
Wrocław University of Science and Technology

Safety and Trustworthiness of Deep Learning
in Computer Vision – With Application of
Out-of-Distribution Detection Techniques

By

Kamil Szyc

Doctoral Thesis

Supervisor:
Henryk Maciejewski
PhD, DSc, Assoc. Prof.

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Faculty of Information and Communication Technology

Department of Computer Engineering

Wrocław, V 2022

Kamil Szyc, Safety and Trustworthiness of Deep Learning in Computer Vision – With Application
of Out-of-Distribution Detection Techniques, V 2022

supervisor:
Henryk Maciejewski, PhD, DSc, Assoc. Prof.

location:
Wrocław

date:
V 2022

I have dedicated this thesis to my wonderful, beloved wife Dorota and children
Jakub and Zofia. Thank you for all your love and support. I cherish every

moment with you.

I would like to express my gratitude to my supervisor Henryk Maciejewski PhD,
DSc, Assoc. Prof., for his guidance and insightful comments in completing this

thesis.

I would like to thank my parents, Maciej and Monika, for inspiring me and
igniting my passion for knowledge.

I would also like to send my appreciation to my brother Michał, Tomasz
Walkowiak, Ph.D., family and friends. Without their valuable opinions, ideas,

and numerous discussions, the research would not have been accomplished.

Kamil Szyc
V 2022, Wrocław

A b s t r ac t

Although the newest computer vision models achieved impressive accuracy, further
challenges in the problem of image classification still exist. Due to the broad applications
of these algorithms in real-life, improving security and trustworthiness seems to become
the most important task nowadays for researchers.

There are many challenges and threats to deep learning approaches connected with
the above. One of them is susceptibility to natural and adversarial attacks. The network
can be easily fooled with special kinds of images. The goal of adversarial attacks lies in
preparing new images by adding additional unique noise that forces the network to point
out some class with high certainty despite the image not presenting that class. Images that
do not belong to any known classes - however, the network returns high certainty results
for them, can be considered as natural attacks. Another challenge is the robustness of the
network. The robustness is the ability of the network to classify similar (but not within
the same distributions) images to the training examples – for instance, working with extra
distortions like with rotated images, with different weather conditions (e.g., fog, rains), or
obscured by some object. The robustness is also the ability to return similar outputs for
similar inputs, increasing the stability of the response. It connects with the next challenge -
interpretability. Modern models work like "black boxes", so it is impossible to interpret the
factors influencing the outputs. However, we - people - would like to understand why the
network responds in that way to get to know the principles.

All of the above can be connected to one of the most important threats, in our opinion –
the close-set nature of classification. The artificial network usually is forced to choose one
winning class, while there is no "I do not know" or "unknown" class. Often the classifier
returns a high certainty answer to a random label (from a human perspective). When
we will "open" the model by adding the ability to detect unknown data distribution, we
increase the safety of the ML model.

The main thesis of this dissertation is that the safety and trustworthiness of AI models
can be assured only when the models can distinguish between known and unknown
data - therefore, we showed and thoroughly researched the Out-of-Distribution detection
techniques. Still, there are no clear conclusions and recommendations in the literature on
which methods are most successful for a given recognition problem. Furthermore, our
research suggests that the best method depends on pairs of known and unknown samples.
However, the OoD samples are unknown by their nature. In this thesis, we looked at OoD
from a practical perspective. The safety and trustworthiness models must work as open-set
classification – we focused on how to force classic close-set models to be OoD aware. Our
contributions are as follows.

We analyzed the selected popular OoD methods. We showed there is no best OoD
approach, and it should depend on the tested ID and OoD pair. We showed limitations and
analyzed the assumptions of the Extreme Value Machine (EVM) algorithm and instability
of parametric models based on MultiVariate Normal (MVN) distribution, i.e., using the
Mahalanobis distance, in high dimensional data. We showed that the nonparametric,
density-based LOF approach performs better than based on MVN or logits in many cases.
We see a lack of comparison between LOF and other benchmark methods in the literature.

We showed the efficiency of the OoD method based on large-scale (e.g., the high image
resolutions or the high number of known classes) dataset benchmarks. Many OoD methods

v

vi abstract

are evaluated only on a low-scale dataset, which is insufficient in real-life problems. We
conclude that the OoD methods based on logits work poorly, and Mahalanobis is slightly
worse compared to other methods on a large-scale. The LOF seems to be the most stable
method.

We noticed the significant influence of the feature extraction strategy on improving
the efficiency of OoD detection. The standard method uses only Global Average Pooling
(GAP). However, various approaches can focus on different components (e.g., on edges,
patterns, or whole objects), so for different pairs of ID and OoD, different feature extractors
can be useful in separating data. We recommend it as a new hyperparameter. We showed
that reducing the size of feature vectors leads to severe efficiency deterioration for many
methods. The LOF-based methods seem to be the only method we recommend using
together with dimensional reduction.

We showed that OoD detection can filter many adversarial examples. Moreover, we
recommend choosing a different feature extraction strategy than GAP (notice that the GAP
is the base for the classifier) - it may improve the efficiency of detecting attack samples.

We showed the importance of proper data augmentation techniques in OoD detection
problems and robustness.

We researched the problems that occur with unknown examples of detection. We
analyzed the problem with instability and experimented with repeatability of the OoD
detection methods – and concluded that results in literature should be taken with caution.
The slightly different model state can change the OoD method’s efficiency drastically.
Moreover, we showed the mismatch between the image and feature space - i.e., similar
images (in our human understanding) can generate distant features, and images from
different classes can be close to each other in feature space. We conclude that the common
usage of near and far OoD examples definitions is inaccurate.

Keywords

Image Classification – Computer Vision – Out-of-Distribution Detection – Open-Set
Classification – Deep Learning – Robustness – Security and Trustworthiness of AI –
Features Extraction Methods – Adversarial Attacks – Convolutional Neural Networks

S t r e s z c z e n i e (A b s t r ac t - Po l i s h Ve r s i o n)

Najnowsze modele wizyjne osiągają imponującą dokładność, jednak wciąż istnieją kolejne
wyzwania w problemie klasyfikacji obrazów. Szerokie zastosowanie takich modeli w
praktycznych projektach sprawia, że obecnie poprawa bezpieczeństwa i wiarygodności
sztucznej inteligencji wydaje się najważniejszym zadaniem dla badaczy.

Z powyższym zagadnieniem wiąże się również wiele innych wyzwań i zagrożeń. Jednym
z nich jest podatność na ataki naturalne i typu adversarial (z ang. adversarial attacks). Sieć
można łatwo oszukać za pomocą specjalnych obrazów. Celem ataków typu adversarial
jest przygotowanie nowych obrazów poprzez dodanie dodatkowego unikalnego szumu,
który zmusza sieć do wskazania wybranej klasy z dużą pewnością, mimo że obraz nie
przedstawia tej klasy. Obrazy, które nie należą do żadnych znanych klas, a mimo to sieć jest
pewna swojej błędnej odpowiedzi nazywamy atakami naturalnymi. Kolejnym wyzwaniem
jest krzepkość (z ang. robustness) sieci. Krzepkość to zdolność sieci do klasyfikowania
obrazów podobnych do przykładów treningowych - na przykład obrazów, które zostały w
pewien sposób zniekształcone. Przykładem takich zniekształceń mogą być obrócone zdjęcia,
zdjęcia zrobione w różnych warunkach pogodowych (np. we mgle lub w deszczu) lub
gdy główny obiekt jest zasłonięty. Krzepkość to także zdolność do zwracania podobnych
wyników dla podobnych danych wejściowych, określana także jako stabilność odpowiedzi.
Łączy się to z kolejnym wyzwaniem - interpretowalnością. Współczesne modele działają
jak ”czarne skrzynki”, więc nie da się zrozumieć czynników wpływających na wyniki. My
- ludzie - chcielibyśmy jednak zrozumieć, dlaczego sieć reaguje w ten sposób, aby poznać
zasady jej działania.

Wszystko to można powiązać z jednym z najważniejszych, moim zdaniem, zagrożeń –
klasyfikacją w zbiorze zamkniętym. Sztuczna sieć jest zazwyczaj zmuszona do wyboru
jednej zwycięskiej klasy, podczas gdy nie ma klasy ”nie wiem” lub ”nieznane”. Często
klasyfikator zwraca odpowiedź o wysokim stopniu pewności do losowej (z ludzkiego
punktu widzenia) etykiety. Gdy ”otworzymy” model, dodając możliwość wykrywania
nieznanego rozkładu danych, zwiększymy bezpieczeństwo modelu ML.

Główną tezą tej rozprawy jest to, że bezpieczeństwo i wiarygodność modeli sztucznej
inteligencji można zapewnić tylko wtedy, gdy modele te będą umieć rozróżnić dane znane
od nieznanych - dlatego też pokazałem i dokładnie zbadałem techniki wykrywania danych
nieznanych (z ang. Out-of-Distribution, OoD detection). Wciąż jednak w literaturze nie ma
jednoznacznych wniosków i zaleceń dotyczących tego, które metody są najskuteczniejsze.
Co więcej, przeprowadzone w tej pracy badania sugerują, że najlepsza metoda zależy od
pary danych znanych i nieznanych. Jednakże dane nieznane są z natury nieokreślone,
co sprawia, że problem jest trudny. W tej pracy skupiono się na praktycznym podejściu
do klasyfikacji w zbiorze otwartym. Bezpieczne i wiarygodne modele muszą działać
jako klasyfikatory otwarte - skupiłem się na tym, jak zmusić klasyczne modele, aby były
świadome danych nieznanych. Poniżej opisany jest najważniejszy wkład tej pracy.

Dokładnie przeanalizowałem wybrane metody wykrywania danych nieznanych.
Wykazałem, że nie ma najlepszej metody, a jej wybór powinien zależeć od badanej pary
znanych i nieznanych danych. Znalazłem ograniczenia i zbadałem założenia metody EVM
oraz niestabilność modeli parametrycznych opartych na wielowymiarowym rozkładzie
normalnym (z ang. MultiVariate Normal distribution, MVN) tj. wykorzystujących odległość
Mahalanobisa. Nieparametryczna metoda LOF oparta na gęstości w wielu przypadkach

vii

viii streszczenie

sprawdza się lepiej, niż metoda oparta na MVN lub bazująca na odpowiedzi z sieci (z ang.
logits). W literaturze niestety brakuje porównań metod typu LOF z innymi.

Sprawdzono skuteczność metod wykrywania danych nieznanych w dużej skali (np.
obrazy z dużą rozdzielczością czy bazy danych z dużą liczbą klas znanych). Wiele metod
jest ocenianych jedynie na zbiorach danych w małej skali, co jest niewystarczające w
przypadku rzeczywistych problemów. Pokazałem, że metody oparte na odpowiedzi z
sieci działają słabo, a metoda Mahalanobisa nie działa tak dobrze. LOF wydaje się być
najbardziej stabilną metodą.

Zauważyłem znaczący wpływ metody ekstrakcji cech na poprawę skuteczności
wykrywania danych nieznanych. Klasycznie wykorzystuje się jedynie metodę GAP (z ang.
Global Average Pooling). Jednak inne podejścia mogą skupiać się na innych elementach
obrazu (np. na krawędziach, wzorach lub całych obiektach), więc dla różnych par danych
znanych i nieznanych, różne ekstraktory cech mogą być przydatne w separacji danych
znanych i nieznanych. Zaproponowałem dobór ekstrakcji cech jako nowy hiperparametr.
Ponadto sprawdziłem wpływ redukcji rozmiaru wektorów cech. Metody oparte na LOF
wydają się być jedynymi metodami, przy których taka redukcja ma sens.

Pokazałem, że przy użyciu metod służących do wykrywania danych nieznanych można
odfiltrować wiele przykładów ataków typu adversarial. Zalecam wybór innej strategii
ekstrakcji cech niż GAP (cechy GAP są wykorzystane przez klasyfikator) - może to
poprawić skuteczność wykrywania.

Wykazałem, że dobór odpowiedniej techniki rozszerzania danych (z ang. data
augmentation) wpływa znacząco na efektywność metod wykrywa danych nieznanych i
krzepkość sieci.

Zbadałem również problemy występujące przy wykrywaniu danych nieznanych. Przede
wszystkim zbadałem problem niestabilności omawianych metod - doszedłem do wniosku,
że wyniki podane w literaturze należy traktować z ostrożnością. Nieco inny stan modelu
może drastycznie zmienić skuteczność metody. Ponadto wykazałem możliwą rozbieżność
między przestrzenią obrazów a przestrzenią cech - tj. podobne obrazy (w naszym ludzkim
rozumieniu) mogą generować odległe cechy, a całkowicie różne obrazy mogą być bliskie
sobie w przestrzeni cech. Powszechnie stosowane definicje przykładów danych nieznanych
bliskich (z ang. near OoD) i dalekich (z ang. far OoD) są nieprecyzyjne.

Słowa Kluczowe

Klasyfikacja obrazów – Widzenie komputerowe – Wykrywanie danych nieznanych –
Klasyfikacja w gupie otwartej – Głębokie uczenie – Bezpieczeństwo i wiarygodność
sztucznej inteligencji – Metody ekstrakcji cech – Ataki typu adversarial – Konwolucyjne
sieci neuronowe

C o n t e n t s

Abstract v
Acronyms ix

I Introduction and Background

1 Introduction 3
1.1 Motivation . 3
1.2 The Research Problems Formulation . 5
1.3 Document organization . 8

2 Background 9
2.1 Review of Deep Learning . 9

2.1.1 Types of Deep Architectures . 9
2.1.2 Popular Techniques Used in Deep Learning 16

2.2 Convolutional Neural Networks for Computer Vision 22
2.2.1 Introduction . 22
2.2.2 Popular Images Datasets . 22
2.2.3 CNN Layers . 23
2.2.4 Important CNN models . 25
2.2.5 Mobile Models . 35
2.2.6 Contrastive Learning . 38
2.2.7 Detection, Segmentation and Key Points Estimation 38
2.2.8 Image Retrieval . 41

2.3 Challenges . 45
2.3.1 Out-of-Distribution Detection . 45
2.3.2 Adversarial examples . 51
2.3.3 Trustworthiness of AI . 55

II Research

3 Research 59
3.1 Introduction and Chapter Plan . 59

3.1.1 Research Limitations and Assumptions 62
3.2 Complexity of the OoD Problem . 62

3.2.1 Simple Example to Demonstrate the Complexity of OoD Detection
Problem . 63

3.2.2 Extending the Simple Example by Adding New CNNs Models and
the Mahalanobis Method . 65

3.2.3 Comprehensive Comparison of OoD Methods for the Resnet-101 . . 67
3.2.4 Applying OoD Methods to Large-Scale Images 70

3.3 Analysis of Assumptions of Chosen Ood Methods 76
3.3.1 Discussion on the Mahalanobis . 77
3.3.2 Discussion on A Simple Unified Framework for OoD 80
3.3.3 Discussion on Extreme Value Machine(EVM) 84

3.4 The Influence of Features on OoD Detection 85
3.4.1 Effect of the Feature Extraction Method on OoD Detection 86
3.4.2 Effect of the Feature Reduction . 93

ix

x acronyms

3.4.3 An Impact of Data Augmentation Techniques on the Robustness and
OoD Detection . 98

3.4.4 Testing the Sensitivity of the OoD Detection Based on the CNN
Model State . 106

3.4.5 Easy and Hard Subsets for OoD Detection 111
3.4.6 OoD Detection for Adversarial Attacks Protection 118

III Summary

4 Summary 127
4.1 Summary . 127
4.2 Conclusions . 129
4.3 Future Works . 130
List of Figures 133
List of Tables 133

Ac ro n y m s

AI Artificial Intelligence

AUC Area Under Curve

AUROC Area Under Receiver Operating Characteristic curve

AUPR Area Under the Precision and Recall curve

CNN Convolutional Neural Network

DNN Deep Neural Network

DTACC Detection Accuracy

EVM Extreme Value Machine

EVT Extreme Value Theory

FFNN Feed Forward Neural Network

GAN Generative Adversarial Network

GAP Global Average Pooling

GMP Global Maximum Pooling

GPU Graphics Processor Unit

ID In-Distribution

ILSVRC ImageNet Large Scale Visual Recognition Challenge

LSTM Long Short-Term Memory

MLP MultiLayer Perceptron

ML Machine Learning

MVN MultiVariate Normal distribution

OoD Out-of-Distribution

RL Reinforcement Learning

RNN Recurrent Neural Network

SOTA State Of The Art

TNR True Negative Rate

TPR True Positive Rate

xi

Part I

Introduction and Background

1
I n t ro du c t i o n

1.1 Motivation

Computer vision is nowadays one of the most important areas of computer science.
Although a few years ago, processing images and videos on a large scale was a real
challenge, now - thanks to the rapid development of artificial intelligence (AI) - we can
achieve impressive results. There are numerous applications of this technology: in self-
driving cars, in automated convenience stores (without cashiers), in-camera systems used
in modern cities, or security analysis in factories and construction sites - e.g., detecting if
everyone is wearing on a helmet or a vest. Nowadays, we can come across such solutions
in our daily life. Whether we like it or not, computer vision algorithms can make decisions
for us and contribute to the safety of our lives.

We have achieved such a level of technological advancement thanks to the development
of hardware (i.e., modern graphics cards) and new algorithms (i.e., the branch of machine
learning called "Deep Learning"). It allowed us to create models for solving most image
computer vision (and other AI) problems - often achieving better performance than
humans.

Following the history of the development of deep learning image classification
algorithms, we can see rapid progress. The results achieved by the algorithms are usually
presented as the accuracy on popular benchmarks - like the ImageNet. The goal is to
classify each image never seen before to one of the available classes - there are 1000 classes
in the ImageNet. The AlexNet[123] performed 63.3% accuracy, the ResNet[87] 78.6%, the
Dual-Path Networks[39] 81.4%, the EfficientNet-B7[244] 84.4%, and one of the best current
models the FixEfficientNet [250] achieved 88.5%. The 90%[173] threshold has already been
reached, thanks to additional approaches. The vision algorithms are usually based on
Convolutional Neural Networks, which are the focus of this dissertation. However, new
concepts (like the Transformers[54] or the MLP-Mixer[248]) have become more popular
nowadays. We want to focus on the image classification, which is a basis for other computer
vision problems.

Although the newest computer vision models achieved impressive accuracy – however,
further challenges in the problem of image classification still exist. Due to the broad
applications of these algorithms, improving security and trustworthiness has become the
most important task for researchers.

Safety and trustworthiness are very vast terms[101]. Safety is the invariance of a
classifier’s outcome to perturbations within a small neighborhood of an original input.
Trustworthiness ensures that the model works as expected and safely – moreover, the user
should be able to understand the returned value.

There are many challenges and threats to deep learning approaches in practice. One
of them is susceptibility to natural and adversarial attacks. The network can be easily
fooled with special kinds of images. The goal of adversarial attacks lies in preparing new
images by adding additional unique noise that forces the network to point out some
class with high certainty despite the image not presenting that class. Images that do not
belong to any known classes, however, the network returns high certainty results for
them, can be considered as natural attacks. Another challenge is the robustness of the

3

4 introduction

network. The robustness is the ability of the network to classify similar (but not within
the same distributions) images to the training examples – for instance, working with extra
distortions like with rotated images, with different weather conditions (e.g., fog, rains), or
obscured by some object. The robustness is also the ability to return similar outputs for
similar inputs, increasing the stability of the response. It connects with the next challenge -
interpretability. Modern models work like "black boxes", so it is impossible to interpret the
factors influencing the outputs. However, we - people - would like to understand why the
network responds in that way to get to know the principles.

All of the above can be connected to one of the most important threats, in our opinion –
the close-set nature of classification. The artificial network usually is forced to choose one
winning class, while there is no "I do not know" or "unknown" class. There can be serious
problems when the network sees the object class for the first time. Often the classifier
returns a high certainty answer to a random label (from a human perspective). When
we will "open" the model by adding the ability to detect unknown data distribution, we
increase the safety of the ML model.

We believe that solving the above problems lies in understanding the representations of
features. Numerous experiments show that features generated by deep neural networks are
not robust enough. During the learning phase of the networks, the global loss is minimized.
However, usually, in the loss functions, researchers do not consider anything except correct
classification. Due to the above, we do not know how the networks treat unknown or
adversarial examples and how the final features are represented. The goal is to improve
the ability to detect samples from unknown distribution networks without retraining the
models.

The close-set nature of classification poses severe threats to the security and
trustworthiness. The standard CNN models are vulnerable to such problems. The solution
for the above could be allowing networks to use the "unknown" class. This new label can
also be used for outputs for adversarial attacks. The methodology for this is called open
set classification or the Out-of-Distribution detection technique. The problem is not new,
but nowadays - when the accuracy of networks is high enough - it is a real challenge. The
popular papers in this field usually suggest "one best solution", but as we showed below,
proposed solutions work well only for specific cases. The problem of OoD detection is not
so trivial, and the final results depend on many factors.

The typical OoD approach is as follows. There are two data sets: train and test. However,
the testing set can contain both known (same classes as in the training set) and unknown
(Out-of-Distribution) examples of images. The goal is to create a classifier that can deduce
which images from test sets are known – based only on the training set and the classic
(with close-set nature) image classification model.

Since there are no clear guidelines in literature for the optimal way to detect OoD
examples, we analyzed the effectiveness of OoD in the context of the network architecture,
various benchmark data sets (treated as both: known and unknown data), methods of
choosing features from the network, post-processing of these features, or OoD algorithms
themselves.

Our study aimed to understand how currently used Out-of-Distribution methods work,
find gaps in popular approaches, and propose suitable recommendations. Finally and
above all, we aimed to improve network security and trustworthiness.

1.2 the research problems formulation 5

1.2 The Research Problems Formulation

The classic - close-set - nature of CNNs and the fact that they are vulnerable to adversarial
examples can be a real threat in real-life situations. The main motivation to undertake this
research comes from an in-depth analysis of literature and noticing that detection of out-
of-distribution examples can help with above issues. The area of this research is connected
with many other machine-learning fields as architectures of artificial neural networks,
global and local features extraction methods from the networks, adversarial attacks,
understanding how the networks make decision boundaries, and the Out-of-Distribution
detection techniques. The goal was to improve network security and trustworthiness by
proposing new methods, improving existing ones, and researching new paths.

As the literature explains and our experiments confirmed, there is no one OoD strategy,
which works well for all cases. We believe the reason for that lies in how features generated
by the networks are represented. Working with high-dimensional data (usually more than
1000 dimensional) and limited examples (usually up to a few thousand per class) is a real
challenge.

We researched the Out-of-Distribution detection problem in computer vision. We showed
the weakness of currently used methods and pointed the direction of further improvements.
First, we focused on the influence of the effectiveness of OoD and the decisions which
have to be undertake - we need to choose which OoD method, which CNN architecture,
which features extraction method, or which metrics to evaluate. We tested a variety of
configurations, also working on large-scale data. Moreover, we analyzed the assumptions
of the chosen OoD detection methods. Knowing the limits of each method is important
in the context of trustworthiness. Next, we focused on feature representation showing
that the proper features obtained strategy might follow to improve OoD results. We
showed the mismatch between semantic and feature space - similar images (in our human
understanding) can generate distant features, and images from different classes can be
close to each other in feature space. We tested OoD detection methods as one of the defense
approaches against adversarial attacks.

The following specific research problems are addressed:

1. We analyzed the effect of key parameters for the OoD detection procedure, which
have a stronger impact on the effectiveness.

We discussed, among others, the evaluation metrics, dataset benchmarks for known
and unknown data, CNNs model architectures, feature extraction strategy, and
differences in OoD methods.

2. We analyzed the effectiveness of the OoD detection methods based on operating
principles.

OoD methods can be divided into different operation modes. We checked if methods
- based on multivariate Gaussian distribution, logits, probability of inclusion, or
non-parametric density-based ones - have some advantages over others.

3. We showed there is no best OoD approach.

We examined the effect of different distributions of unknown data, such as noise
(randomly generated images) or images similar to the In-Distribution. We postulated
(by being in line with the current literature) that there is no best OoD approach for
all problems. We confirmed that the best suitable OoD method depends on the pair
of the known and unknown sets of images. Therefore, the goal should be to choose
the proper OoD strategy based on the analysis of the features extracted from DNNs.

6 introduction

4. We analyzed the impact of the network (architecture and its state) as the data
representation generator.

Various models allow building decision boundaries in different ways. It suggests that
different close-set models can work differently with OoD methods.

5. We analyzed the influence of models with different accuracy in terms of the
efficiency of OoD detection methods.

A closed classifier is used for feature generation, so the intuition suggests that the
model with higher accuracy should increase the OoD detection efficiency.

6. We analyzed the OoD detection methods using large-scale data.

By large-scale data, we mean, i.e., a large number of training samples, a high
number of known classes, and high image resolutions. Algorithms applied in real-life
problems require working on these data types – however, they are not commonly
tested in the literature. Different OoD methods can work differently in large-scale
problems.

7. We analyzed the assumptions and limitations of the popular OoD methods.

It is necessary to verify if the input data for OoD methods fulfilled their assumptions.
Moreover, the features from the CNNs are high-dimensional (+1000D), which is
a challenge. We analyzed the assumptions and limitations of two popular OoD
methods: based on the Mahalanobis distance and Extreme Value Theory.

8. We checked the influence of the feature extraction strategy on OoD detection.

To the best of our knowledge, other papers focusing on OoD detection problems use
only Global Average Pooling as default feature extraction technique. We proposed
adding a new hyperparameter to choose the proper extraction strategy. It can increase
OoD efficiency due to various approaches that can focus on different components
(e.g., on edges, patterns, or whole objects), so for different pairs of ID and OoD,
different feature extractors can be useful in separating data.

9. We analyzed the effect of the feature reduction on the efficiency of OoD detection.

The features obtained from the CNNs are high-dimensional (+1000D), which can
be a problem for many OoD detection methods. We reduced the dimensions of
the features to check the influence of this operation on the efficiency of the OoD
detection.

10. We analyzed the influence of image augmentation on the efficiency of OoD
detection.

The training images are the basis for learning (by the networks) on how to build
feature representation to maximize the ability to distinguish the known classes. Using
the proper augmentation strategy should improve the model robustness and OoD
detection, what we have verified.

11. We analyzed the stability and reproducibility of OoD methods.

Most research presents results based on a few benchmarks using a few models. We
observed a lack of stability and reproducibility in the literature. We checked the
stability of the OoD models based on the same model architecture with similar
close-set accuracy, but slightly different hyperparameters. Moreover, we analyzed
and showed the behavior of many OoD approaches during the training phase.

1.2 the research problems formulation 7

12. We analyzed the mismatch between images and feature representations.

The DNNs can generate features from images contrary to our human intuition - i.e.,
similar images (in our human understanding) can generate distanced features, and
different images can be close to each other in feature space. We showed mismatch
for many images in image and feature space, which can be the source of incorrect
behavior of OoD methods. We show that this mismatch occurs regardless of models
or approaches to feature extraction. This observation guided us to make special
subsets that are hard or easy in the context of OoD detection.

13. We analyzed OoD methods in terms of defenses against adversarial attacks.

We suggest that adversarial attacks can be distinguished from known image
distribution by using OoD methods. Moreover, we noticed that classifiers are based
on the Global Average Pooling. It leads us to the idea of changing the feature strategy
to improve this defense approach.

Our main contributions can be formulated as the following points:

1. We showed limitations and analyzed the assumptions of the Extreme Value Machine
(EVM) algorithm.

2. We showed instability of parametric models based on MultiVariate Normal (MVN)
distribution, i.e., using the Mahalanobis distance in high dimensional data. This
characteristic of this method is the limitation of this popular approach.

3. We showed that the nonparametric, density-based LOF approach performs better
than based on MVN or logits in many cases. We observe a lack of comparison
between LOF and other benchmark methods in the literature.

