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TAIL INDEPENDENCE IN EXTREME VALUE MODELS 
– AN APPLICATION FOR EAST AND CENTRAL 
EUROPE STOCK EXCHANGE MARKETS1

Summary: The concept of tail dependence represents the current standard to describe the 
amount of extremal dependence. While extreme value theory allows for constructing estima-
tors of the tail dependence coefficient, tests for tail independence are indispensable when 
working with tail dependence, since all estimators of the tail dependence coefficient are 
strongly misleading when the data does not stem from a tail dependent setting.The main aim 
of this paper is to compare the power of the extreme-value dependence tests which are based 
on extreme value theory (a log-likelihood ratio test and goodness of fit tests) on original 
time series from stock exchange markets from East and Central Europe. 

Keywords: tests for independence, tail dependence coefficient, extreme-value theory 
(EVT), copula. 

1. Introduction 

Tail independence − which is also known as asymptotic independence or extreme 
independence – exists in many applications, especially in financial time series analy-
sis. Not taking this dependence into account may lead to misleading results. Tail 
independence is described via the tail-independence coefficient introduced by Sibuya 
[1960]. Extreme value theory is the natural choice for inferences on extreme values.  

In this paper only some basic concepts of tail independence, estimation of tail in-
dependence coefficient and copulas are presented assuming that these issues are de-
scribed in details in recent papers [Embrechts et al 1997, 2003; Poon et al 2004; 
Frahm et al 2005]. The most important purpose of the paper is to emphasize the im-
portance of testing tail-independence. On the basis of empirical data we present the 
result of examination of the extreme-value dependence tests which were presented by 
Falk and Michel [2006] and considered by them only on simulation data.  

 

                    
1 This paper has been prepared as part of a research project sponsored by the Ministry of Science 

and Higher Education, Warsaw – Grant No. NN111 4620 40. 
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2. Preliminary data analysis 

In this study we examined the behavior of four indices from Central and East Europe 
stock exchange markets, namely Polish WIG20, Hungarian BUX, Russian RTS, 
Czech PX50.2 There are a number of papers studying the co-movements of interna-
tional equity markets (US, UK, Germany, Japan, France etc.), but there is little re-
search that studies dependences in Central and Eastern Europe stock markets. The 
results of such research have important implications for both global investment man-
agement and asset pricing modeling. Central and Eastern European markets can be-
come attractive option for global investors who want to diversify their portfolios 
internationally. 

As previously found in other studies, returns exhibit excess kurtosis and negative 
skewness. Plots (1a-1d) presents indices prices and the original log-returns. 
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Figure 1a. PX50 Index price for period January 6th 2004 to April 29th 2010 (1600 data points) 
and the original log returns 

Source: own calculations. 
 

                    
2 For all indices, we compute daily log-returns data. 
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Figure 1b. WIG20 Index price for period January 6th 2004 to April 29th 2010 (1600 data points) 
and the original log returns 

Source: own calculations. 
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Figure 1c. BUX Index price for period January 6th 2004 to April 29th 2010 (1600 data points) 
and the original log returns 

Source: own calculations. 
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Figure 1d. RTS Index price for period January 6th 2004 to April 29th 2010 (1600 data points) 
and the original log returns 

Source: own calculations. 

3. Tail dependence basic concept (tdc) 

Sibuya [1960] introduced tail independence between two random variables with 
identical marginal distributions. De Haan and Resnick [1977] extend it to the case of 
multivariate random variables. The TDC can be defined via the notion of copula, 
introduced by Sklar [1959]. A copula C is a cumulative distribution function whose 
margins are uniformly distributed on [0.1]. As shown by Sklar [1959], the joint dis-
tribution function F of any random pair (X, Y) with marginals Fx  and Fy can be rep-
resented as ( , ) ( ( ), ( ))x yF x y C F x F y=  in terms of a copula C which is unique when 
Fx  and Fy are continuous [Nelsen 1999 or Joe 1997].  Therefore,, if C is the copula3 of (X, Y), then the definition of tail independence 
and tail dependence between two random variables is given below. 

The coefficient of upper tail-dependence of X and Y is defined as: 

 1 1

1 1

1 2 ( , )lim ( ( ) | ( )) lim
1u Y Xv v

v C v vP Y F v X F v
v

λ − −

↑ ↑

− +
= > > =

−
 (1) 

                    
3 The most frequently used copulas in finance field are: archimedian (Gaussian, t-student, Clayton). 
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Similarly, the coefficient of lower tail-dependence: 
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=≤≤=λ . (2) 

If uλ ])1,0(( ∈lλ  X and Y are said to be asymptotically dependent in the upper 
(lower) tail. If 0=uλ )0( =lλ  they are asymptotically independent in the upper 
(lower) tail. 

