |0.06]0.06 | 0.00 | 0.03 | 0.03 ] 0.06 | 0.04 | 0.03 | 0.03 |0.00| 0.06 | 0.04 | 0.09
WIG-, [0.09/0.08 | 0.11 | 0.03 | 0.10 | 0.18 | 0.18 | 0.10 | 0.11 [0.08 | 0.04 | 0.12 | 0.12
PS 0.49(0.62 | 0.53 | 0.80 | 0.46 | 047 | 0.60 | 0.60 | 0.66 |[0.54| 0.72 | 0.60 | 0.40
DS 0.25(0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.07 | 0.08 | 0.00 [0.01]| 0.04 | 0.04 | 0.16
WIG-, ~[0.04] 0.11 | 0.11 | 0.11 | 0.15] 0.14 | 0.07 | 0.04 | 0.03 [0.26| 0.08 | 0.06 | 0.11
WIG-, . 10.01(0.02 | 0.06 | 0.02 | 0.05| 0.07 | 0.01 | 0.02 | 0.10 [0.00| 0.00 | 0.02 | 0.05
WIG-, . [0.06] 0.10 | 0.11 | 0.12 | 0.10 | 0.08 | 0.03 | 0.13 | 0.08 [0.11] 0.05| 0.12| 0.10
0.1 |WIG-_ [0.06| 0.07 | 0.00 | 0.06 | 0.03 | 0.08 | 0.04 | 0.03 | 0.04 |0.00] 0.06 | 0.04 | 0.08
WIG-, [0.10] 0.08 | 0.07 | 0.03 | 0.10 | 0.18 | 0.18 | 0.10 | 0.11 [0.08] 0.04 | 0.12 | 0.12
PS 0.44|0.62 | 0.65 | 0.65 | 0.44 | 046 | 0.58 | 0.59 | 0.64 [0.52| 0.72 | 0.56 | 0.23
DS 0.29(0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.08 | 0.09 | 0.00 [0.03] 0.05 | 0.08 | 0.31
WIG-_10.05(0.11 | 0.20 | 0.13 | 0.15 | 0.15 | 0.10 | 0.05 | 0.05 |0.26| 0.08 | 0.10 | 0.12
WIG-,, [0.03]0.04 | 0.11 | 0.04 | 0.07 | 0.13 | 0.05 | 0.03 | 0.12 [0.01] 0.02 | 0.03 | 0.07
WIG-, . |0.04| 0.07 | 0.08 | 0.12 | 0.09 | 0.06 | 0.04 | 0.11 | 0.07 |0.10]| 0.05 | 0.11 | 0.09
0.25 WIG- | 10.07]0.07 | 0.00 | 0.05 | 0.02 | 0.07 | 0.00 | 0.05 | 0.04 |0.05]0.06 | 0.05 | 0.06

WIG- 0.11(0.09 | 0.09 | 0.02 | 0.09 | 0.17 | 0.16 | 0.10 | 0.11 [0.08] 0.05 | 0.11 | 0.11

tel
PS 0.43(0.57 | 031 | 0.64 | 0.37 | 041 | 0.47 | 0.42 | 0.55 [0.29] 0.68 | 0.52 | 0.22
DS 0.2710.04 | 0.20 | 0.00 | 0.21 | 0.00 | 0.18 | 0.24 | 0.07 [0.21]| 0.07 | 0.09 | 0.33
WIG-, [0.06] 0.16 | 024 | 0.22 | 0.19 | 0.19 | 0.10 | 0.06 | 0.09 [0.27| 0.08 | 0.10 | 0.11

WIG-, 0.07( 0.07 | 0.09 | 0.08 | 0.09 | 0.14 [ 0.09 | 0.06 | 0.13 [0.04| 0.07 | 0.06 | 0.10

bud

WIG- 0.04( 0.00 | 0.07 | 0.07 | 0.08 | 0.04 | 0.02 | 0.11 | 0.05 [0.09| 0.00 | 0.10 | 0.08

inf

0.5 WIG-M 0.06(0.12 | 0.08 | 0.10 | 0.03 | 0.08 [ 0.01 | 0.07 | 0.06 [0.03]| 0.06 | 0.05 | 0.06
WIG-,, (0.10] 0.07 | 0.08 | 0.03 | 0.08 | 0.16 | 0.17 | 0.09 | 0.10 [0.07] 0.05 | 0.11 | 0.13