4. We showed the efficiency of the OoD method based on large-scale dataset benchmarks.
We conclude that the OoD methods based on logits work poorly, and Mahalanobis is
slightly worse compared to other methods on a large scale. The LOF seems to be the
most stable method.

5. We showed that the correctly chosen feature extraction strategy can improve the
efficiency of OoD detection. The standard method uses only Global Average Pooling
(GAP). However, we recommend it as a hyperparameter, while various approaches
can focus on different components of images.

6. We showed that reducing the size of feature vectors leads to severe efficiency
deterioration for many methods. The LOF-based methods seem to be the only
method we recommend using together with dimensional reduction.

7. We showed that OoD detection can filter many adversarial examples. Moreover,
we recommend choosing a different feature extraction strategy than GAP - it may
improve the efficiency.

8. We analyzed the problem with instability and experiments repeatability of the OoD
detection methods – and conclude results in literature should be taken with caution.
The slightly different model state can change the OoD method’s efficiency drastically.

9. We showed the mismatch between the image and feature space - i.e., networks can
generate features from images contrary to our human intuition. We conclude that
the common usage of near and far OoD examples definitions is inaccurate.

8 introduction

10. We showed there is no best OoD approach, and it should depend on the tested ID
and OoD pair.

11. We showed the importance of proper data augmentation techniques in OoD detection
problems and robustness.

The main thesis of this dissertation is that the safety and trustworthiness of AI models
can be assured only when the models can distinguish between known and unknown
data - therefore, we showed and thoroughly researched the Out-of-Distribution
detection techniques.

1.3 Document organization

This work is organized as follows. Next, chapter 2 is a review of basic terms and techniques
used in deep learning. The end of this chapter is focused on describing in detail the main
methods used in our research. We focused - among others - on CNNs architectures, feature
extraction methods, out-of-distribution techniques, adversarial attacks, and challenge
problems occurring in current deep learning algorithms. The theory introduced in these
sections should be sufficient to understand all issues raised in this dissertation.

We described in detail our research in chapter 3. We presented achieved results. We
argue that there is no universal method to solve the Out-of-Distribution detection problem
and propose recommendations based on our experiments.

Chapter 4 is the summary of our work. We present here our final thoughts and future
works.

2
Bac k g ro u n d

This chapter is divided into three parts.
The first part, presented in section 2.1, is focused on a general review of deep learning

types of networks, such as classic NN, CNN, GAN, or RNN. Next, we presented standard
techniques necessary to successfully design and train modern models dealing with issues
such as optimization, regularization techniques, and others.

The second part is focused on CNNs for computer vision - see section 2.2. We described
popular benchmark datasets, layers used in CNNs, and popular model architectures. We
also illustrated specific computer vision issues such as object detection, architectures for
mobile (and edge) devices, contrastive learning, or image retrieval. We also described
popular feature extraction methods used later in our research.

The last part was the starting point of our research. We showed the challenges, which
in our opinion, are one of the most important in machine learning nowadays. These are
Out-of-Distribution detection, defenses against adversarial attacks, and interpretability
and trustworthiness of AI. All of our research is strongly related to the above challenges.

2.1 Review of Deep Learning

Technically, deep learning is just using artificial neural networks with more than one
hidden layer. Nowadays, networks contain millions of neurons within even thousands
of layers, and each layer is specifically designed for a particular problem. The key idea
of this type of machine learning algorithms is extracting high-level features from raw
data - in contrast to classical approaches, where engineers prepare features by hand. Deep
learning allows working with complex data such as images, music, video, or texts wherein
during the training phase, the network "learns" how "dog", "cat", "poem", "rock song", or
"swimming action" looks. Based on thousands or millions of examples, these networks can
extract key features from input data to "understand" them.

There are many problems where these networks can be used. The basic is a classification
problem. However, many other problems also exist (also dedicated to the specific input
data type), like image retrieval, image generation, object detection, image segmentation,
text generation, text translation, or market stocks prediction. Moreover, for each type of
data, different types of layers can be used - for instance, convolutional layers for images,
transformers for text, or LSTMs for time-series data.

Thanks to the rapid development of technology, and hence more available input data
and better graphic(or tensor) cards, the networks can be bigger and trained on more data
in less time. The deep networks can achieve the best results in nearly all benchmarks
datasets for all kinds of data. That is the reason for their popularity.

2.1.1 Types of Deep Architectures

2.1.1.1 Classic Neural Network

The history of artificial neuron networks is long. Already in 1943 [155] McCulloch and
Pitts proposed a method of how neural networks could work and modeled a simple one

9

10 background

using electrical circuits. Later in 1958, Rosenblatt introduced an idea of a perceptron
[193] - a basic unit similar to the nowadays artificial neuron. However, this simple
construct was successfully used in some applications, e.g., ADALINE – researchers can not
overcome many challenges like the XOR problem. The first breakthrough was developed
backpropagation algorithm[200] (used until today) then started joining artificial neurons
in networks creating feedforward neural networks (Feed Forward Neural Network (FFNN)) /
multilayer perceptron (MultiLayer Perceptron (MLP))) with two or more layers. This type of
network can solve complex problems, and it is used nowadays too. There were introduced
many other variants of neural networks like Hopfield network [94], Boltzmann machine
[2], or self-organizing map [121] – however, we will not focus on these.

Although FFNNs work quite well, they were not commonly used because of their
limitations. They need much input data to successfully learn patterns and computer
resources to speed up the learning process. Because of that, the other algorithms were
more often used, like SVM or decision trees. This changed in the 2010s when graphics
processor units (Graphics Processor Units (GPUs)) were well developed, and they were
available for large datasets. The era of deep learning has been started [129]. Technically, a
deep neural network is any network with more than one hidden layer, but in practice, quite
new network architectures for different types of input data have occurred. Nowadays, we
use Convolutional Neural Networks (mostly for images data), Recurrent Neural Networks
(mostly for text and time-distributed data), Generative Adversarial Networks (mostly
for generating new data), or Reinforcement learning (mostly in robotics). The standard
FFNN is still used, for example as a classification part in Convolutional Neural Network
(Convolutional Neural Network (CNN)) or in Transformers [255].

yk = φ

(
m

∑
j=0

wkjxj

)
(2.1)

The artificial neuron used in FFNN is a simple block. Each input x is multiplied by
the corresponding weight w and summed up. The result is passed through a non-linear
function known as an activation function φ (see more in section 2.1.2.3.1). Without the
activation function, the whole network could be transformed into a single neuron. The
FFNN is based on layers that are based on these artificial neurons. The output for neuron
k can be presented as in equation 2.1.

2.1.1.2 Convolutional Neural Network

The main work described in this document is based on Convolutional Neural Networks,
so these are described in much more detail in the separate section 2.2.

2.1.1.3 Generative Adversarial Network

Generative Adversarial Network [72] was designed in 2014 by Ian Goodfellow and his
colleagues. They were a real breakthrough in Machine Learning (ML), allowing generate
completely new images (fake ones - never seen before) based on a set of real examples.
Although the generated images were low resolutions initially, it is now possible to create
images that are difficult to distinguish from real ones.

The classic approach is a game between two models: a generator and a discriminator.
The generator is responsible for generating new images using an initial vector (usually
Gaussian noise) as input. The discriminator should guess if the input of this model is a real

2.1 review of deep learning 11

or fake image. Two models learn simultaneously, competing with each other. Both models
can improve themselves thanks to the loss calculated from the discriminator’s output. Over
time, the generator can create better and better models, and the discriminator is more
strict in judgment. Usually, both models are CNNs where the generator uses transposed
convolution [148]

One fo the first significant improvement for the standard Generative Adversarial Network
(GAN) was DCGAN (deep convolutional)[178], which use CNNs for both submodels. This
paper’s authors proposed a number of improvements - the mains are: using Leaky ReLU
in the discriminator, replacing pooling operations with convolutional stride, eliminating
fully-connected layers, and using batch normalizations.

The important paper was Wasserstein GAN[6] where was proposed a new method to
calculate the loss using Wasserstein distance. This method makes gradients smoother, so
in consecrations, it can improve stability when training the model.

The BiGAN[51] (or AliGAN[57]) paper kept - in the generator part - the standard
mapping from latent representation to the image but also added a new submodel -
the encoder. The encoder makes inverse mapping - from data to the latent vector. The
motivation is to create a network that can learn rich representations as in unsupervised
learning applications. The discriminator should guess its output based not only on an
image but also on the latent vector. For real images, this vector is generated by the encoder.

The next improvement was focused on increasing fake image resolutions. The authors
of ProGAN[114] showed how to generate big resolution images by splitting generating
into phases. First, the 4x4 pixels images are generated. Next - based on these images - the
bigger ones are produced with a resolution of 8x8. Next, the whole process is repeated -
up to achieve a 1024 x 1024 pixels resolution. Each phase adds new convolutional layers to
the generator to increase resolution and to the discriminator to decrease them. Increasing
image resolutions allow for adding new essential features step by step - for instance, for
generating a new face image, the shape or the color of hair are produced in the first order,
and features like eye color or freckles in the final phases. Based on this idea, the authors
also proposed StyleGAN [113] showing how to control specific attributes on images like
smiling or hair color using adaptive instance normalization (AdaIN). Next, solutions like
BigGan [23], and later BigBiGan [52] focused on improving particular parts of the image
using Self-Attention Module (convolutional layers with 1x1 filters and softmax operations),
allowing the removal of unwanted artifacts. Consequently, make it possible to generate
even more realistic images.

The GANs can also be used for transforming one image into another. There are a few
influential papers in this area. The CycleGAN [291], which allows the changing style of
images keeping content using two sub-GAN models - first transforming the image to
the new one with the unique style and next by repeating this operation making cycle.
The Pix2Pix [105] allows mapping input image to output image, for instance, edges to
full images, or synthesizing photos from label maps. To the discriminator is provided
both source and the target image (fake or real), and the goal is to determine whether the
target is a believable transformation of the source image. Another model is SPADE[169]
allows control style and content using semantic image synthesis. The authors used a
spatially-adaptive normalization to perform generating realistic photo images.

2.1.1.4 Recurrent Neural Network

The classic artificial neural networks can not work well with data changing over time like
texts, videos, market stock charts, or music. To be able to analyze these types of data,

12 background

the networks have to have memory blocks. The memory is used to remember the past to
interpret the currently analyzed part of data with a proper context. The way to add this
memory block is recursion. The network’s output is reused as input. The network itself
decides which essential features referred to in the past are worth keeping, and that data
is called the "hidden state". The networks which use this technique are called Recurrent
Neural Networks.

Figure 2.1: RNN - image from [60]

2.1.1.4.1classic rnn The RNN is well known for detecting [200]. The model is looped
using three types of layers: the input layer (x), the hidden layer (h), and the output layer (o).
Because the model works with data changing over time, each input is denoted with time
(t). The hidden state and the output can be calculated as shown in equation 2.2. The W, U,
and V are trainable weights, and b is the bias. The σ is an activation function – usually, the
sigmoid is used. The RNN can unfold as shown on figure 2.1. The unfolded version of the
RNN easily explains how to train that kind of network - exactly the same as the classic
one - layer by layer using the backpropagation technique.

a(t) = Wh(t−1) + Ux(t) + b1

h(t) = σ(a(t))

o(t) = Vh(t) + b2

(2.2)

We do not have to use all outputs. The RNN problems can be divided as follows: (1)
one-to-one (vanilla neural network) - e.g., images classification, (2) one-to-many - e.g.,
generate captions for images, (3) many-to-one - e.g., Texts classification, or (4) many-to-
many - e.g., texts translation. Depending on the above dividing, we can use a different
number of output layers (usually all or only last).

The RNN can have a problem with a long memory (keeping in a hidden state distant in
time information). The reason for that is the vanishing gradient problem. Because of that,
the RNN often makes decisions based mostly on a few last pieces of data.

2.1.1.4.2lstm The Long Short-Term Memory[93] is a type of RNN. The authors tried
to solve the vanishing gradient problem of classic RNN by adding an additional hidden
state denoted as c for long memory. The idea is to use the additional gates (see figure 2.2)
to control what could be forgotten (forget gate f), what should be remembered from the
current input (input gate i), and what should be returned as output (output gate o). The

2.1 review of deep learning 13

equation 2.3 explains how to calculate each gate. The W and U are trainable weights, and
b is the bias, the ∗ is element-wise multiplication.

Figure 2.2: LSTM - image from [60]

i(t) = σ(Wih(t−1) + Uix(t) + bi)

f (t) = σ(W f h(t−1) + U f x(t) + b f)

o(t) = σ(Woh(t−1) + Uox(t) + bo)

˜c(t) = tanh(Wch(t−1) + Ucx(t) + bc)

c(t) = f (t) ∗ c(t−1) + i(t) ∗ ˜c(t)

h(t) = o(t) ∗ tanh(c(t))

(2.3)

2.1.1.5 Transformer

A Transformer is a breakthrough model primary for natural language processing
introduced in a paper called "Attention is All You Need" [255]. The Transformer is based
on an Attention mechanism (primarily introduced in [12]) that allows the network to
remember long memory, usually in a better way than RCN, including LSTM and GRU. The
Transformer does not process input sequences but all inputs simultaneously. It does not
need a labeled dataset because it learns the input by absorbing the correlations appearing
in the analyzed data. A good survey of the attention and the Transformer is presented in
[33].

The Transform model is based on encoder-decoder architecture and self-attention. The
Encoder maps input data to the representation vectors. These vectors with outputs from
the previous step are passed to decoders, which generate a new output. The Transformer
can use many encoder-decoders, where each can learn new attention representation. It
uses a Multi-Headed Attention based on self-attention, where Query and Key are split for
heads. See the figure 2.3 to see details.

The Transform is the base for numerous other models. The most popular solutions are
BERT[49] (also based on ELMo[172]), GPT[179], GPT-2[180], GPT-3brown2020language,
ROberta[146], ALBERT[127], BART[134], XLNet[277] and many others. Each of them uses a
different Encoder, Decoder, or only one of them with different objectives and modifications
in architecture. The detailed comparison can be found here[143].

The Transformer is also used in computer vision recently[115]. We can split two directions
pure attention models like key ViT[54], SASA[183], DeiT[251], Swin Transformer [147] and
Convolution + Attention Models like CvT[268], BotNet[228], CoAtNet[47]. Although ViT

14 background

Figure 2.3: The Transformer - image from [255]

has shown impressive results with huge JFT 300M training images, its performance still is
behind CNNs in the low data number regime.

2.1.1.6 Reinforcement learning

Reinforcement learning is one of the more vast areas in machine learning. Due to the
ability to learn nearly any task based on trial and error techniques, machines, robots, and
bots are allowed to solve human-level tasks. These techniques were used in such popular
(even from mainstream media) solutions as overcoming humans in games like GO[221], or
StarCraft [257] or developing algorithms for self-driving cars[77].

The idea of reinforcement learning is as follows. An agent (in which we want to learn
new things) can perform actions in the environment. The environment rewards each action
and informs the agent about new observations. Thanks to the trial and error technique,
the agent becomes better and better without using any additional data. The agent can be
based on Value Function and Policy. The policy describes the agent’s decision-making
process - for each state, it refers to the action that the agent should perform in that state. A
value function represents a value for an agent to be in a certain state or, in other words,
it describes the expected reward from a given state. The RL methods can be based on
optimization of the policy (the policy-based RL), the Value Function (the value-based RL),
or both (the actor-critic RL). The key papers in this area are as follows.

One is Deep Q-Learning[159][85][264], which tries to use deep learning to model the
state-action-value function Q(S,A) (mimic Q-table) based on the Bellman equation. Another
is Policy Gradient. In contrast to the Q Learning approach, where the goal is not to
learn the state-value or the state-action-value function but directly learn the parametrized

2.1 review of deep learning 15

policy – the Policy Gradients approach seeks to optimize the policy space directly. The
key papers for Policy Gradient are [160][212][211][213][82]. Deep Deterministic Policy
Gradient[220][64] is an algorithm that learns both Q function and policy. It uses off-policy
data and the Bellman equation to learn a Q function and then uses a Q function to learn
policy. Distributional Reinforcement Learning [15][46] is where the main idea is to work
directly with the full distribution of the random return received by the reinforcement
learning agent rather than with its expectation. In contrast to Model-Free RL[162][126] is
approach, where optimal behavior is obtained by learning a model of the environment.

There are many fields in RL, which are key to well understanding the present models,
such as: Exploration[95][27], Transfer and Multitask RL[201][107], Hierarchy[256], or
Memory[207].

2.1.1.7 Other Architectures

Deep learning is a vast area. There are numerous methods for specific tasks, and in this
document, only selected ones are described. Nevertheless, some techniques are noteworthy
to point out.

Autoencoder[122][14] is a fundamental approach used in many applications like
dimensionality reduction, information retrieval, image processing, or machine translation.
They are a type of unsupervised learning network. The idea is to encode the input to a
latent space vector, which can be decoded to the same input again. Next, it is possible to
operate on this latent space vector.

Back the well-known concept was presented in the paper called MLP-Mixer[248], where
authors based only on MLP layers created a model that achieved results comparable to the
state-of-the-art methods. First, the input image is split into image patches (presented in
ViT[54]). Next, each of them is passed by MLP into features, next the set of MixerLayer is
used, where each layer uses layer normalization, transposing, skip-connections, and main
parts - the two MLP, finally the output is passed to the classifier.

Worthy to note are Capsule neural networks[202], which focus on improving CNNs
by adding special structures called "capsules". These capsules allow networks to be more
stable with perturbations. For example, they can "understand" the "Picasso problem" -
when the image contains all the right parts but with an incorrect spatial relationship. The
classic CNNs ignore this relationship.

A graph neural network is a type of network designed for graph data structures[208] –
the complexity of graph data challenges existing machine learning algorithms. The primary
methods in this area are DeepWalk[171] and GraphSAGE[83]. The good survey is provided
by [270].

2.1.2 Popular Techniques Used in Deep Learning

2.1.2.1 Optimization Techniques

The networks can learn thanks to tuning their weights. The typical learning process - called
supervised learning - can be split into a few parts. First, the network has to process inputs.
These inputs are transformed into features and classified into predicted labels. Beyond
the training examples, the correct labels are also available. They are used to calculate loss
between predicted and proper labels that are made by the network. Next, these errors can
be back-propagated to each artificial neuron in the network, so as a result, there is known
how each weight should be corrected. However, it is not so simple because adjusting the

16 background

network, for one example, can distort others. To deal with this problem the optimization
techniques[196][226] are used. An optimizer is responsible for modifying weights in the
network to finally find a global minimum loss (minimal average errors for all examples) to
provide the most accurate results possible.

2.1.2.1.1gradient descent The Gradient Descent is the most basic optimization
algorithm. It modifies weights(θ) by computing the gradient of the cost function (J(θ)) on
the whole training set. The cost function is from the value of the loss function, which is
back-propagated to all layers one by one. The algorithm is presented in the equation 2.4.

θnew = θold − α ∗ ▽J(θold) (2.4)

The α is the learning rate. It controls how quickly the model adapts to the problem -
how much the weights should be changed to minimize the cost function. If this parameter
is too high, the network can never reach global minima due to unexpected behavior. If the
parameter is set to low, then the network can not reach the minima in a reasonable time.

The main disadvantage of this approach is the fact that it cannot reach the global
minimum (may trap in the local minimum), and working with a huge dataset is, in
practice, impossible because it works to the whole dataset at once.

2.1.2.1.2stochastic gradient descent One of the most popular techniques of
optimization weights is the Stochastic Gradient Descent. The idea is simple: modify the
weights based on single input (not all at once like in the Gradient Descent). The variant
of this method is the Stochastic Mini-Batch Gradient Descent, where inputs are joined
in batches, and the weights are modified based on loss from each batch. The inputs for
batches are randomly picked, making the whole process more irregular – for each batch,
the network has to fit onto a little other data. The SGD allows modification weights more
frequently with high variance and fluctuations in loss functions. In consequence, it can
find a new minimal and reach the global one.

2.1.2.1.3modifications of sgd It is possible to improve algorithms based on the
Gradient Descent. One of the popular techniques is adding a momentum term. See
equation 2.5. The parameter γ is usually set to 0.9. The momentum helps reduce variance
and soften convergence. It accelerates convergence in the right direction and reduces
fluctuations.

Vnew = γvold + α ∗ ▽J(θold)

θnew = θold − Vnew
(2.5)

The extension of the above idea is using Nesterov Momentum (see equation 2.6). It is
similar to traditional momentum, except that the update is performed using the predicted
update’s partial derivative rather than the derived variable’s present value. The traditional
momentum can be a good method, but if γ is too high, the algorithm may not meet local
minima and may continue to grow – the Nesterov help with that.

Vnew = γvold + α ∗ ▽J(θold − γvold)

θnew = θold − Vnew
(2.6)

2.1 review of deep learning 17

There is possible to change the learning rate during training progress - this technique
is called Learning Rate Schedules. The idea is to reduce the α according to a predefined
schedule. If we are close to finding the global minimum, there is a good idea to decrease the
size of the “steps” to keep reducing total loss even more. There are varieties of possibilities.
We can do that considering: [137] time-based decay, step decay, exponential decay, or cosine
decay.

2.1.2.1.4adaptive gradient descent algorithms There are a series of optimizers
where the learning rate adapts to the data. The Adagrad [56] performs larger updates for
more sparse parameters and smaller updates for less sparse parameters. However, it can be
a problem with the monotonic learning rate – working with deep neural networks can lead
to being too aggressive and stopping too early. The Adadelta[282] and RMSpropcite[125]
aim to reduce the aggressive monotonically decreasing learning rate. The Adam[118] is an
extension of the RMSProp optimizer by adding the momentum.

The Adam is usually faster than SGD. However, many researchers willingly use SGD
with momentum, arguing that for a longer training time, it can converge better. A good
comparison with practical use in deep learning is here [290].

2.1.2.2 Regularization Techniques

Regularization techniques are all methods that are designed to make the network more
generalized. The network can start overfitting during the learning process, allowing it
to "remember by heart" the inputs and outputs. It is a bad situation. Learning aims to
generalize the training input data to create the overall model, which can work well on new
- never seen before - examples. Numerous techniques are used to do that, for example, data
augmentation, where we artificially add new input data, L1 or L2 regularization, where
we do not allow the network to set a high weight in the network, or dropout, where we do
not allow the network recognize classes by based on the same features. There are detailed
descriptions below for chosen regularization techniques.

2.1.2.2.1l1 and l2 regularization L1 and L2 normalization are some of the most
popular regularization techniques. The idea is to add an additional loss that keeps a
network’s weights as relativity small (ℓtotal_loss = ℓloss(y,ŷ) + λ ∗ ℓregularization_term). Keeping
them small allows the model to be simpler and fight to overfit. The goal is penalties for
large weights because, in another case, the model is likely to learn the statistical noise in
the training data. In that case, the model works unstable on new unseen data and becomes
sensitive to changes to the input. Using the L1 or L2 normalization, we need to balance the
model’s final accuracy and low complexity - we can control it by setting the λ (often, it is
as called the regularization rate parameter).

To calculate the L1 term, we need to sum the absolute values of the weights (L1(w) =

|w1|+ |w2|+ ... + |wn|). To calculate the L2 term (also known as weight decay), we need to
sum the squared values of the weights (L2(w) = w1

2 + w2
2 + ... + wn

2). For deep learning
models, usually, the L2 norm is chosen. That is because L1 tends to set wights to be zero,
while L2 does not - because the curve for L2 becomes flat near zero. In most cases, we do
not want to reduce features (set some weights to 0) but keep features codependent.

2.1.2.2.2dropout A dropout[229] is a technique where some neurons do not take part
in a training phase - to be more precise, randomly selected neurons are ignored. In practice,
a part of the input values is randomly set to 0 - usually, a parameter can be set to adjust

18 background

the probability that some inputs can drop out. The key here is not allowing the network to
choose a limited number of neurons, which are crucial to successfully classifying. In that
case, these neurons become too narrow a specialization. These important neurons may be
dropped out during training, and in that case, the network should still deal with it. Thanks
to the dropout technique, the importance of the neurons are more or less equally divided
into all neurons. Hence, the network is more stabilized. In the testing phase, all neurons
are set as activated.

Figure 2.4: The dropout technique - idea from [229]

Nowadays, the dropout is not so popular to use. First, this technique effectively works
with multi-weight dense networks, while nowadays, the classifier part on CNNs usually
has only one layer - thanks to using techniques like global average pooling. Second,
this technique does not work so well with convolutional layers. It happened because
convolutions usually have fewer parameters. It can be important too to keep the most
significant values relations for convolutions.

2.1.2.2.3data augmentation Data augmentation[218][170][170][219] is a technique
that allows an increased number of training examples by modifying the already available
samples. The key is changing the image so that the meaning of the image will not be
changed, but the pixel values will - for the model perspective, it will be a new sample. The
most straightforward ideas are rotating, flipping, scaling, cropping, or modifying color
space by manipulating specific RGB channels. Thanks to this technique, the network during
the training phase can see more differential examples, therefore, can better generalize each
class representation. Well-used data augmentation can increase final classification up to a
few percentage points. However, each modification should be well thought out. When the
modification is too strong, the networks probably would not be able to focus on the most
important features, and then this technique can even harm.

There are also more advanced techniques. One of them is mixing images[284][279] -
get two images and mix them together by using proper proportions, usually 1:1. The
important thing is that when we choose two different classes, the true label also should be
changed, respectively. Another method is random erasing, where parts of images should
be obscured - usually by changing the selected pixels to the value 0 or 1. The next method
is using GAN or Neural style transfer to generate modifying or completely new images.
We can also add some noise - random or even adversarial ones.

2.1 review of deep learning 19

Figure 2.5: The example of data augmentation from [218]

Data augmentation is a successful regularization technique that can easily increase
robustness and the ability to generalize the networks. The popular frameworks for deep
learning have already implemented modules for basic methods.

2.1.2.2.4normalization layers The deep networks can be exposed to a problem
of internal covariance shift. The models needs to constantly adapt to data distribution
that changes in subsequent network layers. These layers have to adapt to a different
distribution of input data values, which makes the learning process slower. Moreover, the
gradient points to a way of changing parameters assuming that other layers don’t change.
In fact, we update all layers simultaneously, so the training is constantly chasing a moving
target. The solution for this can be the normalization of input data for each layer. The
batch normalization[104] is one of the first papers which suggest a solution for the above
problem. Moreover, this approach makes input more smooth, so it points to the theory of
"Loss and Gradient Smoothening". This theory assumes that by using "gradient descent", it
is easier and faster to train equally distributed features.

µ =
1
n

i=1

∑
n

xi

σ2 =
1
n

i=1

∑
n
(xi − µ)2

x̂i =
xi − µ√

σ2

ŷi = γx̂i + β ≡ BNγ, β(xi))

(2.7)

Batch normalization is a technique of normalization by subtracting the mean and
dividing by the standard deviation calculated from mini-batch examples. The formula
is presented in the equation 2.7. Moreover, there are additional learnable parameters γ

20 background

and β that are allowed to move and scale data to match values with data properties and
make better predictions. The batch normalization is a powerful technique that speeds up
the training process, makes input data well (Gaussian) distributed, makes the training
phase more stable, and regularizes the network. The power of this technique is the fact
that by using the initiation of network parameters randomly and allowing train only γ and
β parameters, the network still can be well trained - it is well demonstrated in the paper
"Training batchnorm and only batchnorm: On the expressive power of random features in
cnns"[62]. On the other side, the authors of [66] critic this method and propose substitutes.
However, the community still willingly uses BatchNormalization.