Recent attention given to the statistical properties of asymptotically independent 
distributions is largely a result of a series of articles by Ledford and Tawn [1996, 
1997, 1998]. Coles et al. [1999] give an elementary synthesis of the theory. 

4. Estimation of the TDC basic concept 

Frahm et al. [2005] give estimators for the TDC under different assumptions: using  
a specific distribution (e.g. t-distribution), within a class of distributions (e.g. ellipti-
cally contoured distributions), using a specific copula (e.g. Gumbel), within a class of 
copula (e.g. Archimedean) or a nonparametric estimation (without any parametric 
assumption). The authors compare the performance of different estimators for differ-
ent cases: whether the assumption is true or wrong and whether there is tail depend-
ence or not. It turns out that some of the estimators perform well if there is tail de-
pendence, but bad if there is not. In practical applications, one will never know which 
copula model is the correct one. The estimation can only be under misspecification. 
In the present paper, no parametric assumptions are made for the copula and the 
marginal distribution functions. TDC estimates are obtained from the empirical copu-
la . Empirical counterparts of Ĉ uλ and lλ  can be obtained by plugging the empiri-
cal copula into Eqs. (1) and (2): 

 { ( ), ( )}
1

1ˆ , ; , 1,2, ...,i
k k

n
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k

i jC
n n n ≤ ≤

=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑1  j n= , (3) 

where  and (1) (2) ( )... nu u u≤ ≤ ≤ (1) (2) ( )... nv v v≤ ≤ ≤  are the order statistics. 
Difficulties in selecting a proper estimation method brings us to the important is-

sue of testing for the tail independence. 

5. Tail independence tests 

One of the most interesting approaches for testing for tail independence is given in 
Falk and Michel [2006]. They prove the following theorem: 
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With , we have uniformly for 0→c ]1,0[∈t : 
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( | )
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.  

Using this theorem, Falk and Michel propose four different tests for tail inde-
pendence, which can be grouped into two different classes: a Neymann-Pearson test 
(NP) and three goodness of fit tests: Fisher’s κ , Kolmogorov-Smirnov and 2.χ   

Suppose now that we have n independent copies 1 1( , ), ..., ( , )n nX Y X Y  of 
. The marginal distribution is assumed to be reverse exponential (i.e. 

). Fix a threshold 
),( YX

( ,0)F x (0, ) exp( )F x x= = 0<c  and consider { ;i i iE C X Y= = +   
. Let }iC c> =)(nk # E  and define ci /CVi =  1, ..., ( )i k n m∀ = = . According to 

the above theorem we test the hypothesis: 

:0H 2
0 ( )F t t=  vs. :1H 1( ) .F t t=  

 
Neyman-Pearson test (NP) 
The first test is suggested by the Neyman-Pearson lemma. The NP test considers 

the distribution function of  and tests whether it is more likely from  or 

. The test statistic for testing  against  is (for fixed ): 
iV 2

)0( )( ttF =

nttF =)()1( )0(F )1(F
( ) ( )

11

1: log log( ) ( ) log(2)
2

k n k n

NP i
ii i

T V
V ==

⎛ ⎞
= = − −⎜ ⎟

⎝ ⎠
∑∏ k n . 
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Kolmogorov-Smirnov test (KST) 
A different possibility of using Falk and Michel [2006] theorem is to carry out  

a goodness-of-fit test, in this case using the Kolmogorov-Smirnov test. Therefore, 

define conditional on ( ) :K n m=
1 (1 )exp( ): ( / ) , {1, ... }.
1 (1 )exp( )

i i
i c i

C CU F C c i m
c c

− −
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Denote [0, ]
1ˆ ( )m t iF t I
m

= ∑ C m the ecdf of , iU 1, ..,i = . The Kolmogorov test statis-

tic is then: 
[0,1]
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T F t
m ∈

= − .t   



Grażyna Trzpiot, Justyna Majewska 416

The approximate p-value is 1 (KS KSp K T ),= −  where K  is the cdf of the Kolmo-
gorov distribution. According to a rule of thumb given by the authors: for  
tail independence is rejected if   

30,m >

0,05 1,36.KST c> =

Fisher’s κ test  
Next, we consider Fisher’s κ test based on  for tail independence of X and 

Y. The random variables  
cCi /

iU {1, ..., }i m∀ ∈  are independent and uniformly distribut-
ed on (0, 1), if X and Y are tail independent and c is close to 0.  