PS 023028 | 025 | 0.27 | 0.28 | 0.17 | 0.34 | 0.30 | 0.38 [0.24| 0.46 | 0.36 | 0.16
DS 0.45(0.29| 0.19 | 023 | 0.25| 0.21 | 0.27 | 0.32 | 0.18 |0.25]| 0.26 | 0.20 | 0.36

d
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WIG-, =~ [0.12] 0.18 | 029 | 0.24 | 0.20 | 0.31 | 0.15 | 0.15 | 0.13 [0.27] 0.08 | 0.13 | 0.16
WIG-, [0.09] 0.10 | 0.17 | 0.10 | 0.09 | 0.16 | 0.12 | 0.07 | 0.14 [0.07] 0.09 | 0.09 | 0.15
WIG-, . [0.01]0.00 | 0.03 | 0.03 | 0.06 | 0.01 | 0.00 [ 0.06 | 0.02 [0.04] 0.00 | 0.07 | 0.06

0.75 WIG-Spc 0.08] 0.12 | 0.02 | 0.10 | 0.07 | 0.11 | 0.00 | 0.11 | 0.09 |0.07 | 0.06 | 0.08 | 0.03
WIG-,, [0.08]0.06 | 0.09 | 0.03 | 0.09 | 0.12 | 0.14 | 0.07 | 0.10 [0.09] 0.06 | 0.11 | 0.12
PS 0.16] 0.08 | 0.12 | 0.09 | 0.21 | 0.04 | 0.23 | 0.10 | 0.25 |0.06| 0.36 | 0.23 | 0.13
DS 047]046| 029 | 041 | 028 | 0.25 | 0.36 | 0.43 | 0.27 |0.39| 0.35| 0.29 | 0.35
WIG-, ~[0.10] 0.18 | 0.27 | 0.25 | 0.21 | 0.30 | 0.16 | 0.15 | 0.15 [0.30| 0.10 | 0.11 | 0.17
WIG-,, 0.10] 0.13 | 0.21 0.11 | 0.11 | 0.18 | 0.13 | 0.08 | 0.15 |0.06| 0.09 | 0.12 | 0.14
WIG-, . [0.00] 0.00 | 0.00 | 0.02 | 0.05| 0.00 | 0.00 { 0.05 | 0.00 [0.02] 0.00 | 0.06 | 0.03
0.9 WIG-Spo 0.09] 0.12 | 0.03 | 0.11 | 0.09 | 0.11 | 0.00 | 0.15 | 0.10 |0.09 | 0.09 | 0.09 | 0.14
WIG-, [0.09(0.05| 0.10 | 0.04 |0.09 | 0.14 | 0.14 | 0.07 | 0.10 [0.09 | 0.05 | 0.10 | 0.10
PS 0.02] 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.10 | 0.00 | 0.09 |0.01|0.33 | 0.16 | 0.00
DS 0.60] 0.53 | 039 | 047 | 033 | 0.27 | 047 | 0.49 | 0.41 |042|0.35|0.35]0.42
WIG-, ~(0.10] 0.18 | 0.40 | 0.25 | 0.23 | 0.31 | 0.17 | 0.15 | 0.15 [0.32] 0.10 | 0.12 | 0.17
WIG-,, 0.11] 0.13 | 0.10 | 0.11 | 0.13 | 0.18 | 0.13 | 0.10 | 0.15 [0.08| 0.09 | 0.13 | 0.14
WIG-, . [0.00| 0.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 [ 0.06 | 0.00 |0.00|0.00 | 0.05 | 0.03
0.95 WIG-Spo 0.09] 0.12 | 0.03 | 0.11 | 0.12 | 0.12 | 0.03 | 0.12 | 0.10 |0.09 | 0.09 | 0.09 | 0.15
WIG-,, [0.08]0.05| 0.08 | 0.04 | 0.08 | 0.12 | 0.12 | 0.07 | 0.10 [0.08] 0.05| 0.10 | 0.10
PS 0.00| 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.09 |0.00| 0.33 | 0.17 | 0.00
DS 0.62(0.53 | 039 | 047 | 031 | 0.26 | 0.55 | 0.50 | 0.41 [0.43| 0.35| 0.34 | 0.42
Source: own calculations.
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Figure 5. Classification of the PMBF according to style weights estimated by QSA and OLS

Source: own calculations.
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Figure 6. Classification of the PMBF according to style weights estimated by QSA and OLS

Source: own calculations.
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In the next stage, classification of the funds was performed according to
estimated style shares by the ordinary least squares and from the four different
quantile orders.