The batch normalization contributed to the uprising of other normalized methods
as well. These other strategies are usually used when the classic BatchNormalization
can work badly - i.e., for recurrent neural networks, when small mini-batches are
used, or for specific tasks such as image generation. The popular technique is Layer
Normalization[9], where authors focus on using it in recurrent neural networks to establish
the hidden states. In contrast to Batch Normalization, this method does not become
dependent on mini-batches, which was problematic in RNNs. The next one, Weight
Normalization[203], allows decoupling the length of weight vectors in the deep models
from their direction, consequently improving optimization by using popular optimizers
like SGD. The alternative for Batch Normalization may be GroupNormalization[269],
where authors divide channels into groups and normalize within each group using the
mean and variance. This strategy is beneficial when the mini-batch size can not be large
due to limitations (i.e., memory limit). Instance Normalization[254] is a technique where
normalization is applied for each channel for each sample independently - handy for
models for image generating.

Figure 2.6: The normalization methods from [269]. The blue pixels are normalized by the same
mean and variance.

2.1.2.3 Activation Functions and Weight Initialization

2.1.2.3.1activation functions Activations functions are a key element in each
artificial neural network. They transform and shape the final output of each artificial
neuron. Using non-linearity functions allows the networks to compute non-trivial problems.
There are many kinds of these functions divided depending on empirical performance,
range, or possibility to continuously differentiable. The most popular activation functions
are sigmoid, tanh, ReLU [163], Leaky ReLU [150], Swish [182], and Softmax. Their functions
are pretested in the table 2.1.

[232] presents summary of them. The sigmoid and tanh functions used to be prone
to the vanishing gradient problem while using them – nowadays are not commonly
used. Moreover, the sigmoid function can "zigzag" during training because it is not zero

2.2 convolutional neural networks for computer vision 21

Name Function - f (x) Derivative - f ′(x)

sigmoid σ(x) = 1
1+e−x f (x)(1 − f (x))

tanh tanh(x) = ex−e−x

ex+e−x 1 − f (x)2

ReLU

0 if x < 0

x if x ≥ 0

0 if x < 0

1 if x ≥ 0

Leaky ReLU

0.01x if x < 0

x if x ≥ 0

0.01 if x < 0

1 if x ≥ 0

Swish x
1+e−x

1+e−x+xe−x

(1+e−x)2

Softmax exi

∑C
c=1 exc

-

Table 2.1: Commonly used activation functions

centered. The ReLU is the most popular choice for deep-learning algorithms. However,
there can appear a problem called the "dying ReLU problem". Due to this problem, some
modifications exist. The Leaky ReLU can be one of them with a simple solution. For really
deep networks, the Swish function is willingly used. The Softmax function is used to
estimate final predictions in classification tasks and the Transformers layer.

2.1.2.3.2weight initialization The initial weights of the artificial neural networks
should be random. Historically[73] a Gaussian or uniform distributions were used with
small ranges. The initial values have an effect on the optimization procedure and on the
ability of the network to generalize. The more sophisticated techniques which allow a
"good start" was introduced. These new methods are slightly more effective during the
training networks phase. They are designed based on the structure of the model, mainly
based on used activation functions. For example, for sigmoid or tanh functions, the Xavier
Weight Initialization[71] is used, and for ReLU-like functions, the He Weight Initialization.

Nowadays, the He Weight Initialization is often the default option. Here the weights
are the Gaussian probability distribution - G(µ = 0, σ =

√
2/n) where n is the number of

inputs to the node.

2.2 Convolutional Neural Networks for Computer Vision

2.2.1 Introduction

Convolutional Neural Networks are primarily designed for the image classification
problem. Nowadays, they are used in nearly all problems in computer vision and even for
other types of data. The main idea is to transform the image from the pixel distribution to
feature distribution using convolutional operations. Each layer transforms the distribution

22 background

more and more to be more separable by the given object classes. As a result, they
generate high-level features from the input image, which can be easily used for the
final classification.

2.2.2 Popular Images Datasets

There are many image datasets available publicly. However, only a few of them are used as
a benchmark for image classification tasks. The most popular is the ImageNet 2012, which
even nowadays is the main challengeable set among others. Nearly all best CNN models
(or Transformers lately) are pre-trained on this dataset. Nowadays, there are opinions that
the ImageNet is too small for modern solutions [231]. The community also found many
lapses in it [17]. Due to the above, modern state-of-the-art models often use more extensive
sets for training and only retrain themselves to the ImageNet 2012. On the other side,
there are also small datasets like the MNIST, the SVHN, or the CIFARs used to quickly
prototype new ideas or perform analysis in chosen areas in CNNs.

2.2.2.0.1mnist The MNIST is a small dataset that contains 70.000 monochromatic images
split into two subsets, "train" and "test" in a ratio 6:1. These images represent handwritten
digits split equally into 10 categories. The size of each image is 28x28 pixels. Nowadays, it
is not commonly used for simple tests due to small training times compared to other sets.

2.2.2.0.2svhn The Street View House Numbers - SVHN is a "more complex" MNIST
dataset. The images are colored, with bigger sizes (32x32 pixels), and they are from the real
world. There are 73.257 digits for training, 26.032 digits for testing, and 531.131 additional
ones. This dataset is not so commonly used. However, we used it in our experiments.

2.2.2.0.3cifar The CIFAR are two datasets the CIFAR-10 and the CIFAR-100 contain
60.000 images split respectively into 10 or 100 classes. There are two subsets, "train" and
"test" split in a ratio 5:1. All classes are excluded in both datasets. The images are colored
(RGB) with 32x32 pixels size. Humans can easily recognize the classes. For example, the
CIFAR-10 contains the following categories: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. The datasets - especially CIFAR-10 - are commonly used for
prototyping new ideas.

2.2.2.0.4imagenet As mentioned before, the ImageNet [48] is the most popular
benchmark dataset for image classification tasks. There are many versions of it. However,
the ImageNet-2012 is the main one. All important models present their results with this
dataset. The datasets contain more than 14 million images split into 20.000 categories.
However, we focused only on data from the annual ImageNet Large Scale Visual
Recognition Challenge (ILSCRC), where "only" 1.000 labels are used. To better assign
images, the WordNet schema to categorize objects was used. The images are colored with
high resolutions. In this work, we used two versions of this dataset from different years
of the ILSCRC - the ImageNet-2012 as the main one and the ImageNet-2010 with chosen,
excluded classes.

2.2.2.0.5places365 The Places365[289] is an images dataset containing more than 10
million images comprising 400+ unique scene categories. The images are colored and
high-resolution. The dataset contains three macro-classes: Indoor, Nature, and Urban. It is
well-diversified - for instance, the class bedroom contains images from spare bedrooms,

2.2 convolutional neural networks for computer vision 23

teenage bedrooms, or romantic bedrooms, or the class coast can split into rocky coast,
misty coast, or sunny coast.

2.2.2.0.6imagenet-o The ImageNet-O[92] is a specially designed dataset containing
images different from the classic ImageNet. The images can be traded as natural adversarial
images due to the high certainty of the returned results from popular CNN models. The
authors’ goal was to build datasets for challenging the models’ robustness and Out-of-
Distribution methods.

2.2.2.0.7jft-300m There are many controversial with the JFT-300M [231] dataset. Over
300 million images allowed achieved great results by networks. However, Google (the
authors) did not make it publicly available. The results based on this dataset are not
reproducible. However, the community trusts Google enough to believe that set exists.
The company shared the network’s weights, which somehow proved the effectiveness of
training models on that large number of images.

2.2.3 CNN Layers

2.2.3.1 Convolutional Layer

The following description is based on one of our paper[238]. The convolution operation is
a central block for all CNNs. It allows extracting low-level features from images and using
them later to recognize a specific object in mages. Thousands and sometimes millions
of such operations have to be performed to classify an image into a given class. They
are stacked together in layers allowing recognition of high-level features: starting from
detecting edges, through textures, patterns, parts, and ending with objects. All of these
features are propagated forward layer by layer to the classification part in CNNs. As a
result, they can correctly classify images.

For a given input and filter/kernel, the convolution operation for point x, y can be
calculated as the sum of the Hadamard product of the input sub-tensor with kernels.
For more channels, the same operations have to be applied over all channels separately.
The final output is an entrywise sum of them. Sub-tensor is point x, y and surrounding
elements in that way, the point x, y is in the middle. The "sliding window" method is
applied to use convolution over the whole image.

More formal, to calculate the convolution operation (without bias and with default
parameters like stride or dilation rate) using the kernel K with size (2n + 1, 2n + 1, nC) (nC
refer to channels) for the input tensor I for a point (x, y) set convolution window size with
the same size as the kernel (2n + 1)× (2n + 1)× nC, assume the index of the center of
convolution window to (0, 0), place the center of the convolution window over the input
point (x, y) and calculate the output for point (x, y) - see equation 2.8.

conv(I(x, y)) =
n

∑
i=−n

n

∑
j=−n

nC

∑
k=1

I(x + i, y + j, k)K(i, j, k) (2.8)

In practice, we use convolutional layers, which use convolutional operations to extract
features from input tensors by making other tensors. Thanks to that, each layer better-
generalized images passing from pixel level to global features. Parameters can easily
control the size of the output tensor. The number of channels is controlled by repeatedly
repeating the same operation but with different kernels. Other parameters can control

24 background

the width and height. The main one is kernel size, which aggregates the small part of
the input tensor to be processed by convolutional operation. Usually, the odd number is
set for both width and height to make convolutions with kernel sizes 1x1, 3x3, 5x5, and
so on. Nowadays, the most popular variants are kernels 1x1 and 3x3. Another important
parameter is the strides of the convolution along with the height and width. The other
parameters are padding (adding extra padding to easily calculate the values of the edges)
or dilatation (keep window size separated), the possibility to add bias, or choosing the
activation function.

2.2.3.2 Pooling Layer

The other important layer is pooling. The main goal of this operation is to reduce the
number of calculations by decreasing the width and height of the tensor. It uses the sliding
window method (typically with size 2x2 and stride 2), where one number is chosen for each
window. Usually, the maximum or average strategy was used to choose these numbers.
When we use the typical configuration, the width and height is reduced by half each.
Usually, there is one pooling operation after a series of convolutional layers.

Besides increasing the performance, the pooling operation can be a good influence
on generalization by making the network more invariant to small translations of the
input. Each strategy also has a different impact on the network. The average one seems
to be a good choice because of trying to keep the whole "knowledge" from the network.
The maximum one propagates only the crucial information further. The strategy is a
hyper-parameter, and usually, the decision is made by network designers.

Nowadays, the pooling operations are not widespread, and reduction is used by other
techniques like convolutional with extra stride.

2.2.3.3 Fully Connected Layer

The fully connected layer or dense layer is usually a classic FFNN. This part of the whole
network is the classifier part - earlier layers are sometimes called feature generations. A few
fully connected layers were used for many years, making the network prone to overfitting
(due to the number of parameters). Using so many dense layers was necessary because all
the last convolutional layer neurons were flatted, so the vector had a large size. There were
numerous neurons, so the network needed more layers to "understand" this vast vector.
Nowadays, thanks to an operation like global average pooling, we use only one layer (with
the number of neurons equal to the number of classes), which significantly simplifies the
model while keeping the same or even better results.

2.2.3.4 Global Pooling

Global Pooling operations are designed for converting the convolutional operation output
(with 3d dimensionality) to vectors (1d dimensionality). They generate one response for
every feature map. In practice, they replace fully connected layers in CNN, thanks to
making connections between feature maps and categories. Moreover, these operations are
parameters-free, making the network less prone to overfitting. Consequently, passing the
resulting vector directly into only one dense layer (with the number of neurons equal to
the number of classes) is possible. See the subsection 2.2.8.1 for more details.

2.2 convolutional neural networks for computer vision 25

2.2.4 Important CNN models

2.2.4.1 LeNet-5

The LeNet-5[130] model from 1998 was the beginning of CNNs. Lecun et al. proposed a
simple (from today’s point-of-view) network with two convolutional layers, a pooling layer,
and fully-connected ones. The architecture of the model is presented in figure 2.7. They
used it to classify small 32x32 pixels gray-scale images of handwritten characters. Although
this network’s basic mechanisms are still valid, the new approach was not noticed by
the scientific community. Mainly because of not well-developed computer resources and
consequently inability to make calculations on larger scale images.

Figure 2.7: The LeNet-5 architecture from [130]

2.2.4.2 AlexNet

The AlexNet[123] model was a real breakthrough for image classification problems. It
overcame more than ten percentage previous the state-of-the-art[205] solution in ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) in the top-5 ranking. It achieved 63.3%
accuracy in the top-1 ranking and 84.6% accuracy in the top-5 ranking using 60 million
parameters, which had to be trained. The AlexNet model became a base architecture for
many future models over the years.

This model was based on LeNet-5 architecture but implemented many improvements.
First, the authors used the ReLU activation function instead of a hyperbolic tangent (tanh),
which allowed the training network a few times faster and helped with the vanishing
gradient problem for deep networks. The next improvements were using max-pooling
layers instead of average ones, using Local Response Normalization (which, as it turned
out later, did not help), and the dropout method. The model works with input images
224×224×3-dimensional. The authors used data augmentation by extracting random patches
and horizontal reflections to reduce overfitting. The architecture is shown in the figure 2.8.

The AlexNet model could be trained as a deep network because of using GPUs. This
technology was developed mostly thanks to video games, and before, it was not possible
to train in such a network in response time. Moreover, the authors needed two GPUs and
six days to train the model, which was another challenge. Modification of the architecture
by sharing weights between two sub-networks allowed running model using two GPUs
simultaneously.

Another impressive contribution was using Euclidean distance on the feature
vector(neurons from the last hidden layer) to find similar images in the dataset. Thus,
Krizhevsky et al. showed how to use CNN in the image retrieval problem.

26 background

Figure 2.8: The AlexNet architecture from [123]

2.2.4.3 ZFNet

Although ZFNet[283] has not improved the accuracy of the CNN models, this paper
significantly influenced the deep learning area. The authors modified the AlexNet model’s
hyper-parameters with, among others, changing kernel size from 11x11 to 7x7 for the first
convolutional layer and stride from 4 to 2. Finally, this model achieved 85.3% accuracy in
the top-5 ranking.

However, this model’s most crucial contribution was a better understanding of how
CNNs works using visualization methods. They noticed that the first convolutional layers
could recognize simple patterns. The deeper layers of the network can recognize more
complex features like, e.g., the eyes and noses of dogs, and finally, in full-connected layers,
high-level features of the object in images. The authors proposed Deconvolutional Network
to make their visualization.

Zeiler and Fergus also proposed an occlusion sensitivity method to show which fragment
of the input image is crucial to classify the image successfully. This idea is the base for
future class activation mapping methods.

In this paper, the transfer learning idea was also presented. Using knowledge from the
first convolutional layers in a pre-trained network can also be applied to another image
classification problem - working with another dataset. Only the last parts of models are
required to retrain to work with new data successfully.

2.2.4.4 Network In Network

The "Network In Network" paper[139] presented two significant ideas. The first was
convolution with a 1x1 filter size, which adds extra nonlinearity and decreases the number
of channels in the network, thus reducing operations. The second contribution is Global
Average Pooling, which reduces the number of neurons in fully-connected layers. The
classification part - fully-connected layers - of CNN often takes up most of the memory of
CNNs. Using a new pooling regularization technique allows for optimizing this part of
the network.

2.2.4.5 VGG

The VGG[222] models are a group of CNN architectures. These are characterized by
specific rules of how to create them. Usually reducing the width and height of the next
layers’ dimensions by half using pooling operations, the number of channels is doubled.
Keeping this structure, the authors could make the deep network up to 19 convolutional

2.2 convolutional neural networks for computer vision 27

layers and achieved 74.5% accuracy in the top-1 ranking and 92.0% in the top-5 ranking
using huge(even today) 144 million parameters.

The network used only filters with a small(3x3) receptive field. Using these convolutional
layers with small size reduces the number of parameters and adds extra nonlinearity to
the network. For example, it is possible to change one 5x5 convolution(with 25 parameters)
with two 3x3 convolutions (with 18 parameters).

The authors proposed six different configurations and tested how each of them performs.
The main conclusion is the importance of the network’s depth. The deeper network is,
the better results are given. Generally, ussually the VGG name refers to VGG-16 (model
with 16 convolutional layers) or VGG-19(model with 19 convolutional layers). The deeper
network than VGG-19 did not achieve better results due to the vanishing gradient problem.

2.2.4.6 GoogLeNet / Inception

Authors of the GoogLeNet[233] model proposed a few techniques that helped achieve
better results. The most important one is the Inception module (presented in figure 2.9).
The idea is to use many convolutional kernel sizes like 1x1, 3x3, or 5x5 on the same level
and combine them. That allows looking at parts of the input tensor with different zooming
and consequential extracting of various features. This architecture’s other characteristics
are using convolutions with 1x1 kernel size to reduce the number of operations and
auxiliary classifiers to overcome vanishing gradient problems. The authors of the network
tried to keep a balance between depth and width. That allowed achieving 69.8% in the
top-1 ranking and 89.9% in the top-5 using only 5 million parameters.

Figure 2.9: The inception block from [233]

2.2.4.7 Inception v3

The next versions 2 and 3 of Inception were introduced in the same paper[235]. The authors
focused on further optimizations. There are convolutional operations with kernel 1x1 like
in the previous version and changed convolutions with kernel size 5x5 to two 3x3. That
allowed squeezing the weights from 25(5*5) to 18(3*3*2) and furthermore adding extra
non-linearity. Next, convolutions with kernel size n*n could be changed with two with
kernel size 1*n and n*1 - for convolution 3x3, weights will be changing from 9 to 6. To

28 background

keep the network wider, not deeper, the authors decided to split 1*n or n*1 blocks. In
Inception v3, it was also used 7×7 factorized convolution. Using the above techniques
allows proposing the three Inception modules(showed in figure 2.10) and the consequential
the whole architecture.

The new Inception model also used MSprop optimizer, Batch Normalization, and Label
Smoothing Regularization. The network became a standard for many years and was eagerly
used, i.e., with a transfer-learning technique [236]. When combining all techniques, the
model Inception v3 could achieve 78.8% accuracy of top-1 ranking and 94.4% of top-5.

Figure 2.10: The three new inception blocks A(left), B(middle) and C(right) from [235]

2.2.4.8 ResNet

A real breakthrough was the ResNet[87] model, which started an era of the really deep
neural network, even up to 1000 layers. Thanks to using residual connections (called also
skip connections), overcoming the vanishing gradient problem could be possible. This
idea allows for keeping the gradient and minimalizing the chance of vanishing it. The
authors also proposed a bottleneck version of this idea with extra convolutions with kernel
size 1x1, reducing the number of operations and adding additional nonlinearity. Figure
2.11 shows how these blocks look. The network achieved 78.57% accuracy in top-1 and
94.29% in top-5 ranking using 60 million parameters and 152-convolutional layers. Furthers
models like [280] [234] [274] [100] improved this idea.

Figure 2.11: The ResNet blocks [87]

2.2 convolutional neural networks for computer vision 29

2.2.4.9 Xception

An interesting variation of the inception v3 model is Xception[42]. This architecture allows
for creating wider CNNs thanks to Depthwise Separable Convolutions. They also used
residual connections. Keeping a similar number of parameters as inception v3, a new
model can perform better accuracy - 79.0% for top-1 ranking and 94.5% for top-5 ranking.

2.2.4.10 Inception v4

In 2016 Szegedy et al.[234] presented a new kind of inception architecture - inception v4.
The main idea was further optimization of inception modules, changing hyperparameters
of the network. The authors also decided to join the inception ideas with the residual
connections[87] creating new models Inception-ResNet-v1 (based on inception v3) and
Inception-ResNet-v2 (based on inception v4). Combining both techniques allowed for
achieving 80.1% accuracy in top-1 ranking and 95.1% accuracy in top-5 ranking using 55.8
million parameters.

2.2.4.11 ResNeXt

The ResNeXt [274] paper proposed a highly modularized network architecture by
modifying the ResNet’s block. Figure 2.12 presented the main idea of this work: decreasing
the number of channels in convolutions with kernel size 3x3 with the increasing number
of those operations at the same level. By adding new parameters cardinality into the
block(repeated convolutions on the same level), authors can increase the performance of
the model 80.9% and 95.6% respectively, for the top-1 and top-5 ranking for ILSVRC data
set. There are further developments of this idea like ScaleNet[136].

Figure 2.12: (Left) A block of ResNet (Right) A block of ResNeXt with roughly the same complexity.
From: [274]

2.2.4.12 DenseNet

The residual connections [87] proposed by He et al. changed the way how to construct
CNN. This idea was developed further, and one logical extension of it is the DenseNet
model[100]. Additional skip connections (presented in the figure 2.13) were added not
only for a single block but also for the next parts of the network. That allows strengthening

30 background

feature propagation, boosting feature reuse, reducing the number of parameters, and
relieving the vanishing gradient problem. The specific architecture allows final layers to
make a decision based on all feature maps in the network, not only the last ones as in
the traditional approach. The DenseNet model can achieve 77.85% accuracy in the top-1
ranking and 93.88% accuracy in the top-5 ranking. There is a further development of that
idea and used in different problems [109][292].

Figure 2.13: More robust feature propagation flow thanks to using additional residual connections
in the DenseNet model [100]

2.2.4.13 DPN

Dual-path networks[39] are the next architecture that combines previous methods - in this
case, ResNet[87] and DenseNet[87] - enjoying both sides’ benefits. The characteristic of
the ResNet network is feature reuse, and the DenseNet keeps exploring new ones. DPN
models achieve high accuracy, small model size, low computational cost, and low GPU
memory consumption by combining both ideas. The authors also tested an exciting idea to
mix both maximum and mean global pooling described in [131]. It is worth noting that
the input size of images will be increased even up to 320 x 320 px in models from this
period. The DPN model can perform 81.38% accuracy for top-1 ranking and 95.77% for
top-5 ranking with around 80 million parameters.

2.2.4.14 PolyNet

The PolyNet[286]is an extended version of Inception-ResNet-v2 [234]. Adding the next
residual levels - in cascaded form - of the residual inception unit structure makes it possible
to obtain better results. The new blocks are presented in figure 2.14, where F and G are
abstract residual unit structure proposed in [234]. The model achieved 82.64% accuracy in
the top-1 ranking and 96.55% in the top-5 ranking.

2.2 convolutional neural networks for computer vision 31

Figure 2.14: PolyNet blocks. F and G are abstract residual unit structure proposed in Inception-
ResNet-v2 [234]. Source: [286]

2.2.4.15 SENet

Thanks to using an exciting new technique and modifying the exited earlier CNNs modules,
the Squeeze-and-Excitation Network[99] model could achieve 83.12% and 96.42% accuracy
for top-1 and top-5 scoring. That new idea was adding additional layers after the classic
blocks of CNNs. First, the output for the classic block is squeezing, and global information
is embedded. That operation allows squeezing global spatial information into a channel
descriptor using global average pooling, generating channel-wise statistics. Next, the
output from the classic block is combined with new embedding information. That idea
can be used with any classic blocks - in the paper, the Inception and the ResNet blocks
were chosen. Figure 2.15 shows the idea in detail.

Figure 2.15: Example of using SENet idea of the Inception and the ResNet blocks. [99]

32 background

2.2.4.16 NASNet

The Google Brain teams introduced NASNet [293] model, where architectural building
blocks learning for smaller datasets could be transferred and reused for the biggest ones
like ImageNet. The model’s architectures contain two types of blocks "normal cell" and
"reduction cell". Both used convolutional cells to extract features, but "normal" keeps the
feature map of the same dimension, and "reduction" reduces it by two factors. The specific
structure of these blocks is searched by the reinforcement learning search method, so the
authors do not predefine them. It was noticed that the convolutional cells discovered using
the CIFAR-10 dataset generalize well also to the bigger one. The best model generated for
ImagNet achieved 82.7% accuracy for top-1 ranking and 96.2% with top-5 ranking with
88.9 million parameters.

After running each sub-cell "normal" or "reduction," a new hidden state is put in memory.
Using Recurrent Neural Network (RNN) and Reinforcement Learning (RL), a whole structure
of a new type of cell is generated using all previous hidden states as input. That allowed
generating a complicated "tree" with many operations such as classic convolutional, Depth-
wise Convolution with different kernels, pooling, and identity blocks. An example of this
"tree" is shown in figure 1.

A new regularization technique ScheduledDropPath is also an introduction. The main
idea is to drop out of a path in the cell with some probability. That probability is linearly
increased. Tests showed that this method significantly improved accuracy.

Figure 2.16: The NASNet cells generate for CIFAR-10. [293]

2.2.4.17 AmoebaNet and GPipe

Settings hyper-parameters for Deep Neural Networks (DNNs) is not trivial task. Researchers
are looking for the best architecture testing many solutions. A team from Google Brain
decided to extend previous techniques using another ML algorithm - the evolutionary
algorithm - and, for the first time, surpasses hand designs by finding a new state-of-the-art
solution. Using this idea, the model called AmoebaNet[184] allowed obtaining 83.9% and
96.6% for top-1 and top-5 accuracy with 469 million parameters.

2.2 convolutional neural networks for computer vision 33

The search space was limited and based on the model NASNet[293]. The evolutionary
algorithm’s goal has precisely to discover the architectures of the "normal" and "reduction"
cells. The model was evolved on CIFAR-10 and then transferred to ImageNet. The example
of the blocks is presented in figure 2.17. That kind of experience is, in practice, impossible
to repeat for not very large corporations like Google due to resources limitation. There
are further developments of this idea like PNASNet[142] which used a new Progressive
Neural Architecture Search method.

Figure 2.17: The AmoebaNet model for ImageNet. From left: overall model, normal cell, reduction
cell. Source: [184]

The GPipe[102] is not a typical model but a new way to create pipeline parallelism. The
authors trained a huge 557-million-parameter AmoebaNett[184] model and attained a
top-1 accuracy of 84.4% and top-5 accuracy of 97.0%. The paper described how to adapt
the parallelism approach where more machines can be used and split input data. The data
can be split into micro-batches, and thanks to that, accelerators can operate in parallel.

2.2.4.18 EfficientNet

The authors of the EfficientNet[244] proposed a novel way how to construct CNNs. They
deeply tested the effect of model scaling with width, depth, resolution, and compound all.
Wider networks tend to capture more fine-grained features. Deeper networks can capture
more complex features and generalize new tasks well. High-resolution input images can
give more important information about the class, which has to be classified. Separate
changing these hyper-parameters give no better results than not so much wider or deeper
networks. The authors of EfficientNet proposed an easy-to-use method presenting how to
scale all these parameters and finally achieved up to 84.4% accuracy of top-1 ranking and
97.1% of top-5 with 66 million parameters. The network’s core block is MBConv, which is
a combined block from MobileNetV2[206] with a Squeeze and Excite[99] block injected
sometimes. A new active function is also used - Swish[182]

2.2.4.19 NoisyStudent

The ImageNet dataset has not had enough images for modern models. Researchers have
started to use the external dataset for the training phase. For instance, using the ResNeXt-
101[274] model trained with billions of social media images and using the transfer learning
technique achieved 85.1% and 97.5% accuracy for top-1 and top-5 ranking in ILSVRC -
details in [153].

34 background

The idea of using additional data was further developed. The NoisyStudent[273] model
uses two sub-models: teacher and student. The teacher sub-model was trained on the
classic training images and used to classify billions of unlabeled data. A new submodel -
student - use labels for the classic training set and soft labels from the teacher for initially
unknown data. The student sub-model has to be bigger than the teacher. The authors used
EfficientNets[244] as their baseline models. The final model achieved 88.4% and 98.7%
accuracy for top-1 and top-5 rankings with 480 million parameters.