Consider the corresponding order statistics 1: :...mU Um m≤ ≤  and denote 

; 1: ; ,j j m j mS U U −= − 1 j m 1.≤ ≤ +  mκ  is the Fisher’s κ statistic, conditional on 
 ( ) 0 :K n m= >
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Chi-square test  
The last test is the chi-square goodness-of-fit test applied to  iU },...,1{ mi∈∀  

conditional on 0)( >= mnK

kII ,...,1

. Divide the interval [0,1] into k consecutive and dis-
joint intervals . The test statistic is: 

2
2
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where  is the number of observation among  mim ,iU 1, ...,i =  that falls into the 

interval ,  is the length of  (iI ip iI ki ≤≤1 ).   is rejected when 

 is small. 
)0(F

2
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, )k m kp
χ 1(χ χ: 1= − −

 
The main problem is choosing the threshold c. Numerous simulations which Falk 

and Michel carried out indicate that the Neyman-Pearson test has the smallest type II 
error rate, closely followed by the Kolmogorov-Smirnov test and the chi-square test, 
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whereas Fisher’s κ almost fails. The NP does not, however, control the type I error 
rate if the c is too far away from 0. The other three tests control the type I error rate 
for any c. 

6. Estimation of the TDC and testing for tail independence  
− empirical analysis 

The figures below (Figures 1-6) graphically summarize the tail dependence proper-
ties of six financial data-sets. We provide the scatter plots of daily negative log-
returns of the each pair of analyzed indices and compare them to the corresponding 
tail independence coefficient estimate of (2) for various k. For the purpose of estima-
tion we used empirical copula. Both plots (for each pair of indices) give an intuition 
for the presence of tail dependence and the order of magnitude of the tail dependence 
coefficient. For modeling reasons we assume that the daily log-returns are iid obser-
vations. All plots related to the estimation of the tail dependence coefficient show the 
typical variance-bias problem for various k. In particular, a small k comes along with 
a large variance of the estimate, whereas an increasing k results in a strong bias. In 
the presence of tail dependence, such k is chosen that the tail independence coeffi-
cient estimate  lies on a plateau between the decreasing variance and the increas-
ing bias (results are presented in Table 1). 

lλ̂

For the PX50 and WIG20 pair the estimates of lower-tail dependence coefficient 
is the highest − around 0.44 (as shown in Figure 2) for k between 40 and 43. The 
smallest lower-tail dependence coefficient is for BUX and WIG20 pair. 
 

 

Figure 2. Scatter plot of PX50 versus WIG20 log-returns and the corresponding tail dependence 
coefficient estimate lambda for various k 

Source: own calculations. 
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Figure 3. Scatter plot of BUX versus WIG20 log-returns and the corresponding tail dependence 
coefficient estimate lambda for various k 

Source: own calculations. 

 
Figure 4. Scatter plot of BUX versus RTS log-returns and the corresponding tail dependence 
coefficient estimate lambda for various k 

Source: own calculations. 

 

Figure 5. Scatter plot of WIG20 versus RTS log-returns and the corresponding tail dependence 
coefficient estimate lambda for various k 

Source: own calculations. 
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Figure 6. Scatter plot of PX50 versus RTS log-returns and the corresponding tail dependence 
coefficient estimate lambda for various k  

Source: own calculations. 

Table 1. Estimates of tail-dependence coefficient for each pair 
based on their empirical copulas with various number 
of threshold k 

Paired return Interval for k Lλ  

PX ver RTS (50.55) 0.23 
BUX ver RTS (49.54) 0.30 
WIG20 ver RTS (52.55) 0.31 
PX ver WIG20 (40.43) 0.44 
BUX ver WIG20 (43.46) 0.17 

Source: own calculations. 

Table 2 reports the computation of all four described earlier tail-dependency tests 
for pairs of indices. As we see in Table 2 extreme-value independency is rejected for 
all pairs in left tail at the 5 percent significance level. These estimates of left-tail de-
pendence coefficients are fairly close to those reported above in Table 1. Therefore, 
all tests suggest that there is tail dependence in pairs. 

Our next step consists of fitting a suitable copula to the data. Table 3 shows the 
result of fitting the symmetrized Joe-Clayton, normal, Gumbel, Frank and t-student 
copula to all pairs of joint standardized data using maximum likelihood (as for each 
paired returns all tests suggest lower-tail dependency). Therefore, a t-student and 
symmetrized Joe-Clayton seem a suitable choice in our case. 