Figure 5 refers to classification obtained from shares estimated OLS and the next
ones to quantile regression. Analysis of the results of classification based on LSM
shares reveals significant heterogeneity of funds according to style exposition. This
heterogeneity can partially be attributed to the way the balanced fund operates. Their
portfolios can consist of up to 69% of shares and the rest is bonds and treasury bills.
Since the funds do not conduct strictly homogenous investment policies the returns
can be shaped by very different factors (represented by share and bond indices) and
differ from returns obtained by other funds.

We compare style shares obtained from LSM with those estimated by quantile
style analysis models (Figure 6). Hierarchical trees depict results of the classification
using a mean linkages method and Euclidean distance (for a given order of the
quantile trees obtained from other distance the measures are similar). Significant
differences according to clusters suggest that restricting assessment of the balanced
funds heterogeneity only to results obtained from classical style analysis is not
justifiable. Style exposition analysis for different quantiles may shed new light on
the funds comparisons and classification. It should also be emphasized that there are
considerable differences between the style share obtained from the ordinary least
squares and those obtained from the quantile regression of order 0.5. They can very
likely be attributed to asymmetry of the conditional distribution of participation unit
returns.

7. Conclusions

The main advantage of the quantile style analysis comes from its ability to investigate
not only the central part of a distribution but also tails. This is very important in the
case of asymmetric distributions of returns.

The results of the classification support the thesis on heterogeneity of style
expositions calculated for different parts of conditional distribution of returns. For
different orders of quantiles different classes of the funds were obtained. Therefore
the funds differ in the style exposition for given parts of distribution as well as the
expositions vary for different orders of quantiles. Style shares heterogeneity of the
balanced mutual funds for different part of conditional distribution of returns does
not justify restricting style estimates to the central part of distribution. Moreover
classifications obtained for different quantile orders can be very different. These
results justify using quantile regression approach to the style analysis of mutual
balanced funds. Style exposition analysis for different quantiles may shed new light
on the funds comparisons and classification. The decision on which part of the
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distribution the estimates should be based depend on the aim of the research. For
example for risk analysis based on threat measures, the right information can be
found in quantiles of the lowest order, especially for the asymmetric distribution
case.

More information on a fund management style can be extracted from dynamic
quantile style analysis (with variable shares assumption). This problem is left by the
authors for further investigation.
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KLASYFIKACJA POLSKICH FUNDUSZY INWESTYCYJNYCH
ZROWNOWAZONYCH ZE WZGLEDU NA STYL ZARZADZANIA
— PODEJSCIE REGRESJI KWANTYLOWEJ

Streszczenie: Analiza stylu bada wplyw czynnikow reprezentujacych inwestycje w klasy
aktywow na stopy zwrotu funduszu. W przypadku asymetrycznych rozktadow stop zwrotu
stosowanie klasycznej analizy stylu Sharpe’a moze prowadzi¢ do btednego wnioskowania na
podstawie wspotczynnikow modelu. Kwantylowa analiza stylu bada zalezno$¢ pomigdzy
stopami zwrotu funduszu a czynnikami ryzyka w odniesieniu do kwantyla rozktadu. Celami
pracy sa badanie wptywu inwestycji w akcje i obligacje na stopy zwrotu jednostek uczestnictwa
funduszy inwestycyjnych zréwnowazonych za pomoca kwantylowej analizy stylu oraz ocena
przydatnosci podejs$cia kwantylowego w analizie stylu tych funduszy. Poréwnujemy struktury
oszacowanych wspotczynnikow modeli w réznych czgsciach rozktadu stop zwrotu oraz
klasyfikujemy fundusze wzglgdem wspotczynnikow modelu oszacowanych klasycznie
i kwantylowo.

Slowa kluczowe: kwantylowa analiza stylu, regresja kwantylowa, fundusze inwestycyjne
zrdwnowazone.
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