2.2.4.20 BiT

The BigTransfer idea by Google Research teams shows how to transfer knowledge from
pre-trained models to new datasets, even having only a few examples per class. The
authors trained a vast network using datasets with up to 30 million images and transferred
knowledge to classic datasets like ImageNet or CIFAR-10. In BigTransfer proposed simple
rules on how to use their model on any sets, among others: use MixUp[284], prepare
a new network with the new final layer, use BiT-HyperRule - heuristic for choosing
hyperparameters for downstream fine-tuning. The bone model is based on ResNet152x4(4
times wider than the classic model) with some changes - like adding GroupNorm and
Weight Standardisation. The transferred model to ILSVRC achieved 87.54% accuracy for
top-1 ranking and 98.46% for top-5.

2.2.4.21 FixEfficientNet

In 2019 the Facebook AI Research team developed a new idea called FixResNet[249] for
fixing the train-test resolution discrepancy. The authors claim that it can improve the
performance of any CNN architecture. The key idea is to decrease the differences between
training and testing data when using data augmentation models. For instance, using the
crop method in the training phase, different parts of images are analyzed, while in the
test phase, usually only the center part. The key to a new method is split into two-part:
calibrating the object sizes by adjusting the crop size and adjusting statistics before the
global pooling operation. The fine-tunning on the last layers has to be done to apply this
method.

This method was applied to EfficientNet[244] and thanks to combine that two ideas the
FixEfficientNet[250] appears. This model can achieve up to 88.5% accuracy in the top-1
ranking and 98.7% in the top-5 ranking keeping 480 million parameters.

2.2.5 Mobile Models

Deep learning solutions are more and more popular in normal-day applications. Because
of that, some of the models have to be run on devices without powerful components like
CPU, GPU, or RAM – for example, on smartphones or using AI platforms like NVIDIA
Jetson, Google Coral, or Intel NCS. Some techniques - call them "model optimization" -
help and allow the export of the models from dedicated AI servers to mobile or edge
devices.

There are two main paths to optimize models – size reduction and latency reduction.
The advantages of smaller models are smaller storage size, smaller download size, and less
memory usage. Usually, we use the following strategy for this task: quantization, pruning,
and clustering. The goal of latency reduction is to minimize the time needed to run the
model for single data. Optimization of the models is a trade-off between size and speed
v.s. final accuracy.

2.2 convolutional neural networks for computer vision 35

The popular strategy is quantization [106]. The idea is to reduce the model’s size by using
different data types to store network weights. Usually, we replace high-cost floating-point
numbers (e.g., float32) with low-cost fixed-point numbers (e.g., int8/int16). As a result, we
achieve a smaller model and faster computational speed. The quantization can be done
during training or post-training. Of course, the post-training method is less effective, and
the final accuracy can drop, but there is no data requirement.

The pruning[18] is the task of reducing the size of the network by removing parameters.
The goal is to find the parameters which have the lowest impact on the final decision and
remove them. First, a complex over-parameterized network is trained. Then we prune it
based on come criteria - it can be done with zeros some wights of the model, making
the network more sparse. The sparse model can be compressed more effectively. The
clustering[224] gives similar benefits to pruning, so the model can be better compressed.
The idea is to group the model’s wights into clusters and then use centroid values instead
of original values.

Popular deep learning libraries such as PyTorch or Tensorflow support making the above
changes. These allow easy quantizing of the model, optimizing it, and saving in a special
format supported by the library. The library supports popular devices like mobile phones
with Android, iOS, or edge devices.

However, one of the most popular techniques is changing model architecture. By using
models from the family of the MobileNet or the ShuffleNet, there is possible to train
models with a small number of parameters and with good accuracy.

2.2.5.1 MobileNet

The MobileNet[97] is basically a simplified version of the Xception[42] architecture
optimized for mobile applications. The key is using Depthwise Separable Convolution.
First, the Depthwise convolution is used, and then another Pointwise convolution. The
figure 2.18 well presented this. The Depthwise convolution is used for each channel
separately. The convolutions with kernel size 1x1 are used to correlate outputs from all
channels - we call it Pointwise convolution. The goal of this operation is to reduce the
number of parameters and operations. For instance, where we compare classic convolution
with kernel size 5x5 (stride = 1, no padding) where the input is Tensor with shape and the
output is tensor with 256 channels, then we need 1228800 (256 ∗ 3 ∗ 5 ∗ 5 ∗ 8 ∗ 8) operations
for classic convolution and 49152 (3 ∗ 5 ∗ 5 ∗ 8 ∗ 8 + 256 ∗ 1 ∗ 1 ∗ 3 ∗ 8 ∗ 8) for Depthwise
Separable Convolution, so about 25 times fewer operations.

The MobileNet v2[206] introduced, among others, Inverted Residuals and Linear
Bottlenecks blocks. The classic residual bottleneck uses convolutional with kernel size 1x1,
next with size 3x3, and again with size 1x1. The purpose of that is to change the number of
channels in the middle convolutional to reduce operations. We can present it as a "wide ->
narrow -> wide" concept. The Inverted Residuals change it for the concept "narrow -> wide
-> narrow". In MobileNet, thanks to using Deptwise Separable Convolutions, it is possible
to make middle convolutional more effective and force it to work with a higher number
of channels. The Linear Bottencks do not use the ReLU activation function after the last
convolutional with kernel 1x1 before summing up with the input. Because ReLU ignores all
negative numbers by not using it, we can increase performance. To be precise, the authors
of this model used ReLU6, which can be denoted as ReLU6(x) = min(max(0, x), 6). It
helps with floating numbers when we use optimization techniques.

The MobileNet v3[96]introduced a few next improvements. The authors used squeeze-
and-excitation blocks known from [99] with hard swish non-linearity (h-swish(x) =

36 background

Figure 2.18: The Depthwise Separable Convolution used in the MobileNet – from [8].

x ReLU(x+3)
6) instead of sigmoid. The advantages of using squeeze-and-extraction was

described in the previous sections. The new activation function was motivated by the
advantages of using original swish and increased performance on optimized models. The
authors of this version of the MobieNet also used an efficient last stage, where three
expensive layers were dropped, with minimal influence of final accuracy.

2.2.5.2 ShuffleNet

The ShuffleNet[285] is the model which introduces the Channel Shuffle. The key idea is to
use pointwise (using a kernel with size 1x1) grouped convolution (GConv), and next shuffle
channels. The pointwise grouped convolution allows reducing the number of operations
compared to the non-grouped version. However, to increase information flow, the outputs
from each group have to be shuffle. It allows the model better fit to data within keeping
advantages of used grouped convolutions. The idea Channel Shuffle is presented in figure
2.19. The authors use three units presented in figure 2.20. The depthwise convolution is
donated as DWConv.

Figure 2.19: The idea of Channel Shuffle from [285]. a) Stacked convolutional layers with the same
number of groups. The outputs are analyzed only within the group. b) Shuffling the
features allow increased information flow when using GConv2. c) Equivalent for b)
with using Channel Shuffle.

2.2 convolutional neural networks for computer vision 37

Figure 2.20: Three units used by the ShuffleNet from [285].

2.2.6 Contrastive Learning

Contrastive learning is a method of learning the representation of data where the goal is to
keep similar inputs close to each other and dissimilar ones far - all in feature space. This
method is one of the most powerful for working with unsupervised learning, although it
can work with labeled data as well.

The authors of [43] proposed the contrastive loss, where the main idea is to work with
pairs of inputs and increase the distance between different class inputs and minimize it
for the same class. In [210] the authors proposed to use the Triplet Loss (see image 2.21),
where three inputs are given the anchor and positive (same class) and negative (different
class) examples. The goal is to minimize the distance in feature space between the anchor
and positive example and maximize with an anchor and a negative one. Working with
two pairs has a positive impact on learning the representation. In [223] generalized this
approach to include comparison with multiple negative examples.

Figure 2.21: Triplet loss idea from [210]

Working with the unlabeled data required a different strategy. The key paper is
SimCLR[35] where authors use a heavy data augmentation strategy on a single example
and treat the pair as a positive example for contrastive learning loss. Any other pairs (two
different - although augmentation - images) are treated as negative pairs. This method is
further developed e.g., in [281] or [78].

2.2.7 Detection, Segmentation and Key Points Estimation

Object detection is a task where we need to find the specific object on an image and
mark it by a bounding box (bbox). Segmentation is a task where we find the object and

38 background

mark all pixels belonging to it. Key points estimation is finding key points for the object -
examples of semantic key points are "right shoulders", "left knees", or the "left brake lights
of vehicles". A visual comparison is presented on the figure 2.22 (from 1). We can also vary
the segmentation problem on semantic segmentation, where each group of pixels marks
the specific class, and instance segmentation, where the instances of the same specific class
are separately marked.

Figure 2.22: Presentation of object detection(left), key points estimation(center), and object
segmentation(right)

Object detection is a vastly known problem. The R-CNN family is one of the first methods
which tried to solve it. The R-CNN[70] is a strategy where used selective search[253] for
generate about 2000 region proposal. Each of these is resized and passed through the
CNN(then VGG). The network decides if the passed fragment of the image is known.
Finally, the bounding-box regression is used to improve final detection. The next version
- fast R-CNN[69] - overcame the biggest problem with the previous version – passing
all-region proposals by the network independently. The authors proposed to use the RoI
pooling layer. The idea is as follows. Each image is passed through by the CNN ones, and
only the corresponding parts of values from the last convolutional operation are passed
to the final classification part. The figure 2.23 described this well. Using this method, we
can speed up the whole process because only classification is running multiple times. The
biggest weakness is the region proposal method because many proposing areas are not
worth analyzing. The faster R-CNN[190] solves this problem by using another network for
proposing areas. It must be trained separately.

Another significant family for object detection is YOLO family[188][186][187][19][259].
The key idea is to design a network in that way to analyze the image and prepare bounding
boxes at once – without using predefined region proposals. The image is resized, then
divided into S × S gird. The goal of the CNN is to return the C class probability and
prediction of B bounding boxes with confidence scores - all for each cell. In other words,
the network return tensor with size S × S × (B ∗ 5 + C). The figure 2.24 demonstrates
this. Non-maximal suppression[194] is used to fix multiple detections. The next versions
focused on improving the speed and precision of detection - the authors, among others,
added residual connections, allowed predicts at three scales (that help with detection of

1https://github.com/hampen2929/pyvino

https://github.com/hampen2929/pyvino

2.2 convolutional neural networks for computer vision 39

Figure 2.23: Fast R-CNN architecture - from [70]

small objects), improved classification with datasets with similar labels (like a person, a
woman), and in [19] used mechanism for collecting feature maps from different stages.

Figure 2.24: YOLO architecture - from [188]

Collecting feature maps from different stages is a new direction in object detection. One
of the first implementations was proposed in [140] called Feature Pyramid Networks. The
authors proposed a top-down pathway to fuse multi-scale features. It allows for better
finding small objects by first "understanding" what is on the image and then propagating
this information to the firsts layers. Later this method was further developed. In PANet
[144] added ones more bottom-up path augmentation. In EfficientDet[245] proposed
another modification (BiFPN) that helps achieve much better results in detection problems.
The figure 2.25 visualize all the above approaches.

40 background

Figure 2.25: Development of Feature Pyramid Networks - from [245]

Segmentation and key points estimation used similar methods to object detections
problem with some improvements specifically for these tasks.

The U-NET[192] is a popular method for segmentation. It used fully convolutional
networks based on autoencoders[13]. In the U-NET, each corresponding block for the
encoder and the decoder are also interconnected. There are many other improvements
of this method, such as FusionNet[176] or DoubleU-NET[110]. The Mask R-CNN [88]is
based on the R-CNN family, where authors used RoI align instead of RoI pooling - it used
bilinear interpolation to generate new feature maps. They are passed to a convolutional
subnetwork that returns binary mask and classification, which decide what class is on the
object. The PANet - as we mentioned above - extends the FPN backbone and uses a similar
approach as in the Mask R-CNN to create masks. Based on the YOLO idea, the YOLACT
[21] was proposed.

Based on U-NET, there are the solutions for keypoints estimation like [164], where
authors Stacked Hourglass Networks(similar to the U-NET) to generate a set of heatmaps
responsible for the single detection point. The CPN[38] used the FPN idea for this task.
By splitting the networks into two stages GlobalNet (localize "simple" keypoints) and
RefineNet (localize "hard" - e.g., occluded keypoints) is a successful approach for multi-
object keypoints detection. There are two main paradigms for multi-object detection: top-
down and bottom-up. The top-down paradigm first detects the object and then performs
single-object pose estimation for each detected object. The bottom-up paradigm[174][30][68]
directly looks at all the keypoint positions and then tries to belong each of them to the
object. The top-down way is more accurate and also costly due to an extra detection process
of a single object.

2.2.8 Image Retrieval

In the context of deep learning, image retrieval is a system of finding the most similar
image in the set of images based on the given query - also an image. The found image
should be similar to the query in both: the meaning and style. Typically, we train the CNN
network for a classification task and extract features for each image from the set using
this network. These features are stored. Then the same extract method is used for the
new query image. Next, all stored features are compared with the query’s features using
distance metrics like Euclidean or Cosine – the system return image, where the features
have the minimal distance to each other, which means they are the most similar. A [36] is a
good survey of the image retrieval problem using deep learning.

2.2 convolutional neural networks for computer vision 41

For the context of this research, the most crucial part is feature extraction. Before the deep-
learning era, researchers tried to use hand-crafted features[128] to compare images and
consequently solve image retrieval tasks. These methods are based on colors, brightness,
edges, or simple shapes. Next, they used more complex methods like Scale-Invariant
Feature Transform (SIFT), Speeded Up Robust Features (SURF), Histogram of Oriented
Gradients (HOG) descriptor, Fisher Vector(FV), Vector of Locally Aggregated Descriptors
(VLAD), or Bag-of-Words(BoW), often called Bag-of-Features in this context. Nowadays, we
use features extracted from CNNs. The popular methods are described in the subsection
2.2.8.1.

The modern methods of image retrieval systems use contrastive learning. The Siamese
Networks [119][177] is a popular solution. For example, the GEM used this approach -
see figure 2.26. The Siamese Networks use two identical networks (with shared weights),
two input images (i, j), and label Y with information that the images are matching or
non-matching. The network is used for extracting features for each image - often also
called the descriptor. In the training process, the authors of GEM used contrastive loss[43]
presented in formula 2.9. The f̄ (i) is l2-normalized GeM vector of image i, τ is a margin
parameter that determines when pairs of unmatched images can be ignored by the loss
– due to enough distance between pairs. The idea is simple - minimize distance for the
matching example and maximize it for non-matching.

Figure 2.26: Contrastive learning used by GEM method– from [177].

L(i, j) =

{
1
2

∥∥ f̄ (i)− f̄ (j)
∥∥2 i f Y(i, j) = 1

1
2 (max(0, τ − ∥ f̄ (i)− f̄ (j))∥))2 i f Y(i, j) = 0

(2.9)

The above was further developed. One of the most known is using triple loss
[262]. In that approach, the model optimizes matching and unmatching pairs
simultaneously - see formula 2.10. jp and jn are respectively images matching(positive)
and unmatching(negative) pairs for the image i. There are also less popular methods of
contrastive learning like quadruplet loss[37], angular loss[261], or N-pair loss[223].

L(i, jp, jn) = max(0, τ + ∥ f̄ (i)− f̄ (jp)∥ − ∥ f̄ (i)− f̄ (jn)∥) (2.10)

2.2.8.1 Feature Extraction

2.2.8.1.1 neural code One of the first image retrieval methods where CNN was used
was "Neural codes"[11]. The authors got all values from one of the fully connected layers

42 background

and treated them as feature vectors. Authors use the architecture of CNN with three fully
connected layers, and experiments showed the best results were given for the penultimate
layer. The authors proposed a final process feature vector using l2 normalization, PCA
compression with whitening[108], and again l2 normalization. That became a standard
procedure in the next solutions. The paper has also proposed another strategy for reducing
the vector size called "discriminative dimensionality reduction" - although it is not often
used nowadays. The article presents exciting conclusions, e.g., the earlier layers betters
perform with textures differences and later ones with high-level details. Although the
results were not improved compared to the existing SOTA methods (VLAD, Fisher vectors),
a new direction was developed.

2.2.8.1.2 gap and gmp The next method focused on getting features from the last
convolutional layers using global pooling methods. There are two main variants: global
average pooling(GAP) and maximum global pooling(GMP). It is a calculated mean or the
maximum value picked over a matrix for each channel independently. For tensor T with
shape (w, h, c), where w refer to width, h to height, and c to channels, we generate vector V
with shape c) where each element is calculated as 1

wh ∑w
i=0 ∑h

j=0 Ti,j,k for GAP or maxw,h
i,j Ti,j,k

for GMP for each channel independently denoted as k. The more popular is GAP. It was
first introduced in [139].

Scientists used different pooling methods like maximum, sum, or average pooling.
Different methods have different advantages – for instance, average pooling is more
invariant to the scale change since the maximum response of a feature map does not
change abruptly with the scale change.

2.2.8.1.3 spoc In 2015 it was a proposed idea[10] that expanded these methods. In
this case, the sum pooling over each channel was used for the tensor from the final
convolutional layer. According to the authors’ experience - the essential parts of images
usually are at the center of the picture. The authors decided to use additional coefficients -
weights, which help focus on the center of the image - Gaussian weighting was used for
this step. Next, the standard post-process should be done - using l2 normalization on the
descriptor vector, PCA compression with whitening, and again l2 normalization.

Often the "SPoC" name is used for global average pooling - the sum of the averages is
the sum of all the data, so the concept is still correct. For max pooling, the name MAC
(Maximum Activations of convolutions) is used.

2.2.8.1.4 gem The GEM (Generalized-Mean) [177] method is another generalized
method of global pooling. GeM is a special layer that can be parametrized, and thanks to
that, it can adjust itself. Adding the additional parameter p makes it possible to manipulate
the pooling strategy. Setting parameter p to 1 can tread GEM as SPoC [10] - global average
pooling, and to 2 as SQU - Gated square-root pooling [40] and for ∞ as maximum pooling.
This parameter can be set manually or learned during the training phase. That allows for
automating the process (learning parameters by back-propagation algorithm) and choosing
the best strategy by the network itself. A three-stream Siamese network was also used for
image retrieval tasks.

2.2.8.1.5 crow Another modification of the global pooling strategy is cross-
dimensional weighting(CroW) [112]. The features from last convolutional operation(T) is
weighted channel-wise by a weight vector β and weighted location-wise by a weight matrix

2.2 convolutional neural networks for computer vision 43

α such as T′
i,j,k = αijβkTi,j,k. Next, the sum-pooled is performed to aggregate T′ features.

Finally, the L2 normalization, PCA reduction, and again L2 normalization are performed.
After a series of experiments, the authors claimed: "It can be seen that spatial weighting

tends to boost locations for which multiple channels are active relative to other spatial
locations of the same image. This suggests that spatial weighting is a non-parametric and
computationally cheap way to favor spatial locations for which features co-occur while also
accounting for the strength of feature responses. These locations are more discriminative
as there are combinatorially more configurations at mid-ranges of sparsity."[112].

2.2.8.1.6 r-mac Next methods started to focus on local descriptors, focusing on specific
regions in images, while globals ones treat images as a whole. It can be an important
difference for tasks like image retrieval, where details are very significant. One of the first
methods was R-MAC[247]. The idea is to extend maximum activations of convolutions
over regionals of images. The input image is split into equal size regions separately for
each chosen scale - making rigid grids. For each area, the MAC method is used to calculate
the sub-feature vectors. Each sub-vectors is post-process with l2 normalization, PCA
compression with whitening, and again l2 normalization. Finally, all of them are summed
and also post-process with l2 normalization.

2.2.8.1.7 dir The R-MAC [247] was further developed by using an additional Region
Proposal Network [75]. This extra network offered regions called ROI (Region of Interest),
which are more fitted to images, giving better results. The idea is primarily used in the
faster R-CNN [190] method for object detection problems. Additionally, the DIR’s authors
used Siamese Neural Network to keep similar features closer and keep away parts that do
not match together.

2.2.8.1.8 delf The DeLF method proposes a complete framework for the Image
Retrieval problem. The authors decided to focus on local descriptors. First, they trained
CNN network, then added an attention module on top of the last convolutional layer,
which ranks each subfragment of features. There are needed to retrain the attention module.
The ranking defines which local descriptions are the most significant. They also used the
receptive fields method and image pyramid method to generate specific points from CNN.
Local descriptions direct reflect on a fragment of images thanks to the receptive field with
the image pyramid method.

Later methods focused on improving these techniques. [103] is similar to DeLF. They
extended the model to multiplicative and additive attention modules and aggregated them
together using a VLAD descriptor.

2.2.8.1.9 ms-rmac An interesting idea was presented in MS-RMAC [135]. The first
layers are usually responsible for recognizing textures and simple shapes, and deeper layers
are responsible for more and more high-level features. Using descriptors from different
network parts is a reasonable choice to reflect the image’s essence entirely. The authors
proposed using the R-MAC method to extract feature vectors from each convolutional block
and next transform them using PCA with a different number of principal components.
The number of these components increases with the following parts of the network, so
the sub-vector with global features is the most extended compared to others. Finally, all
sub-vectors are merged.

44 background

2.2.8.1.10 gap all Based on MS-RMAC we propose the use of our simple method.
For each convolutional layer, we use GAP and then concatenate alls to one merged vector.
Similar to MS-RMAC, using weights from the many layers allows for generating images
features that are more resistant to deformation or scale change.

2.2.8.1.11 scda SCDA (Selective Convolutional Descriptor Aggregation)[265] is based
on an activation features map[215]. First, the aggregation map Ai,j is obtained as ∑c

k=1 Ti,j,k.
For the aggregation map A, there are w, h summed activation responses corresponding
to the positions w, h. Next, the mask map M of the same size as A is obtained as
Mw,h

i,j = 1 if Ai,j > ā; 0 otherwise, where ā is the mean value of all the positions in A.
The final feature vector is selected based on the largest connected component of the mask
map M.

2.2.8.1.12 other methods An interesting method to compare multiple global
descriptors was described in [111]. In [80] introduced a novel joint loss function with
trainable parameters, which showed improvement in retrieval accuracy. Another interesting
paper is [252] where authors used reinforcement learning and recurrent neural networks
to train another network, which generates feature vector invariants of 16 transformations
like size, rotation, color, or brightness.

2.3 Challenges

This document focuses on three challenges of current deep learning solutions: open-set
classification, adversarial attacks, and trustworthiness AI.

2.3.1 Out-of-Distribution Detection

2.3.1.1 OoD detection methods

Openset classification, or Out-of-Distribution detection, is the problem of pointing to
these input examples which do not belong to any training class and labeling them as an
"unknown" class. Nowadays, machine learning solutions achieve spectacular accuracy on
popular benchmarks datasets often overcome human precision in many tasks - e.g., in 2015,
authors titled a paper "Surpassing Human-Level Performance on ImageNet Classification"
[86]. However, most implemented solutions are not tested on how the machine works on
never-seen data distribution. When they recognize that specific input is out of their scope
and is unsuitable for working with that data, they should raise that issue. In another way,
their results can be unpredictable and be a serious threat to customers.

OoD methods can be split into a variety of methodologies. The baseline method by [90]
is based on the maximum value of posterior probability obtained as the softmax score. The
ODIN method by [138] uses input preprocessing and temperature scaling in the softmax
function to increase separability between in- and out-of-distribution samples. Posterior
probabilities are then used to obtain confidence scores of prediction. Some authors propose
to use multivariate Gaussian distributions as models of class-conditional distributions [132],
[214], which leads to estimating the uncertainty of prediction using Mahalanobis distance.
Other methods are based on the probability of inclusion (e.g., the EVM[195], OpenMax[16])
or non-parametric density-based(e.g., LOF[22], OSNN[156]). While the above methods
use standard representations learned to discriminate within in-distribution classes, some
recent works, e.g., [214], [242] propose to use contrastive learning-based representations

2.3 challenges 45

which aim to discriminate in- and OoD samples. A recent comprehensive survey of OoD
approaches is given in [67].

An input sample x in d-dimensional feature space is classified by a closed-set classifier
as ci = arg maxc∈C P(c|x), where ci ∈ {c1, c2, . . . , cM} are the categories known in training
data and P(ck|x) are posterior probabilities of these categories. Open-set classifiers attempt
to reject the sample x as unrecognized if it is reasonably far from the known data or if x is
out-of-distribution concerning the training data Xi pertaining to class ci.

Decision boundaries are constructed using the distribution of training data Xi only or
taking training data into account for other categories. The rejection mechanism is commonly
realized by thresholding on probability models of class membership or by thresholding on
distance from the known data or density of the known data. To realize open-set recognition,
methods use a threshold i.e., a sample x is classified as ci = arg maxc∈C P(c|x) providing
d(x, Xi) < δ, and is unrecognized for d(x, Xi) ≥ δ, where d is some measure of distance
between the sample and known data.

All methods described below calculate confidence/openness scores denoted as
dname_o f _the_method.

2.3.1.2 MaxSoftmax and MaxLogits

2.3.1.2.1maxsoftmax The MaxSoftmax method is based on [90]. The idea is relatively
simple. We take the pre-trained model for the close-set classification and calculate the
network’s output after softmax operation for each sample in test and unknown sets. We
expect the output from known examples to be much higher than the unknown ones.

While we usually take the original close-set classifier, we can generally process it as
follows. For the given input x with regard to the known training data X, we need to build
a neural network f which assigns a label as arg maxc∈C f (x)c to one of the known classes.
By f (x)c we denoted classifier’s output value for class c. Then we can calculate dMaxSo f tmax

according to the formula 2.11 where so f tmax(x)i =
exi

∑c∈C exc for any given case.

dMaxSo f tmax(x) = max
{c∈C}

so f tmax(f (x))c (2.11)

2.3.1.2.2maxlogits We also propose the MaxLogits method, which does not use the
softmax function but works in the logits space. The dMaxLogits can be calculated as showed
in the formula 2.12.

dMaxLogits(x) = max
{c∈C}

f (x)c (2.12)

2.3.1.3 Mahalanobis distance based methods

The Mahalanobis distance[154] (do not confuse with openness score dMahalanobis) is the
distance between a point and a distribution. Actually, it is a multivariate equivalent of the
Euclidean distance to the mean of all cases in the given distribution. The difference between
Euclidean and Mahalanobis distance is the fact that Mahalanobis transforms the variables
into uncorrelated variables with variances equal to 1, and then calculates Euclidean distance.
The uncorrelated variables are rescaled and shifted principal components based on the
covariance matrix.

For the given Xc with regard to the known training data X for c ∈ C class we calculate
mean µc =

1
Nc

∑x∈Xc
x, and covariance matrix Σc =

1
Nc

∑x∈Xc
(x − µc)(x − µc)⊤, where Nc is

46 background

number of examples for class c. Than we can calculate openness score dMahalanobis according
to the formula 2.13.

dMahalanobis(x) = − min
{c∈C}

√
(x − µc)⊤Σ−1

c (x − µc) (2.13)

In this work, we define many variants of the Mahalanobis. The standard/main one
- which we called the OoD score as dMahalanobis - uses a different covariance matrix for
each class. The next one is dEuclidean presented in the formula 2.14 which is equivalent to
Euclidean distance to the mean of all cases in the given distribution. Another is dSEuclidean
which is Euclidean with rescaled by variance vc =

1
Nc

∑x∈Xc
(x − µc)2 for each class - see

the formula 2.15. We decided to also test MahalanobisUF proposed in the [132]. This
variant uses common covariance matrix Σc =

1
N ∑ ∑x∈Xc

(x − µc)(x − µc)⊤ for all classes
(the means are still individual for each class). The dMahalanobisUF is presented in the formula
2.16(it is similar to dMahalanobis).

dEuclidean(x) = − min
{c∈C}

√
(x − µc)2 (2.14)

dSEuclidean(x) = − min
{c∈C}

√
(x − µc)2

vc
(2.15)

dMahalanobisUF(x) = − min
{c∈C}

√
(x − µc)⊤Σ−1(x − µc) (2.16)

2.3.1.4 LOF (Local Outlier Factor)

2.3.1.4.1lof The Local Outlier Factor[22] method looks at the neighbors of a certain
point to determine its density and then compares it to the other points. It calculates the
local reachability density LRDk(x, X) of input x regarding the training subset X. LRD
is described as an inverse of an average reachability distance between the given point,
its k-neighbors, and their neighbors (for details, follow the [22]). K-neighbors (Nk(x, X))
includes a set of points that are in the circle of radius k-distance, where k-distance is the
distance from the point to it’s the farthest kth nearest neighbor (||Nk(x, X)|| >= k). The
LOF is formally described as the ratio of the average LRD of the k-neighbors of the point
x to the LRD of the point - see equation 2.17.

dLOF(x, X) =
∑y∈Nk(x,X) LRDk(y, X)

||Nk(x, X)||LRDk(x, X)
(2.17)

Original LOF was used for outlier detection inside a data set, but it can be easily opened
to OoD detection. If the point is in-distribution, the ratio of the average LRD of neighbors
is similar to the LRD of the point. For OoD data, the density of an outlier should be smaller
than its neighbor densities. LOF requires specifying the number of analyzed neighbors k –
we used the k = 20, the default value for most implementations. We tested both Euclidean
and Cosine distances, although Euclidean was originally used.