The last step is an examination of the power of the extreme-value dependence 
tests. In order to examine this issue we carry out Monte Carlo experiments. Each of 
the experiments consists of generating two returns series of 1000 observations each 
from GARCH(1, 1) processes, whose joint behavior is assumed to be adequately 
represented by a SJC copula and t copula with 5 degrees of freedom. Each of the 
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Monte Carlo experiments is repeated 100 hundred times and tests: Neyman-Pearson, 
Kołmogorov, chi-square and Fisher are computed for the lower tails at each iteration. 
Our results are reported in Table 4.  

Table 2. Extreme-value independency tests using 4 statistics for each pair 

Paired return Optimal threshold c Lλ * p-value 
np fisher ks chi-square 

PX ver RTS –0.05105 0.2658 0.001 0.021 0.002 0.000 
BUX ver RTS –0.04997 0.3726 0.024 0.037 0.042 0.031 
WIG20 ver RTS –0.05174 0.3029 0.033 0.038 0.018 0.029 
PX ver WIG20 –0.04427 0.4917 0.038 0.005 0.044 0.015 
BUX ver WIG20 –0.04023 0.1237 0.021 0.041 0.028 0.034 

* The non-parametric way of choosing the optimal threshold level estimate the Generalized Pare-
to Distribution parameters corresponding to various threshold levels, representing respectively 1%, 
2%, 3%,.....till 12% of the extreme observations. 

Source: own calculations. 

Table 3. Fitting copula to the original log-returns of indices 

Paired return Best copula** 

PX ver RTS t-student 

BUX ver RTS SCJ 

WIG20 ver RTS SCJ 

PX ver WIG20 SCJ 

BUX ver WIG20 t-student 

** “Best” copula criterion: consider the distance (based on the discrete L2 norm) between each 
considered copula (symmetrized Joe-Clayton, normal, Gumbel, Frank and t-student) and empirical 
copulas. 

Source: own calculations. 

Table 4. Simulation of rejection rate of H0: tail independence (5% SIGNIFICANCE LEVEL) 

Copula Np test Fischer test Ks test Chi-square test 

sjc  95 56 98 86 

t-student  100 67 100 90 

Source: own calculations. 
 
The results in Table 4 show that power of Neyman-Pearson and Kolmogorov- 

-Smirnov tests based on a t-student copula approaches 1. That is, the false null hy-
pothesis is virtually always rejected. The chi-square test exhibits the lowest power.  
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7. Conclusion 

Testing tail independence is simple and transparent enough to be implemented and 
easily monitored. Omitting the test for tail independence would introduce a large bias 
in the estimation and make it difficult to decide whether there is just correlation or in 
fact tail dependence. One important feature of this paper is the implementation of the 
tests for tail independence, which is recognized to be indispensable but rarely utilized 
in a financial context. The most important conclusions are:  
– existence of dependence between Poland−Czech, Poland−Hungary stock mar-

kets (the strongest between Poland−Czech), 
– Polish, Czech and Hungarian equity markets are dependent on the Russian 

market (as the largest financial market in consideration), 
– NP and KS correctly reject the null hypothesis of extreme-value independence 

in the left tail (one hundred percent of time for t-student copula). 
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NIEZALEŻNOŚĆ W OGONACH 
W MODELACH WARTOŚCI EKSTREMALNYCH  
– ZASTOSOWANIE NA GIEŁDACH PAPIERÓW 
WARTOŚCIOWYCH WSCHODNIEJ I CENTRALNEJ EUROPY  

Streszczenie: Koncepcja zależności w ogonach rozkładu stanowi obecny trend w ocenie si-
ły ekstremalnych zależności. O ile teoria wartości ekstremalnych pozwala na konstruowanie 
estymatorów współczynnika zależności w ogonach, o tyle niezbędnym elementem jest te-
stowanie tejże niezależności ze względu na fakt, iż estymatory współczynnika zależności  
w ogonach mogą prowadzić do błędnych wniosków. Celem artykułu jest analiza porównaw-
cza wybranych testów niezależności w modelach rozkładów wartości ekstremalnych (test 
oparty na ilorazie wiarygodności oraz testy dopasowania dobroci). Na podstawie rzeczywi-
stych stóp zwrotu wybranych indeksów z parkietów giełdowych centralnej i środkowej Eu-
ropy sprawdzimy, który z rozważanych testów wykazuje najwyższą moc w testowaniu za-
leżności ekstremalnych.  

Słowa kluczowe: testowanie niezależności, współczynnik zależności w ogonie rozkładu, 
teoria wartości ekstremalnych, funkcja połączeń (copula). 
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