2.3 challenges 47

2.3.1.4.2lof_d The LOF builds a model for the whole training data set. However, the
local reachability density can be different in each known class. Moreover, finding the
nearest neighbors among a large number of data is a time-consuming problem. Therefore,
we modified the original LOF by building a separate LOF model for each in-distribution
class. For OoD detection/uncertainty quantification, we use the model LOF corresponding
to the closest class identified by the close-set classifier denoted as c. We refer to this
approach as LOF_D and can be denoted as shown in equation 2.18. The Xc is the subset of
training X which contains all samples with known label c.

dLOF(x, Xc) =
∑y∈Nk(x,Xc) LRDk(y, Xc)

||Nk(x, Xc)||LRDk(x, Xc)
(2.18)

2.3.1.5 Open-Set Nearest Neighbor

The Open-Set Nearest-Neighbor (OSNN) is proposed in [156]. The method uses the
advantages of density-based approaches. For the tested sample x we find the nearest
neighbor t and another one u in that way that the classes for samples t and u have to be
different. The dOSNN is calculated as a ratio between distances d(x, t) and d(x, u) as shown
in equation 2.19. We used as distance d both Euclidean and Cosine.

dOSNN(x, t, u) =
d(x, t)
d(x, u)

(2.19)

2.3.1.6 MDistance

The MDistance is our method. First, the fitting procedure is applied. The training data
X is split into Xc, according to class c. x means distance md for all other samples in Xc

is calculated and stored for each training sample. However, only these values are saved,
where the class for the least distance and class for x are the same. Then the outstanding
values are rejected (we applied the classic rejected approach based on mean plus 2.5 times
the standard deviation). Next, the threshold tc for the given class is calculated as the
maximum stored value for each label. In the test phase, the dMDistance is calculated as
shown in equation 2.20.

dMDistance(x, X, t) = 1 − min
{c∈C}

md(x, Xc)

tc
(2.20)

2.3.1.7 Extreme Value Machine(EVM)

The Extreme Value Machine(EVM)[195] is the method that uses Compact Abating
Probability (CAP) for each class separately. To construct the CAP there is needed to create
a radial inclusion function for each point xinX for each class c independently. Given a fixed
point x ∈ Xc, τ closest training examples from classes other than c are selected, denoted as

t, and the margin distances from x to these examples are calculated as: mij =
∥xi−tj∥

2 where
i refers to Nc data and j to τ. Then the parametric model of the margin distance from x
is estimated by fitting the Weibull distribution to the data {mi1, mi2, . . . , miτ}. The EVM
is the semi-parametric model, which is justified by the Extreme Value Theory. The fitted
Weibull model has described by two parameters λi and κi. The Weibull survival function

48 background

(1 − CDF) can be denoted as: Ψ(xi, x) = e
∥xc−x∥

λi

κi

. It can be interpreted as the CAP model
of the decreasing probability of inclusion of the sample x in the class represented by the
training example xi. Now we can set the dEVM as shown in equation 2.21. In our paper
[258] we discuss the validity of the underlying assumptions.

dEVM(x, X) = arg max
{c∈C}

{
arg max
{xk∈Xc}

Ψ(xk, x)

}
(2.21)

Remarks on the EVM Implementation The implementation of the EVM2 uses the
libMR3(provided by the authors of [209]) library for the Weibull model fitting. This library
first uses the linear transformation and then returns the parameters (λi, κi) of the Weibull
model fitted transformation data.

2.3.1.8 OpenMax

OpenMax[16] is a hybrid method. First, the method "opens" the classifier based on EVT (see
subsection 2.3.1.7 and adds the new label "unknown". Next, the probability is calculated
for each known label and one unknown,makes it easy to determine dOpenMax easily (see
equation 2.22). Initially, the fitting phase is applied. The EVT models ρ for each class C
are fitted by using the correctly classified training sample x. The EVT uses the Weibull
distribution of the largest distance to the mean feature vector τ for each class. The authors
proposed using FitHigh from the libMR library. The probability estimation with the
rejection of unknown or uncertain input ϕ is applied during the testing phase. The results
are normalized into a probability distribution together within the new unknown label.

dOpenMax(x, ϕ, ρ, τ) = arg max
{c∈C}

ϕc(ρc(∥x − τc∥) (2.22)

2.3.1.9 ODIN

The ODIN proposed in [138] uses two approaches temperature scaling and input pre-
processing. The temperature scaling is a variant of the SoftMax (see subsection 2.3.1.2)

S(x, t)i =
e

xi
t

∑c∈C e
xc
t

- where the t is the temperature scaling value.

The input pre-processing approach adds small perturbations to the input image. This
technique is based on the FGSM attack (see subsection 2.3.2.2.1). However, here, the goal is
to increase the softmax score of any input, in opposition to the FGSM, where the goal is to
decrease that value to fool the network. The authors claim that "the perturbations can have
a stronger effect on the in-distribution images than on out-of-distribution images, making
them more separable". The procedure is illustrated in equation 2.23 where ŷ is the winning
class. The ϵ is perturbation magnitude denoted later also as m. The ODIN can be denoted
as dODIN(x, t, m) = max{c∈C} S(f (x̂ε=m))c.

x̂ = x − ϵ ∗ sign(∇xlogS(x, t)ŷ) (2.23)

2https://github.com/EMRResearch/ExtremeValueMachine
3https://github.com/Vastlab/libMR

https://github.com/EMRResearch/ExtremeValueMachine
https://github.com/Vastlab/libMR

2.3 challenges 49

2.3.1.10 Unified Framework

The Unified Framework, proposed in [132], uses a few interesting approaches - see our
schematic diagram of this method presented in figure 2.27. The main OoD method uses
Mahalanobis distance with the common covariance matrix described in section 2.3.1.3.
The OoD detection is based on a features ensemble approach. The features are extracted
multi times from the different parts of the network. The idea here is that distinguishing
between in-distribution and out-of-distribution examples can be more effective while using
low-level, medium-level, or high-level features. The Unified Framework extracts features
from ℓ parts of the network, and then uses regression ∑ℓ αℓ ∗ Mℓ(x), where Mℓ(x) is the
dMahalanobisUF(x) for each ℓ. To determine the values of the α, the Unified Framework uses
parts of unknown data, which can be problematic in the real case because we do not know
the distribution of unknown data. We discuss it further in chapter 3. Another trick is using
the pre-processing of inputs similar to the ODIN approach: x̂ = x − ϵ ∗ sign(∇x Mℓ(x)).

Figure 2.27: Method by [132], which uses the input pre-processing, with the Mahalanobis distance-
based confidence score Mℓ from feature ensemble. For hyperparameter tuning, some
OoD examples are needed.

2.3.1.11 Other methods

2.3.1.11.1outlier exposure Outlier Exposure[91] is a technique of showing some
Out-of-Distribution data during the training process. The authors suggest that by showing
it, the model can easier learn to build decision boundaries with respect to unknown data.
They suggest that the method significantly improves detection performance and has a
positive impact on the robustness of the network. The modification of the loss function
can be denoted as LIN(f (xIN), y) + LOoD(f (xOoD)), wherein classic version both LIN and
LOoD could be cross-entropy, but for OoD comparison to the uniform distribution. After
fitting the procedure, the authors suggest using the classic baseline method (see subsection
2.3.1.2)

We noticed a problem when the OoD data presented during the training would be from
different distributes than the during testing phase. The OoD system can even worsen the
results while showing malicious examples. Because the OoD examples are fully unknown,
we cannot be sure of the data distribution.

50 background

2.3.1.11.2energy-based ood detection The authors of [145] proposed to use energy
score in OoD detection problems. They suggest that this approach allows for distinguishing
better In-Distribution and Out-of-Distribution samples than using the softmax scores. The
best working technique with energy score is applied when the OoD examples are shown
during the training and based on features, not logits.

2.3.1.11.3ssd The authors of SSD[214] combine two methods of contrastive learning to
generate more robust features for OoD problem and Mahalanobis as OoD decision making.
Authors suggest that using the contrastive learning idea, they can use unlabeled training
data to fit the method. In this work, we do not focus on contrastive learning models.
However, there is a trend that needs to be followed.

2.3.1.11.4generalized odin Generalized ODIN[98] is based on ODIN (see subsection
2.3.1.9) with two new strategies: decomposed confidence and the modified input
preprocessing. Both, according to the authors, help in OoD detection performance without
using any unknown examples.

2.3.1.11.5learning confidence In [50], the authors proposed additional output
during the learning process called the confidence estimate output. This value can be
used for OoD detection by using the simple threshold on this output. The confidence
estimate is learned by additional loss based on the softmax output. When the network
answers correctly, the confidence output should be increased. When incorrect, it should
be decreased. The confidence estimate increases during the training process due to the
overfitting of training data issues. An aggressive augmentation can deal with this problem
because the network is not so confident when using it.

2.3.2 Adversarial examples

2.3.2.1 Introduction

Typical CNN models can be split into features extraction and final classification. The
strength of CNN models lies in the first part, where complex maps of features based on
many training images are created. State-of-the-art models use diverse techniques (some
of them are listed above) to create better maps of features, based on which the CNN
makes the final classification. This mode of operation makes CNNs vulnerable to so-called
adversarial attacks, which generate special images with feature vectors similar to feature
vectors for a specific class. Consequently, the CNN model (its classification part) is forced
to produce a false answer – this is the idea of adversarial attacks.

Adversarial examples are specially prepared images that can fool the deep network. By
adding a perturbation to the image with one class (from a human perspective), the network
with high certainty claims the image belongs to another class. The deep network model
is trained on thousands of images. This procedure allows the model to build decision
boundaries for each image’s class. The adversarial examples move the image outside the
boundaries for a given class, often by minimizing the number of modifications on the
image, for example, by replacing even one pixel.

There are two types of adversarial attacks – white and black[168]. White - the more
popular - attacks assume that the CNN architecture is known and the attacker has access
to the weights in the net. Black attacks assume that the attacker can only test final outputs

2.3 challenges 51

from the model while feeding modified input images, with no additional information
about the model.

A good review of attacks and defenses is provided by [278] and [216]. The adversarial
attacks can be very dangerous because CNN models are extensively used in commercial
projects. For instance, robots that use visual recognition systems and work with people
can threaten human health and even life[246]. Increasing the safety and reliability of CNN
models seems to be crucial in modern AI.

2.3.2.2 Attack methods

2.3.2.2.1fast gradient sign method One of the fundamental methods is FGSM[74],
where a new image xadv is generated based on formula 2.24. The procedure is as follows.
The image x with class y is passed through the network (defined by parameters θ), the
gradient of a loss J(θ, x, y) is calculated for a given class, and it is added as small ϵ

perturbation to the image. The goal is to add this small perturbation to the image, which
does not change the original image too much (from the human perspective) but makes the
network fooled. The figure 2.28 from the original paper well present it.

xadv = x + ϵ ∗ sign(∇x J(θ, x, y)) (2.24)

Figure 2.28: The example of FGSM from [74]

2.3.2.2.2basic iterative method The authors of BIM[124](also known as Iterative-
FGSM) improve the FGSM attack by repeating of adding small perturbations multiple
times. Moreover, a new image is clipped after each iteration to ensure that they are in
an ϵ-neighborhood of the original one. The procedure can be demonstrated as shown
in formula 2.25. The xadv

0 is the original image. The number of iterations has to be set
heuristically. By setting α we can control how much the pixel values will be modified – in
the paper α = 1, so the values were changed by one at each interaction.

xadv
N+1 = Clipx,ϵ{xadv

N + α ∗ sign(∇x J(θ, xadv
N , y))} (2.25)

2.3.2.2.3projected gradient descent The Projected Gradient Descent (PGD)[152]
is fundamentally the same method as the BIM attack. The only difference is with the
start point – the PGD initializes to a random point in the ball of interest (decided by the

52 background

L∞ norm) and does random restarts, while the BIM initializes to the original point. The
method is also well known in optimization literature[25].

2.3.2.2.4carlini wagner attack The authors of this approach[31] focused on solving
the optimization problem of finding minimalized distance between two images x and x + δ

for model C in that way that classification result will be different for both examples. The x
is the static input image. To be more formal, see formula 2.26.

minimize D(x, x + δ) such that

C(x) = l, C(x + δ) = t, x + δ ∈ [0, 1]n
(2.26)

The problem is not trivial due to the highly non-linear nature of deep models. The
authors propose instead defining objective function f such that C(x + δ) = t if and only if
f (x + δ) ≤ 0. The authors propose a list of possible f .

f (x′) = max(max{Z(x′)i : i ̸= t} − Z(x′)t,−k) (2.27)

In the formula 2.27 is presented as the best among them – here Z(x′)i is the logit for i
class, and by changing k we can control how confident we want our adversarial attack to
be misclassified. Now we can solve a new - much easier - optimization problem presented
in the formula 2.28, where c is a positive suitably chosen constant.

minimize D(x, x + δ) + c · f (x + δ) such that

x + δ ∈ [0, 1]n
(2.28)

This problem can be now solved using, for example, the Adam optimizer.

2.3.2.2.5jacobian-based saliency map The JSMA[167] is the type of attack that
minimizes the number of pixels that have to be changed to misclassify the image. This
attack uses the gradient of the loss for every component of the input by the Jacobian matrix
to extract the sensitivity direction. It uses saliency maps that show which part of the image
is the most important during classification. Knowing that makes it possible to change the
most significant pixels into others (corresponding with pixels from other classes). It allows
increasing the likelihood of being different class. The process should be repeated until the
network misclassifies the input image or the maximum number of pixels is reached (then
the attack failure).

2.3.2.2.6deep fooled The Deep Fool[161] method is also the iteration approach. For
this method, the distributions are calculated based on willingness to move the input across
the decision boundaries with minimal changes. The first-order approximation of Taylor’s
expansion is used on a linear model to find these distributions.

2.3.2.2.7one-pixel attack This method[230] is highly interesting due to changing
only one pixel to make the network fooled. It uses a differential evolution algorithm to
find which pixel should be changed. The candidate solutions contain information with
x, y coordinates, and three RGB values. During each epoch, the population is randomly
modified by a small factor, and the algorithm works until one of the candidates will be an
adversarial attack. The crossover was not included in this approach. The fitness function is
defined by the probabilistic label of the target class or the true label. It is an example of a
black-box attack.

2.3 challenges 53

2.3.2.2.8other methods There are many other attacks in the literature. In this work,
we focused only on the classic ones described above. The authors of [24] or [246] proposed
using special generated patches. These patches can be easily used in real-world cases. The
authors claim that it is as easy as printing the patch and adding it to the scene. Then the
classifier points out the wrong classes. It is hazardous because, for example, in [246] authors
show how to generate that patch on popular ready-to-use models that are commonly
used for human detection. If someone has a special print in their hand, the model is
blind to it - see figure 2.29. The GAN[271] or U-NET[175] can also be used to attack the

Figure 2.29: Example of adversarial patch from [246]

network. We can train the network to generate or modify the input image to fool the main
classifier network. One of the first ideas in this group of attacks is [165], where authors
used evolutionary algorithms for this – however, the attacked images from this paper do
not look natural. Nowadays, there are interesting ideas to find real adversarial examples –
the unmodified images that can fool models [92]. There are attempts to understand why
such images can fool networks. In one of our research[240] we suggest the problem can
lie in training images. For instance, in the ImageNet, there are 1300 miniskirt images in
the training set, but only 55 are without a woman context. The model can learn spurious
correlations, so any images with a woman’s context can be wrongly classified as a miniskirt.
Knowing these makes it possible to find natural adversarial examples – see figure 2.30

Figure 2.30: The example of are wrongly classified images because of existing spurious correlations.
The captions below each image contains top-5 response from the ResNet-152 model.
The image from [240]

54 background

2.3.2.3 Defenses methods

Several methods to defend against adversarial attacks have been proposed[278].
Unfortunately, all the methods can be effective only for some of the attacks. Some
researchers focus on detecting them in the testing stage[149][157]. Other methods modify
(squeeze) the input images to decrease the chance of adversarial attack. These methods
include: feature squeezing[275] where the input image is modified by reducing the color
bit depth or by using spatial smoothing, using JPEG transformation[58] which remove
unwanted perturbation, using PixelCNN[225] based on a p-value calculated from a special
network, methods based on autoencoders[79], a method of using specialists 1 ensemble [1],
or a combination of several methods[89].

2.3.3 Trustworthiness of AI

Modern AI models have to be trustworthy. We can talk about that system only when the
models are aware of out-of-distribution data. It is a necessary but not sufficient condition.
This dissertation focused on this aspect, but the term of trustworthiness is broader.

High accuracy should not be the only criterion for evaluating modern ML models. Other
evaluation metrics are significant, especially in systems in which human lives depend. The
complex ML models, like deep learning models, are systems called often "black boxes". It
is hard to receive any additional information about the decision from the model, especially
"why" it was decided in that way. As Bodria et al. wrote in their survey[20] "modern,
complex machine learning models hide the logic of their internal process (...) potential
issues inherited by training on biased data".

There are many biased systems - for example, the COMPAS[198] system is a recidivism-
risk scoring model biased on human races, or the Amazon recruiting system was biased
on gender[120]. The authors of [26] also see the problem of biased datasets (in this paper
on gender too). The typical example of the biased dataset in computer vision is the
classification of huskies and wolves, where models learned to distinguish the classes by
background[191]. It again confirms that the problem often lies in data. We suggested
verifying the data [240] used for training the model. However, the deep learning model
does not always learn features that we humans want them to learn. So the additional
evaluation criteria are crucial here.

It is also a problem of law. For example, the European Union General Data Protection
Regulation (GDPR) sees the problem and wants to give the "right to explanation" of
all decisions made or supported by automated or artificially intelligent algorithms[41].
There is no consensus in research on how to measure the interpretability, or for
whom the explanation should be generated (ie. ML specialists, end-users, lawyers)
[266][7][29][141][53].

The trustworthiness also connects with the interpretability of the models. There are
many ideas on how to try to explain how the network works[204][20]. In the computer
vision field, the papers focus mainly on the show which part of the image is crucial for a
decision. The most popular methods are in the family of saliency maps generation - the
special map where each pixel is highlighted according to its contribution to classification.
The popular methods are Guided Backprop[227], Grad-cam[215], Grad-cam++[32] or Score-
cam[260]. The local interpretable model agnostic explanation - LIME[191] - also can help
to understand how models see our world. This approach focuses on differences locally.
The Concept Attribution is another technique where the model is tested on sensitivity for
"concepts," i.e., how the shape of stripes contributes to zebra classification[117]. Another

2.3 challenges 55

group of methods is called "Prototypes" [116][34][81] where the similarity to a batch of ideal
examples are analyzed to explain the model – it is possible also to add "criticism" (negative
examples). There is also possible to create models which already can be interpretable
"explanation by design" - so no "open the black boxes" [197][199].

Although the above methods have been known for years, we still have many problems
to solve. There is no one the best method to verify the trustworthiness of the models.
Additional research is necessary to understand better how the data influence the final
model, how to verify the decision-making of the final model itself, and how to explain its
output of it to humans.

2.3.3.1 Robustness

In the context of trustworthiness, one of the main concepts is robustness[288][5][276][263].
Following one of our papers [239]: "It is the characteristic that describes how effective the
network is while being tested on the new independent dataset. This characteristic is broadly
defined. It should enclose the factors that may influence of model’s final prediction – for
example: by checking the influence of existing biases or spurious correlations, changing
the context (i.e., background) or image properties (i.e., image brightness contrast), or by
using adversarial attacks or applying distortions to the image.".

Part II

Research

3
R e s e a rc h

3.1 Introduction and Chapter Plan

This chapter presents our research. The main thesis of this dissertation is that the safety
and trustworthiness of AI models can be assured only when the models are aware that
the unknown data exist - therefore, we showed and thoroughly researched the Out-of-
Distribution detection techniques. Still, there are no clear conclusions and recommendations
in the literature on which methods are most successful for a given recognition problem.
Furthermore, our research suggest (and recent literature[243]) that the best method depends
on pairs of known and unknown samples. However, the OoD samples are unknown by
their nature. In this thesis, we looked at OoD from a practical perspective. The safety and
trustworthiness models must work as open-set classification – we focused on how to force
classic close-set models to be OoD aware.

First, we demonstrated the complexity of OoD detection. We pointed out how many
decisions were to be taken – among others, we needed to choose the CNN model, how
to extract features from the network, or how to evaluate the results. We analyzed the
factors which have the most significant impact on the performance of OoD. Starting with a
simple example, we were adding successively new variants like unknown datasets, OoD
methods, and CNN models. It showed that there is no one perfect OoD method – the
approach should be chosen based on pairs of known and unknown data. This situation is
unacceptable in a real case problem because we do not know the unknown data. We also
tested the OoD problem in the context of large-scale images, which is rare in the literature,
but necessary to examine to enable methods in modern applications. We verified research
hypotheses like if the better model in close-set problems is better for the OoD detection.
We also promoted the LOF-based methods, which are rarely used in the OoD problem with
deep learning. However, they achieved good, stable results and, in our opinion, should be
presented in benchmark comparison. The detailed plan of the section 3.2 is as follows.

• In the subsection 3.2.1, we demonstrated a baseline OoD detection problem based
on the known CIFAR-10 dataset and the ResNet-101 model. We analyzed the factors
that impact OoD efficiently, showed how many decisions must be taken for the
simple open-set approach, and explained the discussed task in detail. We need
to choose, among others: unknown examples for evaluation, evaluation metrics,
the feature extraction method, the feature post-processing method, and finally, the
OoD method itself. Each of them significantly influences of OoD detection possibly
yielding contradicting results and conclusions.

• In the subsection 3.2.2, we extended our baseline problem with two new CNN models
and the Mahalanobis OoD method. The achieved results were the starting point for
our research. We showed that the OoD method is not the only essential factor for
detecting unknown samples.

• In the subsection 3.2.3, we performed in-depth analysis of OoD detection on one
example CNN model - we choose the ResNet-101. We presented results for many
different OoD methods, which can be split into distance-based (the Mahalanobis,

59

60 research

the MDistance), density-based (the LOF, the LOF_D, and the OSNN), based on the
models of the probability of inclusion (the OpenMax), and based on maximum
logits(the MaxSoftmax, MaxLogits). It allowed for a better understanding of each
OoD method and has opened up the field for further research.

• In the subsection 3.2.4 we tested the OoD problem in the context of large-scale images.
By large-scale data, we mean, i.e., a large number of training samples, a high number
of known classes, and high image resolutions. Unfortunately, in most literature
benchmarks, authors tested their solution based only on small-scale data. We used
ImageNet as known data and the ImageNet-O and the Places365 as unknown data.
The ImageNet-O contains natural adversarial examples, so we challenged the OoD
methods. Moreover, we tested many popular CNNs architectures, which allowed
us to check hypothesis that the better CNN model, the better efficiency of OoD
detection, and we got inconclusive results.

In next section, we focused on a profound analysis of the popular OoD methods
(Mahalanobis, Simple Unified Framework, and EVM) and their limitations and
assumptions. This analysis allowed a better understanding of those methods and confirmed
the results from the first section that no method is perfect. Each method could work well
only for specific assumptions, which sometimes cannot be met working in high-dimensional
features by using deep learning models. The detailed plan of the section 3.3 is as follows.

• In subsection 3.3.1 we focused on the Mahalanobis distance, which is one of the
most popular OoD methods recently. We discussed why the OoD problems with
large signal-to-noise ratios may still rely on Mahalanobis distance. Beyond classic
evaluation on benchmark datasets, we performed many simulations testing the
sensitivity of the Mahalanobis method to the dimensionality of data, size of training
data, and shift/difference between known and unknown data. We showed and
compared different variants of this method.

• Next, in the subsection 3.3.2, we focused on analyzing the popular OoD detection
method proposed by Lee et al. in the paper "A Simple Unified Framework for
Detecting Out-of-Distribution Samples and Adversarial Attacks". This method is one
of the state-of-the-art methods for the OoD problem. We showed the strengths of this
approach and showed that using the Mahalanobis is not the main one. We discuss
each of the major concepts used in this paper.

• In the subsection 3.3.3 we analyzed the EVM. We discussed the EVM’s theoretical
assumptions and claimed that they are not always fulfilled in the context of CNNs
and some popular datasets. The promoted Wailbull parametric distribution, in reality,
has a minor influence on the final method.

One of the hypotheses was that current, widely used CNNs models do not generate
enough robust features. That means that these networks can not well map images from
the image space into features space, contrary to human intuition. Good examples are
adversarial images where CNNs generate different features for very similar images. Similar,
as we have shown later, images entirely different from the human perspective (i.e., dog and
house number) are very close in feature space. Generating robust features seems crucial
because good mapping distinguishes the known and unknown samples better.

In the next section, we focused on data representations and suggested that OoD methods
depend more likely to feature space than the method itself. OoD results are more sensitive
for the CNN model, feature extraction method, hyperparameters of fitting the network,

3.1 introduction and chapter plan 61

the input preprocessing, and others. The goal of CNNs is to transform the input data from
image space into feature space. However, CNNs mismatch semantic and feature space
similarity for many samples. In that case, any OoD strategy may fail. We demonstrated this
phenomenon. As one of our contributions, we showed that the proper features obtained
strategy might follow to improve OoD results. The detailed plan of the section 3.4 is as
follows.

• In the subsection 3.4.1 we showed the influence of the feature extraction on OoD
detection. We checked if the OoD detection algorithms could build better decision
boundaries when using other methods for obtaining features from CNNs than classic
GAP. It is one of our main contributions. We proposed to use a new hyperparameter
(feature extraction strategy), which, when properly chosen, allowed boosting final
results by a few percentage points. It can increase OoD efficiency due to various
approaches that can focus on different components (e.g., on edges, patterns, or whole
objects), so for different pairs of ID and OoD, different features can be useful to
separate data.

• Many OoD detection methods can work poorly in high-dimensional space due to the
curse of dimensionality. In the subsection 3.4.2, we focused on reducing the feature
vector. We checked how much that vector can be reduced by using the popular
technique (L2 normalization -> PCA reduction -> whitening -> L2 normalization)
and how much it influenced the OoD evaluation.

• In subsection 3.4.3, we checked the influence of the image augmentation strategy on
the model’s robustness in close-set classification and OoD detection problems. The
networks build their decision boundaries during the learning process, so the proper
strategy should be substantial. We wanted to test which augmentation strategy can
help to improve OoD results.

• In the subsection 3.4.4, we noticed that the models with the same architectures and
similar hyperparameters with similar close-set accuracy could achieve completely
different results. We also tested the stability of OoD detection during the learning
process. That suggested that the CNN model state could affect the results very
strongly, and in consequence, it can spark an entire field of discussion in context of
the literature results.

• We analyzed the hypothesis that there is a mismatch between image and features
representations in the subsection 3.4.5. We believe that the characteristics of the
training dataset cause this mismatch – different models and feature extraction
methods achieved similar results on the same data. Using this observation, we
could generate subsets of pair (in-distribution and out-of-distribution) data, which
were extremely easy or hard for the OoD detection methods.

• In the last subsection 3.4.6, we analyzed OoD detection as the detector of an
adversarial attack. The thesis was that adversarial images move attacked images
towards another class group in the feature space. However, the close-set decision
boundaries are broader than that created by the OoD methods. So we suggested
that OoD approaches should detect the attacked image. Moreover, the adversarial
attack methods really attack the features based on the GAP approach, so using the
OoD with other feature extraction should help the detection problem. We tested that
hypothesis too.

.

62 research

3.1.1 Research Limitations and Assumptions

The problem of Out-of-Distribution examples detection is vast. Because of that, we focused
on specific areas in our research. The main goal of OoD detection is to separate (never seen
before) images into two groups, known (in-distribution) and unknown (out-of-distribution),
based on two pieces of information. The first is the set of example images split according
to labels/categories (called the training set). The second is the close-set model designed
to classify images to one of these labels. Next, for most of our research, we made the
following assumptions:

1. Models could be based on CNN architectures pre-trained for close-set classification
problems. We did not want to modify or retrain the models. However, we still could
return any information from inside the model as features, logits, or information
about the chosen class. The motivation here was covering a classic, practical case
where the solid classification system can already exist, so the goal would be to
extend that system to OoD detection – without, often costly, modification in the life
cycle/pipeline of model generation. The exception to this were studies shown in
subsections 3.4.3 and 3.4.4.

2. It was possible to use only three subsets of data: train, test, and unknown. The train
and test should have the same data distribution. The unknown should contain OoD
images. We have worked on benchmark datasets like the CIFAR-10 or the ImageNet,
so we could use a training subset of images to fit the model and the OoD detection
algorithm. Next, we could use test-known data and the same number of unknown
images from another dataset as OoD, like the CIFAR-100 or the Places365. Both were
used to evaluate the model. The motivation for that limit was that we did not want
the network to see any unknown images. We assumed that all decision boundaries
should be based on in-distribution data.

Based on the above assumptions, we resigned from OoD methods like these based on
contrastive learning (retraining the network) or outlier exposure (retraining the network
and using extra data "known unknown examples"). In our resarch, we focused on such
problems like: model architecture, feature extraction method, the number of training
examples, near or far OoD examples, low- and large-scale datasets, variety of the different
number of labels in in-distribution data resolution, using post-processing of features and
many others.

3.2 Complexity of the OoD Problem

This section focused on our preliminary research on the Out-of-Distribution detection
problem. We showed how complex that problem is and how many decisions must be
taken, and their effect on the final results. Our goal was showed that there is no one perfect
method, and still, there are many areas to develop further. We demonstrated step by step
how to perform OoD detection. We tested the classic methods on popular benchmark
datasets. We showed, among other conclusions, that well-known but unpopular (in the
context of deep learning) methods based on LOF achieved promising results. Moreover,
we tested the OoD methods in high-resolution images, which is still rare in literature.

3.2 complexity of the ood problem 63

3.2.1 Simple Example to Demonstrate the Complexity of OoD Detection Problem

Section Objectives In this subsection, we wanted to demonstrate a simple example of an
Out-of-Distribution detection problem. It should allow us to demonstrate how complex
and vast OoD detection is. We analyzed the factors, which have the most significant impact
on the performance of OoD. Our example was based on the CIFAR-10 (as the known data)
and three other sets (as the unknown data). We used the popular ResNet-101 model.

We formulated a problem as proposing a method to distinguish in-distribution from the
CIFAR-10 and out-of-distribution data. The CIFAR-10 contains 60,000 32x32 color images
divided into 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. There are 5,000 images per class in the training set and 1,000 in the test set. We
needed to define a set of unknown examples. There was the first difficulty here because we
did not know what was unknown. The literature has suggested finding near or far images
as unknown examples. Near means that the images should be strongly similar to training
examples, and far, they should be entirely different. Although we argued above in the
following sections, we used the CIFAR-100 as the near-OoD example for our experiments.
The CIFAR-100 contains similar images as the CIFAR-10 but with different classes. The
SVHN was used as the far-OoD example. The SVHN contains real-world images of Street
View House Numbers from Google Street View - they are easily distinguishable for humans
compared to CIFARs ones. Moreover, we used extra-far-OoD - the Noise. The Noise is
randomly generated images - a theoretically straightforward task to identify these. To
evaluate the OoD methods, we used the testing partitions of the in-distribution datasets
and the given out-of-distribution dataset, with a 1:1 proportion of known and unknown
samples. See the figure 3.1 to visually compare the sets.

Next, we needed to define metrics to evaluate OoD methods. In many OoD benchmarks,
the most noteworthy ones are DTACC, AUC, and AUPR. These metrics assume the binary
classification problem.
They move the decision boundaries and see how known and unknown data are separable.
The detection accuracy (DTACC) defines the ratio of correct classification of the test and
unknown examples to all examples for the best value of the internal threshold. The internal
threshold defines how to deal with the single sample - if it should be treated as known or
unknown. The Area Under Receiver Operating Characteristic curve (AUROC - or AUC as
we denote in all tables) is the area under the false positive rate against the true positive
rate curve. It defines the OoD method’s ability to discriminate between test examples and
OoD examples. The AUPR is defined as the Area Under the Precision and Recall curve.
We can split it into two sub-metric AUPR IN or AUPR OUT, where "positive examples"
are from the test or unknown examples. We denoted AUPR as the mean from both due to
equal samples in both sets. The higher the values, the better the OoD method was for all
metrics.

Those ideas are not well-suitable for local analysis. Moreover, based on them is hard to
set the decision boundaries in real-practice problems when we do not know any of the
OoD data. Due to the above, we also considered the metric True Negative Rate at 95%
True Positive Rate (TNR at TPR 95%). It can be interpreted as the probability of correctly
classifying the Out-of-Distribution examples when the In-Distribution (test) samples are
classified as high as 95%. There are other variations, like TNR at TPR 99% or FPR at TPR
95%, but the main idea is still the same. The decision is set based only on the in-Distribution
data.

64 research

(a) The CIFAR-10(known)

(b) The Noise

(c) The SVHN

(d) The CIFAR-100

Figure 3.1: Examples of images from known and unknown datasets used in experiments.

To show the complexity of the OoD detection, we made the following decisions. Firstly,
we needed to prepare a pre-trained model fitted on training examples. So, we needed
to choose architecture and hyperparameters. Intuition can suggest that the better the
CNN model, the better the "understanding" of images (more robust features extracted
from the network), so the better the efficiency of OoD detection should be. However,
our study showed that is not always true, but we discussed it later. We chose the
ResNet-101 architecture (it achieved 94.79% accuracy on the CIFAR-10) in our simile
example due to its popularity. Next, we needed to choose the OoD method itself. We used
MaxSoftmax[90] due to the simplification of this approach. The next step was choosing a
features extraction approach from the model. We used a logits from the pre-trained model
(due to MaxSoftmax). In this simple case, we resigned from using a feature post-processing
method.

Finally, we could test the whole OoD approach. The results are presented in table 3.1. We
achieved the expected results - the further the unknown examples, the better the results.
The only surprising thing is the relatively low metrics values for the Noise. That task
seems extremely easy for humans – however, 13.37% images from the test or the unknown
subsets were misclassified.

3.2 complexity of the ood problem 65

Table 3.1: Example of OoD detection for the CIFAR-10 as the in-distribution data. We used the
ResNet-101 model and MaxSoftmax method.

Out-dist DTACC AUC AUPR
TNR at

TPR 95%

Noise 86.63 91.41 90.08 37.94

SVHN 83.77 88.93 87.40 32.11

CIFAR-100 79.40 84.73 82.58 25.46

Section Summary We demonstrated how complex the OoD detection is. We formulated
the problem and proposed a method to distinguish in-distribution and out-of-distribution
data. For a given model and the known images (split into train and test subsets), we needed
to choose: unknown examples for evaluation, evaluation metrics, the feature extraction
method, the feature post-processing method, and finally, the OoD method itself. Each of
them significantly influences the OoD detection, possibly yielding contradicting results
and conclusions. Although the goal was to open an already fitted, close-set model, it may
be worth considering changing the architecture or hyperparameters of the model too. The
following subsections show that each decision can significantly influence the final results.

3.2.2 Extending the Simple Example by Adding New CNNs Models and the Mahalanobis Method

Section Objectives We decided to develop further our OoD example. We added a new
OoD method based on the Mahalanobis distance, which worked with features (not logits)
and new CNN models. The goal was to demonstrate some unexpected results and draw
further conclusions.

We decided to extend the baseline example to show challenges for OoD detection. We
added a new method based on Mahalanobis distance (see more details section 2.3.1.3 and
two new CNN models with much simpler and more complex architectures. The simple
model used only two convolutional layers and achieved 79.45% accuracy. The complex
architecture was based on PyramidNet-272[84] and Divide and Co-training[287], which is
one of the state-of-the-art solutions for the CIFAR-10. It was called SplitNet-PyramidNet-
272, and it achieved 98.71% accuracy. We used the standard approach as the feature
extraction for Mahalanobis using a vector from the Global Average Pooling (GAP) layer.
Whereas for the model SplitNet-PyramidNet-272, we used the mean of GAP from all
sub-networks due to the specific model’s architecture.

The results are presented in table 3.2. We can see general rules like (1) again the further
the unknown examples, the better the results, (2) the better CNN model, the better results,
(3) the Mahalanobis returns better results than the much simpler method MaxSoftmax.

However, we observed results contrary to these rules. The GAP features generated
by Simple CNN for the Noise were much more likely separable from known examples
than from the ResNet-101 model when using the Mahalanobis method. The Simple CNN
could return good results only for the extra-far-OoD as the Noise example and only for
the Mahalanobis method. It did not work well for OoD detection for other datasets and
methods. See the TNR at TPR 95% metric. Only the Noise could be treated as the solved

66 research

Table 3.2: Extended the simple examples of OoD detection for the CIFAR-10 as the in-distribution
data. We used the three models: Simple CNN, the ResNet-101, and the SplitNet-
PyramidNet-272 with two OoD methods: MaxSoftmax and Mahalanobis.

Out-dist Model Method DTACC AUC AUPR
TNR at

TPR 95%

Noise Simple CNN MaxSoftmax 53.80 44.30 48.33 0.73

Mahalanobis 99.66 99.87 99.77 100.00

ResNet-101 MaxSoftmax 86.63 91.41 90.08 37.94

Mahalanobis 89.98 94.99 94.47 63.06

SplitNet-PyramidNet-272 MaxSoftmax 97.19 98.09 96.76 99.22

Mahalanobis 99.97 99.98 99.98 100.00

SVHN Simple CNN Mahalanobis 58.59 60.13 61.35 9.20

MaxSoftmax 76.06 81.56 80.05 16.00

ResNet-101 MaxSoftmax 83.77 88.93 87.40 32.11

Mahalanobis 87.66 93.91 93.73 57.87

SplitNet-PyramidNet-272 MaxSoftmax 94.52 97.51 97.11 93.77

Mahalanobis 96.05 98.74 98.58 96.99

CIFAR-100 Simple CNN MaxSoftmax 69.40 75.18 74.34 15.63

Mahalanobis 56.64 59.10 58.79 14.67

ResNet-101 MaxSoftmax 79.40 84.73 82.58 25.46

Mahalanobis 84.47 91.21 90.97 46.03

SplitNet-PyramidNet-272 MaxSoftmax 85.69 90.61 88.74 72.67

Mahalanobis 89.00 95.09 94.89 78.08

problem (still 5% of known examples are rejected). The widely spread model, as the
ResNet-101, returned relatively low results too. Even when using the Mahalanobis with
the SplitNet-PyramidNet-272 for the SVHN as the unknown, we achieved "only" 98.74%
AUC and 96.99% TNR at TPR 95%. We used the word "only", because the task is trivial
for humans - see again figure 3.1 to compare the CIFAR-10 and the SVHN subsets. Here
we used the SOTA model for the CIFAR-10 and the popular OoD technique, and still, the
method failed for many images.

The above results were unexpected, and they were the starting point for our research. In
next section, we discussed and criticized many assumptions and popular approaches used
in the OoD detection problem.

Section Summary We extended our results by adding a new method based on the
Mahalanobis distance and new models, simple and SOTA. Our tests showed that the OoD
performance depends on many factors, and the OoD method itself is not the essential in
this case.

3.2 complexity of the ood problem 67

3.2.3 Comprehensive Comparison of OoD Methods for the Resnet-101

Section Objectives We decided to develop our example further to see more contradicting
results. We focused on deep analysis of OoD detection on one example CNN model -
we choose the ResNet-101. We extend OoD methods by LOF, OpenMax, OSNN, and our
custom approaches LOF_D, MDistance, and MaxLogits. For methods which need to use
distances, we used both Eudlicean and Cosine distances. To compare with SOTA results,
we showed the results also for ODIN and Unified Framework. We used the same datasets
as in the previous section.

We decided to present the results for the ResNet-101 for different OoD methods - see table
3.3. The goal was to show that different approaches achieved different results with no clear
pattern – or even when such patterns seemed to be visible, we argued them in later parts
of this work. We added the following OoD methods: the LOF(Local Outlier Factor) and
our modification the LOF_D (described in section 2.3.1.4), our MaxLogits (described in
section 2.3.1.2), our MDistance (described in section 2.3.1.6), the OpenMax (described in
section 2.3.1.8) and OSNN (described in section 2.3.1.5). The methods which needed to
use distance used Euclidean or Cosine one. Each method used the same features inputs
(based on the GAP). The MaxLogits and the MaxSoftmax use the original CNN classifier
to obtain logits. The above OoD methods work in different ways. They can be split into
distance-based (the Mahalanobis, the MDistance), density-based (the LOF, the LOF_D, and
the OSNN), based on the models of the probability of inclusion (the OpenMax), and based
on maximum logits (the MaxSoftmax, MaxLogits) methods. Using different approaches
allowed for overall analysis and basic understanding of each OoD method.

Moreover, we used two additional OoD methods ODIN (described in section 2.3.1.9)
and Unified Framework (described in section 2.3.1.10). We used original codes (outside
resources) for these methods. In this section, the main goal was to compare the OoD
methods without using the additional approaches (that those methods do). Due to the
above, we denoted these methods by *. We showed results for the ODIN and the Unified
Framework for a more comprehensive comparison. Note that ODIN is based on the
MaxSoftmax. However, it used the input preprocessing approach. The Unified Framework
uses some unknown examples to calibrate regression weights, and it uses features from
different parts of the network (not only GAP as other tested methods). This method is
based on the Mahalanobis and also uses input preprocessing. We suggested (and verified
in the next sections) that the results for these methods could be well due to the use of
additional approaches - not the OoD methods themselves.

Table 3.3: Results for different OoD methods based on the CIFAR-10 as the in-distribution data with
using the ResNet-101 and the GAP. We tested the following methods: distance-based (the
Mahalanobis, the MDistance), density-based (the LOF, the LOF_D, and the OSNN), based
on the models of the probability of inclusion (the OpenMax), and based on maximum
logits(the MaxSoftmax, MaxLogits) and SOTA methods ODIN and Unified Framework.

Out-dist Method DTACC AUC AUPR
TNR at

TPR 95%

Noise LOFCos 87.64 93.39 93.00 52.61

LOFEuc 87.77 92.85 91.32 47.71

68 research

Table 3.3: Results for different OoD methods based on the CIFAR-10 as the in-distribution data with
using the ResNet-101 and the GAP. We tested the following methods: distance-based (the
Mahalanobis, the MDistance), density-based (the LOF, the LOF_D, and the OSNN), based
on the models of the probability of inclusion (the OpenMax), and based on maximum
logits(the MaxSoftmax, MaxLogits) and SOTA methods ODIN and Unified Framework.

Out-dist Method DTACC AUC AUPR
TNR at

TPR 95%

LOF_DCos 87.54 93.02 89.13 36.27

LOF_DEuc 87.77 92.70 88.24 37.73

Mahalanobis 89.98 94.99 94.47 63.06

MaxLogits 88.72 93.50 91.78 53.26

MaxSoftmax 86.63 91.41 90.08 37.94

MDistanceCos 82.91 88.14 86.15 29.18

MDistanceEuc 82.69 87.94 85.92 30.31

OpenMaxCos a=3, t=200 84.70 87.52 75.01 0.00

OpenMaxEuc a=3, t=200 84.70 87.71 75.36 0.00

OSNNCos 86.00 91.17 90.21 35.89

OSNNEuc 86.05 91.03 89.87 35.33

ODIN* 97.00 99.00 99.00 99.00

Unified Framework* 100.00 100.00 99.00 100.00

SVHN LOFCos 86.22 92.39 92.03 48.96

LOFEuc 86.08 91.81 90.71 45.64

LOF_DCos 86.24 92.05 88.28 34.79

LOF_DEuc 86.10 91.60 87.28 36.98

Mahalanobis 87.66 93.91 93.73 57.87

MaxLogits 84.81 90.11 88.18 39.58

MaxSoftmax 83.77 88.93 87.40 32.11

MDistance Cos 81.28 86.53 84.34 25.30

MDistance Euc 80.06 84.71 81.72 19.15

OpenMaxCos a=3, t=200 83.14 86.52 74.30 0.00

OpenMaxEuc a=3, t=200 83.36 86.83 74.73 0.00

OSNNCos 84.06 89.77 88.78 32.37

OSNNEuc 84.16 89.69 88.56 31.59

ODIN* 83.00 89.00 89.00 51.00

Unified Framework* 94.00 98.00 98.00 94.00

CIFAR-100 LOFCos 82.31 88.96 88.45 37.07

LOFEuc 81.69 88.07 86.81 34.31

LOF_DCos 82.23 88.77 85.28 26.35

LOF_DEuc 81.63 87.94 83.99 27.75

3.2 complexity of the ood problem 69

Table 3.3: Results for different OoD methods based on the CIFAR-10 as the in-distribution data with
using the ResNet-101 and the GAP. We tested the following methods: distance-based (the
Mahalanobis, the MDistance), density-based (the LOF, the LOF_D, and the OSNN), based
on the models of the probability of inclusion (the OpenMax), and based on maximum
logits(the MaxSoftmax, MaxLogits) and SOTA methods ODIN and Unified Framework.

Out-dist Method DTACC AUC AUPR
TNR at

TPR 95%

Mahalanobis 84.47 91.21 90.97 46.03

MaxLogits 79.63 84.99 82.44 27.19

MaxSoftmax 79.40 84.73 82.58 25.46

MDistance Cos 77.66 82.87 80.10 22.05

MDistance Euc 77.38 82.68 80.14 23.71

OpenMaxCos a=3, t=200 79.31 83.51 71.90 0.00

OpenMaxEuc a=3, t=200 79.41 83.66 72.29 0.00

OSNNCos 79.81 86.02 84.92 26.17

OSNNEuc 79.56 85.72 84.46 25.73

ODIN* 79.00 85.00 83.00 42.00

Unified Framework* 83.00 89.00 90.00 47.00

As we mentioned, the conclusions based on analyzing table 3.3 can be inaccurate.
However, some of the following ones are based on our more complete understanding
described in the next sections. The Unified Framework achieved the best results with nearly
"solving" two tasks for the Noise and SVHN. However, this method "sees" some unknown
examples during training add it uses features from different parts of the network, which
can be better separable the data than the GAP. For the CIFAR-100, the classic Mahalanobis
achieved even better results without using any of the OoD data. The ODIN method usually
works well for extra-far-OoD examples. The key methods seemed to be based on the LOF,
Mahalanobis, and Logits. However, we showed (in the following sections) examples where
also other OoD methods could achieve good results. Interestingly, the TNR at TPR 95%,
where the OpenMax completely failed on all tasks, and all methods, including Unified
Framework, failed on the near-OoD task based on the CIFAR-100. MaxLogits was better
than the MaxSoftmax. The poor results for the Noise are unexpected, but they could be
specific to the model. The input preprocessing might force the data to be more separable.
There was no clear advantage to using Euclidean or Cosine distance.

The LOF-based achieved good and stable results. One of the main conclusions from this
work is to promote this method. Those methods are not commonly used in the literature,
giving way to the Mahalanobis. They are based on density, making them less dependent
on high-dimensional curiosity. The similar method OSSN always worked worst in our
experiments.

Section Summary We tested many methods for OoD results based on the ResNet-101
model. No method has managed to overcome the others. The most stable methods were
Mahalanobis, LOF-based, and MaxLogits. They worked using a different methodology,

70 research

which suggests that the OoD methods could not be the key to OoD problems. We argued
that there are other, more important, factors which make the features more or less separable,
like the model, the data, or feature extraction strategy. The good results achieved for Unified
Framework methods suggested that too. This approach used techniques that made the
data more distinguishable, although the Mahalanobis distance was used as OoD method.

3.2.4 Applying OoD Methods to Large-Scale Images

Section Objectives By large-scale data, we mean, i.e., a large number of training samples,
a high number of known classes, and high image resolutions. The new OoD methods
proposed by literature are not usually tested on large-scale data. In this section, we would
like to verify if the OoD approaches can be used on those images by models trained on
the ImageNet dataset. Moreover, because there are many publicly available pre-trained
models for this dataset, we would like to check the hypothesis that the better the close-set
model, the better OoD detection efficiency. We used two datasets as OoD: ImageNet-O
and Places365. The ImageNet-O contains natural adversarial examples, so we checked
incidentally how the OoD methods performed on these data.

We decided to test high-resolution images in OoD detection problems. For this purpose,
we used the pre-trained CNN models on the ImageNet dataset. In table 3.4 we presented
them together with top-1 and top-5 accuracy. The models use different architecture with
different ideas developed over the years of developments of CNNs. We used the models
with different levels of accuracy to test the hypothesis that the better model, the better
OoD detection. To simplify the calculations for the ImageNet variants, in our experiments
we used only the 50 first classes from the ImageNet as known data. We note that the all
models were trained on all 1000 classes.

In table 3.5 we showed the results for two datasets ImageNet-O and Places365. For the
AlexNet, the achieved results were poor for most methods for both datasets – only LOFEuc

for ImageNet-O worked quite well (94% of AUC, 75.4% of TNR at TPR 95%). For the
next model ResNet-18 the conclusions are similar - most methods worked poorly - but
the LOF_DEuc solved the problem of detection OoD forImageNet-O (both metrics were
above 99%). The second best method was Mahalanobis. For the next one, the VGG-16,
the LOF_D based method was above others and achieved quite good results for both
datasets. For the next one, the Inception v3, the LOF_DCos solved the problem for the
ImageNet-O. There was quite a different result for the LOF_DEuc for this dataset when
the TNR at TPR 95% dropped significantly. The Places365 was too hard a problem for
this model – only the Mahalanobis achieved acceptable results. For the ResNet-101 model,
LOF-based methods and Mahalanobis were the best, similar for the DenseNet-161, but
here the MDistanceCos achieved good results too, and the metric TNR at TPR 95% for
LOF_D approaches dropped. The WideResNet-101-2 with LOF_D approaches achieved the
best results for the ImageNet-O over all others. For Places365, it achieved good results too.
The EfficientNet achieved stable results at a high level for both datasets.

We can see that the MaxLogits and Max Softmax failed for the ImageNet-O dataset –
it is expected because it was designed to fool the close-set classifiers. However, for the
Places365 they achieved poor results too. The most stable methods were LOF_Ds. The
Mahalanobis seemed not to work as well as in low-resolution data.

3.2 complexity of the ood problem 71

Table 3.4: Accuracy of the Imagenet Models

Name Acc top-1 Acc top-5

AlexNet 56.52 79.07

ResNet-18 69.76 89.08

VGG-16 71.59 90.38

Inception v3 77.29 93.45

ResNet-101 77.37 93.55

DenseNet-161 77.14 93.56

WideResNet-101-2 78.85 94.28

EfficientNet-B3 81.1 -

Table 3.5: Results for different OoD methods based on the high-resolution images. We used the
ImageNet as known and the ImageNet-O and the Places365 as unknown data.

Out-dist Model Method DTACC AUC AUPR
TNR at

TPR 95%

ImageNet-O AlexNet LOFCos 84.16 92.01 91.78 64.10

LOFEuc 86.84 94.09 93.91 75.47

LOF_DCos 90.07 81.13 77.59 0.10

LOF_DEuc 89.52 89.69 89.56 42.65

Mahalanobis 81.63 88.10 87.39 61.47

MaxLogits 65.89 68.70 67.76 6.85

MaxSoftmax 59.88 62.20 62.14 8.14

MDistanceCos 59.83 62.20 59.56 9.68

MDistanceEuc 50.12 35.75 41.01 1.64

OSNNCos 62.88 67.01 66.80 10.18

OSNNEuc 62.88 67.05 66.64 9.43

ResNet-18 LOFCos 88.75 95.47 95.47 76.51

LOFEuc 87.29 94.27 94.20 71.80

LOF_DCos 95.01 93.78 91.42 33.56

LOF_DEuc 99.60 99.68 99.56 99.20

Mahalanobis 92.55 97.56 97.46 88.38

MaxLogits 68.47 72.57 70.47 8.89

MaxSoftmax 58.34 56.99 57.16 5.21

MDistanceCos 86.87 91.55 89.35 48.41

MDistanceEuc 55.56 44.29 48.58 0.65

OSNNCos 75.15 80.22 78.39 14.50

OSNNEuc 73.11 78.90 77.49 16.63

VGG-16 LOFCos 81.28 88.86 88.88 43.00

72 research

Table 3.5: Results for different OoD methods based on the high-resolution images. We used the
ImageNet as known and the ImageNet-O and the Places365 as unknown data.

Out-dist Model Method DTACC AUC AUPR
TNR at

TPR 95%

LOFEuc 92.35 97.22 96.99 89.03

LOF_DCos 96.08 98.84 98.82 93.69

LOF_DEuc 96.67 95.14 92.58 57.65

Mahalanobis 86.17 92.19 91.46 74.63

MaxLogits 73.68 78.91 76.93 11.87

MaxSoftmax 60.50 61.75 61.95 7.20

MDistanceCos 84.16 89.91 87.56 50.20

MDistanceEuc 50.00 24.83 36.31 1.54

OSNNCos 72.89 79.34 77.75 20.51

OSNNEuc 74.06 79.73 78.00 18.77

Inception v3 LOFCos 76.59 82.21 81.70 19.56

LOFEuc 83.22 89.56 89.02 40.07

LOF_DCos 99.45 99.53 99.22 99.06

LOF_DEuc 95.73 92.09 87.67 0.15

Mahalanobis 89.18 94.83 94.28 68.52

MaxLogits 72.09 75.52 70.77 22.19

MaxSoftmax 64.72 67.64 64.56 13.55

MDistanceCos 84.46 85.42 81.93 7.85

MDistanceEuc 59.26 51.88 54.33 2.08

OSNNCos 78.80 84.50 82.75 20.51

OSNNEuc 82.35 88.72 87.54 38.98

ResNet-101 LOFCos 88.98 95.75 95.75 75.12

LOFEuc 90.99 97.18 97.18 83.76

LOF_DCos 89.60 95.57 95.79 71.15

LOF_DEuc 91.33 91.50 89.77 28.55

Mahalanobis 92.48 97.42 97.31 86.10

MaxLogits 50.00 15.12 33.06 0.20

MaxSoftmax 50.00 40.27 43.25 0.50

MDistanceCos 84.38 89.63 87.02 34.56

MDistanceEuc 58.81 57.99 56.68 4.52

OSNNCos 76.89 82.82 81.23 21.65

OSNNEuc 77.75 84.08 82.75 27.51

DenseNet-161 LOFCos 94.46 98.55 98.54 93.79

LOFEuc 95.11 98.80 98.71 95.03

LOF_DCos 96.75 94.05 89.94 0.10

3.2 complexity of the ood problem 73

Table 3.5: Results for different OoD methods based on the high-resolution images. We used the
ImageNet as known and the ImageNet-O and the Places365 as unknown data.

Out-dist Model Method DTACC AUC AUPR
TNR at

TPR 95%

LOF_DEuc 96.77 94.05 89.98 0.55

Mahalanobis 94.94 98.40 98.24 94.59

MaxLogits 59.66 61.36 58.41 9.53

MaxSoftmax 55.36 54.77 53.48 5.96

MDistanceCos 92.58 96.32 95.23 85.95

MDistanceEuc 65.32 67.51 65.63 6.40

OSNNCos 79.97 86.23 84.68 28.65

OSNNEuc 80.69 86.69 84.95 26.76

WideResNet-101-2 LOFCos 90.39 96.17 95.99 77.46

LOFEuc 95.33 98.90 98.82 95.13

LOF_DCos 99.55 99.76 99.58 99.26

LOF_DEuc 99.55 99.58 99.25 99.26

Mahalanobis 92.25 97.14 96.92 85.90

MaxLogits 64.20 67.71 65.48 13.95

MaxSoftmax 60.50 62.80 60.99 11.82

MDistanceCos 94.74 97.54 96.71 93.64

MDistanceEuc 86.92 91.16 89.06 38.58

OSNNCos 84.76 90.31 88.53 36.44

OSNNEuc 85.33 90.69 88.81 39.42

EfficientNet-B3 LOFCos 80.88 90.44 90.95 57.70

LOFEuc 97.64 99.58 99.56 98.16

LOF_DCos 97.77 96.31 93.02 99.06

LOF_DEuc 97.79 98.32 97.93 99.20

Mahalanobis 94.39 97.81 97.57 90.52

MaxLogits 60.85 58.38 57.37 16.29

MaxSoftmax 63.68 64.89 61.95 15.04

MDistanceCos 95.93 97.48 95.91 96.33

MDistanceEuc 76.61 81.65 80.19 18.92

OSNNCos 86.62 92.16 90.52 44.89

OSNNEuc 90.19 94.81 93.26 70.36

Places365 AlexNet LOFCos 69.79 76.26 75.67 20.51

LOFEuc 76.56 83.08 81.30 36.84

LOF_DCos 78.43 69.90 64.67 10.62

LOF_DEuc 73.36 67.44 66.39 41.06

Mahalanobis 70.33 74.29 72.21 32.82

74 research

Table 3.5: Results for different OoD methods based on the high-resolution images. We used the
ImageNet as known and the ImageNet-O and the Places365 as unknown data.

Out-dist Model Method DTACC AUC AUPR
TNR at

TPR 95%

MaxLogits 77.33 83.87 82.63 24.53

MaxSoftmax 71.43 77.82 76.96 22.24

MDistanceCos 60.55 63.98 61.90 12.02

MDistanceEuc 50.00 42.52 44.22 1.39

OSNNCos 63.93 68.49 67.79 9.68

OSNNEuc 63.95 68.03 67.19 9.43

ResNet-18 LOFCos 82.15 88.70 87.88 34.76

LOFEuc 74.11 82.01 81.77 38.93

LOF_DCos 95.08 92.72 91.74 23.48

LOF_DEuc 80.56 75.11 72.18 42.05

Mahalanobis 86.10 92.87 92.69 69.12

MaxLogits 81.58 88.33 87.23 45.33

MaxSoftmax 74.68 82.05 80.54 30.39

MDistanceCos 73.68 78.05 74.92 9.14

MDistanceEuc 52.66 43.93 47.38 2.28

OSNNCos 74.63 79.87 78.02 14.25

OSNNEuc 71.97 76.91 75.49 13.60

VGG-16 LOFCos 71.65 75.35 74.46 10.62

LOFEuc 84.04 89.58 87.99 65.64

LOF_DCos 95.80 95.79 94.61 62.86

LOF_DEuc 96.52 98.29 98.25 75.92

Mahalanobis 77.56 81.12 78.49 54.57

MaxLogits 86.69 92.61 92.06 58.14

MaxSoftmax 78.23 85.85 85.30 40.52

MDistanceCos 83.59 89.73 87.87 48.21

MDistanceEuc 51.24 37.66 43.02 1.19

OSNNCos 75.02 81.34 79.92 21.15

OSNNEuc 74.68 79.89 78.30 18.72

Inception v3 LOFCos 70.38 73.66 72.97 9.53

LOFEuc 79.32 85.97 84.65 30.98

LOF_DCos 64.65 42.96 52.85 28.30

LOF_DEuc 90.99 87.28 82.66 11.67

Mahalanobis 88.60 94.61 93.95 65.49

MaxLogits 81.21 86.71 84.00 37.73

MaxSoftmax 74.53 80.79 79.20 27.36

3.2 complexity of the ood problem 75

Table 3.5: Results for different OoD methods based on the high-resolution images. We used the
ImageNet as known and the ImageNet-O and the Places365 as unknown data.

Out-dist Model Method DTACC AUC AUPR
TNR at

TPR 95%

MDistanceCos 63.03 62.27 61.10 1.89

MDistanceEuc 50.00 40.57 43.50 2.38

OSNNCos 79.44 84.99 83.33 22.59

OSNNEuc 82.72 88.93 87.80 38.33

ResNet-101 LOFCos 86.40 93.80 93.86 63.76

LOFEuc 86.30 93.49 93.41 73.96

LOF_DCos 91.62 95.06 95.37 64.36

LOF_DEuc 91.58 94.20 93.56 56.92

Mahalanobis 82.55 90.06 89.36 45.08

MaxLogits 60.34 62.99 60.71 9.88

MaxSoftmax 70.64 75.35 73.06 14.84

MDistanceCos 64.22 66.36 64.25 4.32

MDistanceEuc 50.78 42.01 45.06 1.56

OSNNCos 80.52 86.61 85.45 28.84

OSNNEuc 80.68 87.13 86.28 35.32

DenseNet-161 LOFCos 91.26 96.98 97.00 83.20

LOFEuc 90.61 96.52 96.46 85.40

LOF_DCos 94.81 93.92 91.57 26.66

LOF_DEuc 96.97 94.21 90.31 0.65

Mahalanobis 91.46 96.99 96.91 83.76

MaxLogits 77.28 82.99 80.53 39.47

MaxSoftmax 74.33 81.46 79.40 33.71

MDistanceCos 88.36 92.74 90.89 48.21

MDistanceEuc 50.10 28.03 37.64 0.45

OSNNCos 80.44 86.44 84.83 27.76

OSNNEuc 77.75 84.24 82.46 23.88

WideResNet-101-2 LOFCos 86.67 92.70 92.14 49.70

LOFEuc 94.44 98.59 98.49 92.40

LOF_DCos 95.60 94.57 90.20 95.98

LOF_DEuc 96.77 97.22 96.08 98.21

Mahalanobis 92.97 97.37 97.07 85.15

MaxLogits 77.93 83.56 81.74 38.48

MaxSoftmax 77.26 84.58 82.84 43.35

MDistanceCos 91.81 94.88 93.34 66.63

MDistanceEuc 71.57 76.20 73.88 11.92

76 research

Table 3.5: Results for different OoD methods based on the high-resolution images. We used the
ImageNet as known and the ImageNet-O and the Places365 as unknown data.

Out-dist Model Method DTACC AUC AUPR
TNR at

TPR 95%

OSNNCos 84.73 90.22 88.67 36.10

OSNNEuc 84.28 90.29 88.55 38.43

EfficientNet-B3 LOFCos 68.35 73.57 74.90 20.31

LOFEuc 97.17 99.56 99.52 98.66

LOF_DCos 98.06 96.67 95.00 99.60

LOF_DEuc 97.29 97.60 96.66 98.46

Mahalanobis 95.18 97.87 97.60 89.47

MaxLogits 75.20 78.21 75.34 41.71

MaxSoftmax 77.83 84.54 82.31 45.33

MDistanceCos 95.75 96.37 94.36 81.68

MDistanceEuc 62.59 64.04 60.90 8.54

OSNNCos 85.22 91.40 89.87 40.64

OSNNEuc 89.13 94.54 93.18 66.73

Section Summary The OoD methods can work well on large-scale images. The methods
based on Mahalanobis worked slightly worse than other methods working on a large scale.
The methods based on logits worked poorly. It is probably connected with the number
of classes being high - 1000 in our experiments. Our experiments have suggested using
LOF-based methods. We verified the hypothesis that the better the CNN model, the better
the OoD detection efficiency. However the results was inconclusive. The trend is visible
for methods like Mahalanobis and OSNNs, but there is no direct dependency on other
methods. Moreover, we tested how OoD approaches worked with the ImageNet-O dataset,
which was designed to fool the networks – generally, the LOFs and Mahalanobis worked
quite well on this dataset.

3.3 Analysis of Assumptions of Chosen Ood Methods

In section, we focused on analyzing assumptions of Mahalanobis and EVM methods. Both
parametric approaches can achieve good results on the benchmarks dataset, so they are
willingly used. We decided to verify the basic assumptions of each method: (1) how the
Mahalanobis works in high-dimensional space, (2) why Simple Unified Framework works
so well and if it is due to Mahalanobis, and (3) when the parametric model in EVM is not
appropriate due to unsatisfied assumptions of the Extreme Value Theorem.

3.3 analysis of assumptions of chosen ood methods 77

3.3.1 Discussion on the Mahalanobis

Section Objectives This section analyzed the instability of parametric estimates of Multi-
variate Normal Distribution(MVN) density by Mahalanobis distance in high-dimensional
features generated from the CNNs. We discussed why the far OoD problems with large
signal-to-noise ratios may still rely on Mahalanobis distance. Morover, we compared differ-
ent modifications (see section 2.3.1.3) of this method. Part of this research is based on one
of our papers[151].

First, we decided to test how the number of training samples n influences the distribution
of the Mahalanobis distance. We used the simulation data for this problem.

We generated two (training and testing) in-distribution subsets with n samples with
d dimensional feature space using the MultiVariate Normal distribution (MVN). The
used MVN has the mean at [0]d and uncorrelated variables with variance 1. As out-of-
distribution subset, we used a cluster with mean at [r√

d
]d, uncorrelated, with variance 1.

We generated 3 OoD subsets (we called them scheme s): (1) we changed means along only
one ax, (2) we changed means along d

2 axis, and (3) we changed means for all d axis. In
next parts the three schemes can be denoted as ood1(s = 1), ood2(s = 2), and ood3(s = 3).
The example of data in 3-dimensional space is presented in figure 3.2.

Figure 3.2: The example of the simulation data

To quantify the dissimilarity between groups od data, we use the measure
∆(group1, group2) = X̄1−X̄2√

s2
1+s2

2
, where X̄i and si are the mean and its standard error in

group i. Note that this measure is used as the test statistic in Welch’s t-test.
See the figure 3.3 where we showed results of our experiments on simulation data with

d = 2000, r = 8 and with n = 5000 and n = 50000. The values for d and n correspond to
the real case based on the CIFAR-10 and the ResNet-101. Generally, we observed that the
Mahalanobis distance could not distinguish in-distribution and OoD data. However, large
training samples lead to more robust models of in-distribution data (difference between
train and test data decreases) and better separability of in- and OoD data (difference
between test and OoD increases). See dissimilarity between distances: ∆(test, train) = 708
(n = x), 204 (n = x) denoted as red arrow in the figure and ∆(ood1, test) = 39 (n = x), 154
(n = x) denotes as blue arrow. Hence, with increasing the number of samples, the model
stabilizes and better distinguishes known and unknown data.

Next, we checked the influence of shifting r - see the figure 3.4. Enough far OoD data
(e.g., for r = 32) seemed to be no influence for the inaccuracy in MVN model estimation:
OoD examples were significantly more distant from the model than the test in-distribution
data. We argued that this explains the success or failure of Mahalanobis distance-based
OoD detection in CNN benchmarks.

78 research

Figure 3.3: Distribution of Mahalanobis distance of train, test and OoD samples to the MVN model
fitted to the train data, dimensionality d = 2000, OoD shift r = 8, sample size n = 5000
(left), n = 50000 (right).

Figure 3.4: Comparing Mahalanobis distances of train, test and OoD samples, as a function of
sample size n, OoD shift r, for dimensionality d = 2000. Note that the distance is the
squared Mahalanobis distance divided by d.

Next, we tested the influence of the feature correlation. See the result in figure 3.5
with uncorrelated features (left) and 1000 features correlated with coefficient 0.5, both
for dimensionality d = 2000, OoD shift r = 8, sample size n = 20000. See dissimilarity
between distances: ∆(test, train) = 330 (for both) denoted as red arrow in the figure,
and ∆(ood1, test) = 95 (uncorrelated), 1278 (correlated) denoted as blue arrow. Note
that with correlated data, distance of different outlier groups ood1, 2, 3 to the model
is significantly different, e.g., ∆(ood1, ood2) = 122 (correlated) denoted as greenarrow,
whereas for uncorrelated differences were not as much significant. We observed that when
the correlation of the distribution data and the OoD data vary, the separability of the OoD
samples improves.

We tested the Mahalanobis-based OoD detection methods in real-data benchmarks
datasets. We used the ResNet-101 (fitted on the CIFAR-10) and the DenseNet-169 (fitted
on the CIFAR-100). We used near and far OoD examples: the Noise, the SVHN, and the
CIFAR-10/CIFAR-100. We tested the four variants of the Mahalanobis. The LOFEuc is
shown as a reference non-parametric method.

3.3 analysis of assumptions of chosen ood methods 79

Figure 3.5: Effect of correlated features: distribution of Mahalanobis distance of train, test and OoD
samples to the MVN model, for dimensionality d = 2000, OoD shift r = 8, sample
size n = 20000, uncorrelated features (left); 1000 features correlated with coefficient 0.5.
(right).

The comparison, presented in the table 3.6, did not give straightforward conclusions.
There was no best or worst method. For example, (1) Euclidean failed for the DenseNet-
169 and the SVHN and outperformed others for the CIFAR-10 and the same model, (2)
SEuclidean failed for the ResNet-101 and the Noise and outperformed for the SVHN and
the DenseNet-169, (3) the MahalanobisUF failed in the CIFAR-10 and the DenseNet-169,
and (4) Mahalanobis failed in the SVHN and the DenseNet-169.

Section Summary This section focused on the in-depth analysis of the Mahalanobis
approaches. We showed, by using the simulation data, how the instability of MVN density
estimates leads to the intrinsic limitation of this method: near OoD samples cannot be
distinguished from known data. For fixed dimensionality of features and the training data
size, we can estimate the minimum distance from known data beyond which outliers are
detectable. We showed that this distance decreases with the growing number of training
samples.

We tested different variants of Mahalanobis distance in benchmark datasets. We showed
that none of these methods could be treated as the universal approach. The performance
depended on the data and CNNs models.

80 research

Table 3.6: The comparison of analysed OoD methods for the CIFAR-10 and the CIFAR-100 .

In-dist

(Model)
Out-dist Method DTACC AUC AUPR

TNR at

TPR 95%

CIFAR-10 Noise Euc 96.21 98.81 98.56 97.12

(ResNet-101) SEuc 94.71 94.57 91.24 45.92

MahUF 100.00 100.00 100.00 100.00

Mah 100.00 100.00 100.00 100.00

LOFEuc 99.30 99.90 99.89 100.00

SVHN Euc 86.75 93.00 92.52 55.03

SEuc 82.57 86.59 83.85 13.55

MahUF 83.26 91.13 90.96 53.84

Mah 82.25 89.33 88.77 41.34

LOFEuc 86.43 93.00 92.73 57.80

CIFAR-100 Euc 80.69 87.38 86.49 41.64

SEuc 80.19 86.30 84.84 35.75

MahUF 71.38 78.18 77.40 24.07

Mah 78.55 85.91 85.16 37.59

LOFEuc 79.49 87.22 86.74 47.84

CIFAR-100 Noise Euc 98.02 98.99 98.32 99.98

(DenseNet-169) SEuc 100.00 100.00 100.00 100.00

MahUF 100.00 100.00 100.00 100.00

Ma 100.00 100.00 100.00 100.00

LOFEuc 95.81 95.91 92.99 81.05

SVHN Euc 70.65 75.21 73.95 12.24

SEuc 78.41 85.85 85.07 37.30

MahUF 74.30 81.82 80.93 29.11

Mah 75.73 81.31 79.74 19.37

LOFEuc 76.86 83.46 81.96 24.48

CIFAR-10 Euc 68.39 73.29 71.19 15.48

SEuc 66.40 69.77 68.07 9.30

MahUF 62.22 65.65 63.97 8.05

Mah 65.98 69.42 68.33 10.08

LOFEuc 68.28 73.36 71.71 13.51

3.3.2 Discussion on A Simple Unified Framework for OoD

Section Objectives A Simple Unified Framework for Detecting Out-of-Distribution Sam-

3.3 analysis of assumptions of chosen ood methods 81

ples[132] is one of the most popular methods for OoD detection. In this section, we used
"UF" as the name for this method. In practice, the UF’s authors used a few concepts: fea-
tures ensemble, input preprocessing, and the Mahalanobis distance (see details in section
2.3.1.10). The authors focused mainly on the Mahalanobis distance, while we argue that
this method’s efficiency leads in the first two concepts. We also tested the approach by
replacing the Mahalanobis with the LOF-based methods. Part of this research is based on
one of our pre-print papers[241].

Our goal was to see what is essential in achieving that good results by the UF. Most papers
that cited this work suggest that is Mahalanobis distance. We showed in the previous
section 3.3.1 that there is no one variant of the Mahalanobis that can be treated as a
better approach compared to others. We also tested the variant proposed in the UF with a
common covariance matrix(called MahalanobisUF). Moreover, we showed that this group
of methods could be unstable in multidimensional space. The authors of UF noticed this
too but left without further comment (see a screenshot of their table presented in figure
3.6). In that table, we can see that the UF without concepts like features enabled or input
preprocessing did not work significantly well. Therefore, we suggest that replacing the
Mahalanobis with another method should work similarly, and thereby the strength of the
UF is not the using the Mahalanobis distance itself.

Figure 3.6: Table from [132]. It shows the influence of used concepts in UF.

We choose the LOF-based methods as a replacement for the Mahalanobis. We chose
them due to results performed in experiments based on the simulation data (see section
3.3.1). We summarized the performance of Mahalanobis distance-based and LOF-based
OoD detectors as a function of dimensionality d. We observed that for d = 1000 with 1000
training points per class, the Mahalanobis procedure no longer detected outliers (AUCROC
≈ 50%), while LOF was more reliable (AUCROC > 80%). See the figure 3.7.

We tested numerous pairs (in-distribution and out-of-distribution) using the UF to see
the influence of the input preprocessing. This concept is computationally complex and
requires parameter-tuning (the magnitude of perturbation). Our experiments suggested
that the ODIN-like input perturbations have negligible (or even negative) impact on
separating the in- and out-of-distribution samples for LOF-based methods. For instance,
for experiments with CIFAR-10, perturbation equal to zero was always selected as the best
on validation data.

To verify the sentence that "the strength of the UF is not the using the Mahalanobis
distance itself", we tested the UF with MahalanobisUF (original concept), LOFEuc, and
LOF_DCos. We did not use the input pre-processing method in our LOF-based methods.

82 research

Figure 3.7: Comparison of the TNR at TPR 95 % and the AUC for Mahalonobis and LOF on
simulation data. By increasing the complexity of the problem by expanding the input
data dimension, the LOF method is much more stable and achieves better results. The
dimension above 1,000 is common in the lasts layers of CNNs.

The results are presented in table 3.7. We observed that on difficult OoD problems (i.e., the
CIFAR-10 as in-distribution vs. the CIFAR-100 as OoD; the ImageNet as in-distribution
vs. the ImageNet-2010 as OoD – difficult problems for the ResNet-101), our LoF-based
procedure outperforms the Mahalanobis distance-based method. We noticed that for the
OoD benchmarks which seemed to be easier, i.e., the AUROC obtained by the methods
98% - 99%, (these benchmarks include: CIFAR-10 vs. SVHN, ImageNet vs. ImageNet-O or
Places365, ImageNet vs. ImageNet-2010 (for EfficientNet-B3)), our modification achieved
similar results. Notice that LOF-based methods had no input perturbation hyperparameter,
fine-tuned for a specific study in the Mahalanobis method.

Finally, we wanted to discuss the features ensemble approach. The idea seems reasonable
to us. The features obtained from the earlier layers of the network can better separate the
unknown examples. However, we see some limitations here.

Firstly, to fit the weights, there is a need to see some out-of-distribution examples. The
authors of UF propose to use the OoD from the same distribution. For instance, for the
CIFAR-10 vs. the SVHN, they fit weights on the subset of SVHN, and the CIFAR-10 vs. the
CIFAR-100 they fit them on the subset of the CIFAR-100. In real problems, the OoD data is
entirely unknown. Of course, there are methods like Outlier Exposure[91], but it is hard to
compare them with others that do not see any unknown data. In our opinion, this is the
main reason why the UF method outperforms others.

Secondly, the UF method assumed that the features obtained from the earlier layers
can be the assignment to a given class. However, the first layers of the network are not
"designed" for classify the data, so using Mahalanobis boundaries based on the final classes
can be a false idea.

Section Summary In this section, we focused on a deep analysis of the UF method.
This approach is one of the state-of-the-art method. However, in our opinion, the
method’s strength lies in the "Outlier Exposure" procedure during the weights fitting. The
Mahalanobis itself is a solid approach, but the LOF-based are equally good or even better.
The concept of input pre-processing was not valuable in many cases.

3.3 analysis of assumptions of chosen ood methods 83

Table 3.7: The comparison of [132] with replacing the Mahalanobis with LOF-based approaches. For
the two most challenging problems, the CIFAR-10 vs. the CIFAR-100 and the ImageNet
vs. the ImageNet-2010 for the ResNet-101, our approach outperforms [132].

In-dist

(Model)
Out-dist Method DTACC AUC AUPR

TNR at

TPR 95%

CIFAR-10 CIFAR-100 UF 83.18 90.47 90.12 53.77

(ResNet-101) UF+LOFEuc 85.24 92.41 92.31 63.91

UF+LOF_DCos 85.89 93.16 93.11 65.92

SVHN UF 97.14 99.46 99.40 99.02

UF+LOFEuc 99.25 99.95 99.94 99.97

UF+LOF_DCos 98.77 99.9 99.9 99.74

ImageNet ImageNet-2010 UF 87.75 93.70 93.24 71.60

(ResNet-101) UF+LOFEuc 87.28 94.23 94.16 74.50

UF+LOF_DCos 84.45 92.31 92.23 66.15

ImageNet-O UF 98.73 99.88 99.85 99.93

UF+LOFEuc 98.77 99.91 99.88 99.67

UF+LOF_DCos 98.40 99.77 99.74 99.33

Places365 UF 97.75 99.64 99.62 99.40

UF+LOFEuc 97.32 99.69 99.68 98.65

UF+LOF_DCos 97.45 99.66 99.65 98.90

ImageNet ImageNet-2010 UF 93.65 98.11 97.98 91.75

(EfficientNet-B3) UF+LOFEuc 93.35 98.08 98.03 91.05

UF+LOF_DCos 88.75 95.44 95.48 77.75

ImageNet-O UF 99.27 99.97 99.93 99.93

UF+LOFEuc 99.63 99.98 99.95 99.94

UF+LOF_DCos 98.62 99.87 99.85 99.25

Places365 UF 99.48 99.97 99.95 100.0

UF+LOFEuc 99.55 99.99 99.96 99.95

UF+LOF_DCos 99.03 99.89 99.87 99.85

84 research

3.3.3 Discussion on Extreme Value Machine(EVM)

Section Objectives This subsection focused on analyzing the Extreme Value Machine for
OoD detection. Although the method was not used in the other parts of this work, it was
noticed by the scientific community. As the authors claim, this approach was justified by
theoretical research. We argued with the assumption in the context of OoD usage in deep
learning and computer vision. In this section, we empirically verified it. This research is
based on one of our papers[258].

The Extreme Value Machine(EVM)(see section 2.3.1.7) is method which used Compact
Abating Probability (CAP). To construct the CAP there is needed to create a radial inclusion
function for each point x. Distances from each point x and closest τ points (with a different
class than x) are calculated. Then the parametric model of the margin distances are
estimated by fitting the Weibull distribution. This step is justified by the authors by the
Extreme Value Theory and is later analyzed in terms of the validity of the underlying
assumptions. We empirically verified this by using the Kolmogorov-Smirnov goodness of
fit test, with the null hypothesis that the margin distances have the Weibull distribution
estimated by the EVM implementation (see details in section 2.3.1.7).

For all experiments, we used the ResNet-101, which was trained from scratch for the
classification task. It achieved 95.15% final accuracy. The CIFAR-10 was used as known
data.

(a) the CIFAR-10 with-
out normalization

(b) the CIFAR-10 with
normalization

Figure 3.8: Histograms of Weibull goodness-of fit test p-values for raw and standardized CIFAR-10
features - form our [258].

For mean p-values of Kolmogorov-Smirnov tests for all training examples in each
data set, we achieved 0.043452 for the CIFAR-10 and 0.215405 for the CIFAR-10 with
standardized values (by using the popular z−score normalization with the mean and
standard deviation for each variable estimated on the train data set). The detailed analysis
of p-values for the CIFAR-10 data set is shown on histograms in figure 3.8. We could
notice that normalization of CIFAR-10 data changes the distribution of margin distances:
for a majority of training examples in the raw dataset, the Weibull model was not fit
the data (most of p-values < 5%), whereas for standardized data the Weibull model was
appropriate (most of p-values > 5%). It led to improved performance of the EVM in OoD -
e.g., with the CIFAR-100 as unknown data (AUC increased from 79.64% to 87.95%).

This (and other presented in [258]) analysis proved that margin distances do not follow
the Weibull distribution in many real datasets, contrary to the theoretical justification given
in [195] (Theorem 2). The justification given in [195] is grounded on the Fisher-Tippett-

3.4 the influence of features on ood detection 85

Gnedenko (or Extreme Value) Theorem. Hence the underlying assumption needed for
the margin distances to follow the Weibull distribution is that they can be treated as the
maximum from a series of random variables, which was not shown, but only postulated in
[195].

Table 3.8: AUC for the original EVM and its modifications based on other parametric models for
the the CIFAR-10 with using GAP as the feature extraction

Out-dist Stand. EVM Weib min Normal Gamma ECDF LOF

MNIST False 89.78 95.73 92.67 87.29 85.97 98.46

True 97.24 97.89 97.87 97.24 97.15 98.26

CIFAR-100 False 79.64 88.79 82.86 77.25 75.17 88.87

True 87.96 83.25 87.84 87.04 81.71 89.34

We could conclude that the Weibull distribution is not the key to the EVM performance.
To confirm this, we substituted the Weibull distribution by some other distributions
and repeated the previous OoD detection experiments using this modified EVM. More
specifically, we followed the EVM algorithm as described in the original paper [195], but
fitted the parametric model directly to the margin distances, and not to the transformed.
We tried four alternatives: the Weibull Minimum Extreme Value (Weib min), Normal,
Gamma, and empirical CDF (ECDF). The achieved AUC values were compared with the
original EVM - see table 3.8. We also added the LOFEuc method due to comparison, which
achieved much better results in all tested tasks. These results suggested that the parametric
distribution type, as well as transformation applied by the libMR (see details in 2.3.1.7),
have a minor influence on the EVM performance. None of the analyzed distributions
outperformed other types (see th full comparison in [258]). The assumption of the Weibull
distribution was not essential for the performance of the EVM.

Section Summary We showed that the EVM’s theoretical assumptions were not fulfilled in
the context of CNNs and some popular datasets. Margin distances often did not follow the
Weibull distribution. Moreover, the type of parametric distribution had an overall minor
influence on the EVM. In comparison with the LOF method, the EVM achieved much
worse results.

3.4 The Influence of Features on OoD Detection

The CNN classification models are fitted on the training data, which allows learning
patterns of what each type of category looks like. The images are transformed from
pixel space into feature space. Step by step, the convolutional blocks make a set of pixels
transformed into features that are more and more separable by class type. So finally, the
close-set classifier can distinguish them and make the classification.

All popular OoD algorithms build and estimate decision boundaries based on feature
space distribution. The research described in this section focuses on the features and what
gives them their final form. First, we concentrated on feature extraction methods from the
CNNs - different from classic Global Average Pooling. Various approaches that can focus
on different components (e.g., on edges, patterns, or whole objects), so for different pairs of
ID and OoD, different features can be useful to separate data. Next, we focused on feature

86 research

normalization and reduction. Both ideas are based on the solutions for Image Retrieval
problems, but there are novel for OoD ones. Further, we check the influence of images
augmentations. Different augmentation strategies allow the network to learn different
patterns, which can help distinguish the out-of-disturbed examples. Next, we checked how
the OoD algorithms are sensitive to changing their weights during the training process.
Finally, we used the above conclusions to generate the hard dataset for nearly all OoD
detection methods, and we tested OoD approaches on the problem of adversarial attacks
detection.

3.4.1 Effect of the Feature Extraction Method on OoD Detection

Section Objectives Usually, the features from deep networks are extracted using Global
Average Pooling (GAP) on the last convolutional layer. Next, these are passed to the classi-
fier to propose an output class. In most techniques for OoD detection, these features are the
basis for distinguishing between in-distribution and out-of-distribution. In this subsection,
we focused on checking the influence of different approaches for feature extraction. The
idea is taken from the image retrieval problem, where many papers have focused on
finding the proper strategy for obtaining global and local descriptors from the images.
Our research hypothesis is that the OoD detection algorithms could build better decision
boundaries by changing the features extractor approach. It can increase OoD efficiency
due to various approaches that can focus on different components (e.g., on edges, patterns,
or whole objects), so for different pairs of ID and OoD, different features can be useful to
separate data.

The Global Average Pooling (GAP) is the most popular feature extraction. Using it in
classic CNNs reduces the number of parameters in the classification part and limits the
risk of overfitting. These features are often called global ones due to good generalization
ability. However, these are not always well suitable for all ML problems - for example, in
the image retrieval tasks, the well-chosen strategy can be key for finding similar images,
so other methods have been developed. We decided to check the influence of the features
obtaining strategy in OoD detection problems as well. The hypothesis is that by changing
the features could allow building better decision boundaries to separate the known and
unknown examples better. These features could be from a different distribution than GAP
(used for the classifier), so new features are less likely to be overfitted.

We compared using different feature extraction in OoD detection based on the ResNet-
101 fitted on the CIFAR-10, and the ImageNet, respectively. We focused on various methods:
focusing on local (object details) and/or global (whole object) descriptions and low-level
(e.g., shapes, textures) and/or high-level (whole image meaning) features. We used the
following feature extraction methods: CroW, GAP, GAP_All, GMP, and SCDA (see section
2.2.8.1 for more details). The GAP is the classic approach. The GAP_All used concatenated
GAP from all main layers from the ResNet. This method’s motivation is to also focus
on the low-level features, which focus more on shapes, edges, object parts rather than
whole objects. Some OoD examples can be distinguished from the in-distribution in
low- or middle-level. The GMP (Global Maximum Pooling) or Maximum activations of
convolutions (MAC) is an alternative for the GAP. However, it is focused on the most
significant parts of the last convolutional layer. The CroW is a non-parametric weighting
and aggregation scheme. Furthermore, the last method that we used is the SCDA. This
approach focuses more on the local features. There are many other feature extraction

3.4 the influence of features on ood detection 87

methods. However, we would like to compare only a few in this section – these were quick
to adapt and did not require to retrain the model.

The tables 3.9, 3.10 and 3.11 presented the results for the CIFAR-10 as known data
and the Noise, the SVHN, and the CIFAR-100 as OoD - respectively. The MaxLogits and
MaxSoftmax were used for comparison purposes – these methods do not use features but
logits. We could retrain the classifier on new features, but that is out of the scope of this
section. Generally, changing the feature extraction strategy helped improve OoD detection
for all sets compared to the GAP. However, there was no one best method. It depended on
near- or far- OoD examples. For the Noise and the CroW and SCDA with Mahalanobis
achieved the best results. For the SVHN, all methods worked similarly – however, the
GAP_All and GMP were the best. And for the CIFAR-100 GMP was the best, however,
the GAP worked quite well too. The GMP seems to work the most stable among other
methods. LOF_DEUC seemed to not work for the CroW and GAP_All for some reason. The
most stable OoD method over the different features seemed to be Mahalanobis.

We decided to perform similar experiments but on high-resolution images based on the
ResNet-101 model trained for the ImageNet. In tables 3.12 and 3.13 we presented results
for the ImageNet-O and the Places365 respectively. Again, well-chosen feature extraction
allowed a significant boost in the final results. For example, for ImageNet-O, when we
used classic GAP, the best method - the Mahalanobis - achieved 97.42% of AUC and 86.10%
of TNR at TPR 95% while changing the way of obtaining features to GMP or SCDA, the
results increased over 99% for both results for LOF-based approach. A similar effect for
the Places365. The best method for the GAP - the LOF_DCos achieved 95.06% of AUC and
64.36% of TNR at TPR 95%. When the features were changed to CroW, GMP, or SCDA,
the results increased for both metrics to get closer to 100%. There are some unexpected
results here. The LOF_DCos did not work well with the SCDA for the ImageNet-O and
perfectly well for the Places365. Similar, the LOF_DEuc for GMP. The Mahalanobis did not
usually work well on high-dimensional images for different feature extraction methods.
The GAP_All made LOF_Ds failed.

Section Summary Our experiments showed that changing the feature extraction
methodology can significantly improve OoD detection efficiency. To the best of our
knowledge, there is a lack of similar research in the literature. Although [132] used
the "feature ensemble" method (similar to our GAP_All, but calculated independently - not
concatenated as our) and the authors claimed that it allowed an increase in the efficiency,
but it was still based on the GAP.

Changing feature obtaining strategy into GMP, GAP_All, CroW, or SCADA, there
is possible to boost the OoD method. There are no clear guidelines on which method
should be used, but our experiments showed that the results were better or similar
when we changed the extractor, so we recommend doing it. We proposed to use a new
hyperparameter (feature extraction strategy), which, when properly chosen, allowed
boosting final results by a few percentage points. We proposed to consider various methods:
focusing on local (object details) and/or global (whole object) descriptions and low-level
(e.g., shapes, textures) and/or high-level (whole image meaning) features – as we have
shown above.

88 research

Table 3.9: Comparision of the OoD and feature extraction methods based on the the ResNet-101
model and the Noise as OoD data.

Feature

extraction
Method DTACC AUC AUPR

TNR at

TPR 95%

GAP LOFCos 87.64 93.39 93.00 52.61

LOFEuc 87.77 92.85 91.32 47.71

LOF_DCos 87.54 93.02 89.13 36.27

LOF_DEuc 87.77 92.70 88.24 37.73

Mahalanobis 89.98 94.99 94.47 63.06

MaxLogits 88.72 93.50 91.78 53.26

MaxSoftmax 86.63 91.41 90.08 37.94

OSNNCos 86.00 91.17 90.21 35.89

OSNNEuc 86.05 91.03 89.87 35.33

CroW LOFCos 97.04 97.85 96.65 99.09

LOFEuc 98.70 99.57 99.44 100.00

LOF_DCos 96.34 97.24 91.09 91.08

LOF_DEuc 97.15 97.14 90.22 0.00

Mahalanobis 99.83 100.00 99.99 100.00

OSNNCos 97.38 98.11 97.47 99.72

OSNNEuc 97.75 98.35 97.82 99.98

GAP_All LOFCos 86.00 91.94 90.84 47.67

LOFEuc 86.23 91.77 90.29 45.76

LOF_DCos 85.93 91.51 86.05 0.00

LOF_DEuc 86.20 91.51 85.94 0.00

Mahalanobis 91.44 94.81 93.25 59.37

OSNNCos 85.61 90.77 89.62 37.00

OSNNEuc 85.89 90.97 89.75 37.00

GMP LOFCos 90.25 95.23 95.02 64.64

LOFEuc 90.61 94.37 92.28 58.37

LOF_DCos 90.09 94.66 90.59 46.29

LOF_DEuc 90.42 94.20 89.40 46.68

Mahalanobis 94.86 98.85 98.85 94.04

OSNNCos 87.72 92.29 91.29 41.61

OSNNEuc 87.72 92.11 91.06 40.42

SCDA LOFCos 97.72 98.90 98.44 99.86

LOFEuc 97.70 98.92 98.54 99.90

LOF_DCos 97.25 97.31 92.43 68.18

LOF_DEuc 97.10 97.27 92.78 98.73

Mahalanobis 99.05 99.73 99.71 100.00

OSNNCos 97.44 98.36 97.78 99.69

OSNNEuc 97.47 98.58 98.22 99.78

3.4 the influence of features on ood detection 89

Table 3.10: Comparision of the OoD and feature extraction methods based on the the ResNet-101
model and the SVHN as OoD data.

Feature

extraction
Method DTACC AUC AUPR

TNR at

TPR 95%

GAP LOFCos 86.22 92.39 92.03 48.96

LOFEuc 86.08 91.81 90.71 45.64

LOF_DCos 86.24 92.05 88.28 34.79

LOF_DEuc 86.10 91.60 87.28 36.98

Mahalanobis 87.66 93.91 93.73 57.87

MaxLogits 84.81 90.11 88.18 39.58

MaxSoftmax 83.77 88.93 87.40 32.11

OSNNCos 84.06 89.77 88.78 32.37

OSNNEuc 84.16 89.69 88.56 31.59

CroW LOFCos 84.58 91.05 90.37 46.66

LOFEuc 83.55 89.76 88.81 42.28

LOF_DCos 84.62 91.01 86.25 46.41

LOF_DEuc 83.75 89.78 84.51 0.00

Mahalanobis 84.16 90.87 90.20 48.66

OSNNCos 83.38 89.89 88.89 39.61

OSNNEuc 82.59 89.18 88.15 38.73

GAP_All LOFCos 86.67 92.55 91.76 50.05

LOFEuc 86.44 92.17 91.19 48.12

LOF_DCos 86.53 91.97 86.47 0.00

LOF_DEuc 86.42 91.76 86.20 0.00

Mahalanobis 90.00 95.10 94.17 65.45

OSNNCos 84.81 90.08 88.88 34.49

OSNNEuc 84.72 90.04 88.77 33.58

GMP LOFCos 87.17 93.31 93.09 55.57

LOFEuc 87.56 92.75 91.06 50.58

LOF_DCos 87.25 92.85 88.99 39.51

LOF_DEuc 87.46 92.56 87.99 41.49

Mahalanobis 87.03 94.69 94.82 70.91

OSNNCos 84.56 89.83 88.67 34.45

OSNNEuc 84.67 89.76 88.60 33.88

SCDA LOFCos 80.83 87.76 86.95 45.65

LOFEuc 79.61 86.76 85.88 42.43

LOF_DCos 80.67 87.39 83.50 30.35

LOF_DEuc 79.47 86.59 83.02 37.60

Mahalanobis 82.14 88.94 87.82 45.14

OSNNCos 79.64 87.22 86.42 36.55

OSNNEuc 79.61 87.17 86.44 36.25

90 research

Table 3.11: Comparision of the OoD and feature extraction methods based on the the ResNet-101
model and the CIFAR-100 as OoD data.

Feature

extraction
Method DTACC AUC AUPR

TNR at

TPR 95%

GAP LOFCos 82.31 88.96 88.45 37.07

LOFEuc 81.69 88.07 86.81 34.31

LOF_DCos 82.23 88.77 85.28 26.35

LOF_DEuc 81.63 87.94 83.99 27.75

Mahalanobis 84.47 91.21 90.97 46.03

MaxLogits 79.63 84.99 82.44 27.19

MaxSoftmax 79.40 84.73 82.58 25.46

OSNNCos 79.81 86.02 84.92 26.17

OSNNEuc 79.56 85.72 84.46 25.73

CroW LOFCos 81.87 88.51 87.74 44.88

LOFEuc 81.51 88.04 87.12 44.45

LOF_DCos 81.89 88.31 83.46 42.81

LOF_DEuc 81.66 87.79 82.21 0.00

Mahalanobis 82.34 89.30 88.65 46.37

OSNNCos 82.06 88.75 87.67 40.64

OSNNEuc 82.34 88.61 87.41 41.08

GAP_All LOFCos 82.42 88.78 87.90 36.32

LOFEuc 82.02 88.20 87.06 34.45

LOF_DCos 82.35 88.41 83.53 0.00

LOF_DEuc 81.89 87.93 82.98 0.00

Mahalanobis 83.58 90.10 89.03 40.77

OSNNCos 80.74 86.48 85.11 26.90

OSNNEuc 80.58 86.34 84.91 26.34

GMP LOFCos 83.89 90.33 90.04 43.83

LOFEuc 83.80 89.68 88.06 38.65

LOF_DCos 83.88 90.01 86.38 30.36

LOF_DEuc 83.87 89.53 85.33 30.46

Mahalanobis 84.31 92.26 92.27 60.83

OSNNCos 80.96 86.73 85.34 27.61

OSNNEuc 80.84 86.57 85.18 27.35

SCDA LOFCos 79.87 86.82 86.15 44.79

LOFEuc 79.45 86.61 85.94 44.05

LOF_DCos 79.94 86.68 82.70 35.26

LOF_DEuc 79.50 86.50 82.73 42.58

Mahalanobis 81.77 88.74 87.92 46.14

OSNNCos 80.92 87.84 86.80 39.00

OSNNEuc 80.95 87.72 86.70 39.41

3.4 the influence of features on ood detection 91

Table 3.12: Comparision of the OoD and feature extraction methods based on the the ResNet-101
model and the ImageNet-O as OoD data.

Feature

extraction
Method DTACC AUC AUPR

TNR at

TPR 95%

GAP LOFCos 88.98 95.75 95.75 75.12

LOFEuc 90.99 97.18 97.18 83.76

LOF_DCos 89.60 95.57 95.79 71.15

LOF_DEuc 91.33 91.50 89.77 28.55

Mahalanobis 92.48 97.42 97.31 86.10

MaxLogits 50.00 15.12 33.06 0.20

MaxSoftmax 50.00 40.27 43.25 0.50

OSNNCos 76.89 82.82 81.23 21.65

OSNNEuc 77.75 84.08 82.75 27.51

CroW LOFCos 92.65 97.91 97.94 88.18

LOFEuc 93.92 98.46 98.46 92.40

LOF_DCos 96.87 96.69 95.16 90.32

LOF_DEuc 97.44 96.57 94.44 99.26

Mahalanobis 94.27 98.03 97.99 92.40

OSNNCos 79.82 85.83 83.47 27.36

OSNNEuc 82.89 88.60 86.81 33.86

GAP_All LOFCos 87.69 94.83 94.86 71.15

LOFEuc 89.82 96.51 96.51 81.73

LOF_DCos 89.30 85.41 83.08 12.02

LOF_DEuc 91.39 92.17 92.01 42.95

Mahalanobis 93.47 97.91 97.78 90.02

OSNNCos 76.59 82.84 81.65 22.54

OSNNEuc 77.21 83.60 81.96 24.43

GMP LOFCos 92.13 97.51 97.50 85.10

LOFEuc 92.43 97.63 97.59 88.28

LOF_DCos 96.87 99.75 99.58 99.20

LOF_DEuc 96.87 94.48 91.77 4.82

Mahalanobis 75.87 82.38 81.24 30.44

OSNNCos 81.08 86.84 85.03 22.59

OSNNEuc 82.03 87.86 86.08 30.88

SCDA LOFCos 90.64 96.79 96.83 80.88

LOFEuc 91.86 97.41 97.41 87.59

LOF_DCos 49.98 0.71 30.78 0.20

LOF_DEuc 96.85 99.65 99.44 99.20

Mahalanobis 78.60 85.57 84.66 35.45

OSNNCos 77.93 83.43 81.33 18.77

OSNNEuc 82.47 87.84 86.07 29.00

92 research

Table 3.13: Comparision of the OoD and feature extraction methods based on the the ResNet-101
model and the Places365 as OoD data.

Feature

extraction
Method DTACC AUC AUPR

TNR at

TPR 95%

GAP LOFCos 86.40 93.80 93.86 63.76

LOFEuc 86.30 93.49 93.41 73.96

LOF_DCos 91.62 95.06 95.37 64.36

LOF_DEuc 91.58 94.20 93.56 56.92

Mahalanobis 82.55 90.06 89.36 45.08

MaxLogits 60.34 62.99 60.71 9.88

MaxSoftmax 70.64 75.35 73.06 14.84

OSNNCos 80.52 86.61 85.45 28.84

OSNNEuc 80.68 87.13 86.28 35.32

CroW LOFCos 91.00 96.60 96.63 75.68

LOFEuc 93.18 97.87 97.89 91.40

LOF_DCos 97.54 96.90 95.46 99.68

LOF_DEuc 97.50 97.11 95.08 99.52

Mahalanobis 90.74 95.88 95.41 76.31

OSNNCos 82.44 88.47 86.66 34.12

OSNNEuc 81.70 88.05 86.31 32.68

GAP_All LOFCos 85.96 93.67 93.77 62.32

LOFEuc 86.32 93.90 93.84 75.44

LOF_DCos 91.32 90.19 87.49 19.72

LOF_DEuc 91.30 96.68 96.78 80.24

Mahalanobis 85.18 92.19 91.74 57.35

OSNNCos 80.66 87.13 86.17 28.32

OSNNEuc 80.04 86.95 85.93 32.80

GMP LOFCos 92.44 97.84 97.86 86.76

LOFEuc 94.30 98.73 98.71 93.24

LOF_DCos 97.56 97.64 96.84 99.68

LOF_DEuc 97.54 97.92 97.47 99.64

Mahalanobis 81.63 88.06 86.89 38.18

OSNNCos 80.80 86.83 85.15 23.36

OSNNEuc 82.08 88.07 86.21 29.48

SCDA LOFCos 90.62 96.89 96.94 79.28

LOFEuc 93.40 98.40 98.42 91.36

LOF_DCos 97.58 97.79 97.22 99.68

LOF_DEuc 97.58 97.17 95.91 99.68

Mahalanobis 83.19 89.91 88.93 45.93

OSNNCos 80.88 86.81 85.19 25.44

OSNNEuc 82.70 88.65 87.08 33.04

3.4 the influence of features on ood detection 93

3.4.2 Effect of the Feature Reduction

Section Objectives
As we have shown above, the many OoD detection methods can work poorly in high-

dimensional space due to the "curse of dimensionality". This section focused on verifying if
the standard technique of reduction features (used mainly in the image retrieval problem)
also works in the context of OoD data. The idea of transforming features is relatively
simple: first, the L2 normalization is used, next, the PCA with whitening, and again L2 nor-
malization. This procedure should promote retrieval accuracy and reduce computational
costs. We tested this method in the context of OoD detection based on the ResNet-101
fitted on the CIFAR-10 model using 2048 length GAP features.

The features modification with using L2 normalization -> PCA reduction -> whitening ->
L2 normalization is described in many papers about image retrieval problems[247][75],[166].
PCA is used to reduce feature dimensionality, whitening[108] to down-weight co-
occurrence between features, and all L2 normalizations are used to achieve unit length. All
above should reduce the redundancy in features, speed up the calculation, and possibly
improve results.

Our research focused on using the above procedure on GAP features obtained from the
ResNet-101 model fitted on the CIFAR-10 dataset. These features contained raw 2048-length
vectors. We modified them by using L2->PCA with whitening->L2, reducing dimensionally
into n. We tested different variants of n: 3, 64, 128, and 512 length vectors. Next, we verified
the OoD detection results by fitting the OoD algorithms with modified features.

In tables 3.14, 3.15 and 3.16 we presented the results of our experiments for the Noise,
the SVHN, and the CIFAR-100 as OoD data. Thanks to normalization and whitening, the
Euclidean and Cosine distance difference is not noticeable. Generally achieved results are
slightly worse for the Mahalanobis, the MDistance, and the OSNN, but LOFs nearly equal
or even slightly better. For instance, for the Noise, the raw features of the Mahalanobis
achieved 94.99% and with PCA reduction into 128 length vectors into 92.54%, for the SVHN
93.91% (raw) and 89.47% (PCA n=128), and for the CIFAR-100 91.21% (raw) and 86.15%
(PCA n=128). In contrast, for the LOFCos for the Noise, this OoD method achieved 93.39%
of AUC for raw features, and 94.45% for PCA with a reduction into 128 length vectors
(better), for the SVHN 92.39% (raw) and 91.86% (PCA n=128), and for the CIFAR-100
88.86% (raw) and 86.82% (PCA n=128), but already 88.02% for PCA with reduction into 64
length vectors.

We also compared the reduction level by PCA. The PCA n=3 was proposed for possible
visualization purposes, but the results were poor. The PCA n=64 and PCA n=128 work
significantly well – the results are similar to results based on the raw data (on the scope
we wrote about in the previous paragraph). PCA n=512 works noticeably worse than raw
features, which was unexpected.

94 research

Table 3.14: Compare different level of features reduction with using L2 normalization -> PCA into n
dimensional with whitening -> L2 normalization – based on the ResNet-101 fitted on the
CIFAR-10 and the Noise as OoD.

Feature

modification
Method DTACC AUC AUPR

TNR at

TPR 95%

PCA n=3 LOFCos 74.38 79.50 77.56 36.77

LOFEuc 74.25 79.34 77.42 36.86

LOF_DCos 79.45 84.54 81.11 43.38

LOF_DEuc 79.44 84.41 80.94 43.73

Mahalanobis 76.42 82.92 81.26 34.17

MDistanceCos 76.50 83.09 81.73 33.11

MDistanceEuc 76.73 83.41 82.05 34.68

OSNNCos 67.77 72.47 70.51 12.68

OSNNEuc 67.77 72.47 70.51 12.68

PCA n=64 LOFCos 89.69 94.73 93.76 65.38

LOFEuc 89.71 94.73 93.76 65.33

LOF_DCos 90.08 93.58 90.22 53.77

LOF_DEuc 90.05 93.58 90.22 53.92

Mahalanobis 85.55 90.41 88.78 32.07

MDistanceCos 78.50 83.44 80.54 20.66

MDistanceEuc 78.75 83.99 81.28 23.23

OSNNCos 85.30 90.51 89.39 35.54

OSNNEuc 85.30 90.51 89.39 35.54

PCA n=128 LOFCos 89.52 94.45 92.90 63.39

LOFEuc 89.51 94.45 92.90 63.41

LOF_DCos 89.38 92.97 89.55 52.21

LOF_DEuc 89.37 92.99 89.59 52.00

Mahalanobis 87.52 92.54 91.31 46.35

MDistanceCos 76.22 80.73 77.52 15.73

MDistanceEuc 76.66 81.31 78.12 17.98

OSNNCos 86.58 91.62 90.43 40.29

OSNNEuc 86.58 91.62 90.43 40.29

PCA n=512 LOFCos 84.00 90.81 89.50 55.07

LOFEuc 83.98 90.81 89.50 54.96

LOF_DCos 86.65 91.75 88.50 57.98

LOF_DEuc 86.62 91.75 88.50 58.01

Mahalanobis 87.88 93.44 93.06 53.16

MDistanceCos 75.52 78.66 74.74 6.14

MDistanceEuc 74.89 77.97 73.91 5.90

3.4 the influence of features on ood detection 95

Table 3.14: Compare different level of features reduction with using L2 normalization -> PCA into n
dimensional with whitening -> L2 normalization – based on the ResNet-101 fitted on the
CIFAR-10 and the Noise as OoD.

Feature

modification
Method DTACC AUC AUPR

TNR at

TPR 95%

OSNNCos 82.25 88.20 86.73 33.53

OSNNEuc 82.25 88.20 86.73 33.53

RAW n=2048 LOFCos 87.64 93.39 93.00 52.61

LOFEuc 87.77 92.85 91.32 47.71

LOF_DCos 87.54 93.02 89.13 36.27

LOF_DEuc 87.77 92.70 88.24 37.73

Mahalanobis 89.98 94.99 94.47 63.06

MDistanceCos 82.91 88.14 86.15 29.18

MDistanceEuc 82.69 87.94 85.92 30.31

OSNNCos 86.00 91.17 90.21 35.89

OSNNEuc 86.05 91.03 89.87 35.33

Table 3.15: Compare different level of features reduction with using L2 normalization -> PCA into n
dimensional with whitening -> L2 normalization – based on the ResNet-101 fitted on the
CIFAR-10 and the SVHN as OoD.

Feature

modification
Method DTACC AUC AUPR

TNR at

TPR 95%

PCA n=3 LOFCos 73.19 78.48 76.54 33.98

LOFEuc 73.13 78.30 76.38 33.76

LOF_DCos 78.44 83.53 80.13 40.08

LOF_DEuc 78.42 83.37 79.96 40.58

Mahalanobis 75.22 81.56 79.68 30.96

MDistanceCos 75.17 81.73 80.12 29.87

MDistanceEuc 75.74 82.34 80.83 32.06

OSNNCos 67.17 71.56 69.31 12.04

OSNNEuc 67.17 71.56 69.31 12.04

PCA n=64 LOFCos 86.26 92.34 91.47 53.94

LOFEuc 86.27 92.36 91.49 53.85

LOF_DCos 86.71 91.53 88.20 44.88

LOF_DEuc 86.72 91.54 88.21 45.07

Mahalanobis 82.67 87.94 86.10 25.74

MDistanceCos 73.61 77.45 73.32 13.88

96 research

Table 3.15: Compare different level of features reduction with using L2 normalization -> PCA into n
dimensional with whitening -> L2 normalization – based on the ResNet-101 fitted on the
CIFAR-10 and the SVHN as OoD.

Feature

modification
Method DTACC AUC AUPR

TNR at

TPR 95%

MDistanceEuc 74.10 78.40 74.60 14.93

OSNNCos 82.29 88.06 86.73 29.99

OSNNEuc 82.29 88.06 86.73 29.99

PCA n=128 LOFCos 85.80 91.86 90.75 51.03

LOFEuc 85.82 91.87 90.76 51.12

LOF_DCos 85.83 90.62 87.26 42.81

LOF_DEuc 85.86 90.64 87.30 42.64

Mahalanobis 83.91 89.47 87.91 33.75

MDistanceCos 74.41 79.02 75.93 16.36

MDistanceEuc 74.97 79.80 76.80 17.99

OSNNCos 83.17 88.91 87.60 32.90

OSNNEuc 83.17 88.91 87.60 32.90

PCA n=512 LOFCos 77.97 85.36 83.90 39.15

LOFEuc 77.95 85.36 83.90 39.02

LOF_DCos 81.18 87.44 84.23 43.32

LOF_DEuc 81.17 87.44 84.23 43.15

Mahalanobis 83.84 89.85 89.08 37.37

MDistanceCos 73.44 76.70 72.35 9.34

MDistanceEuc 73.02 76.27 71.81 9.04

OSNNCos 79.00 85.04 83.45 28.80

OSNNEuc 79.00 85.04 83.45 28.80

RAW n=2048 LOFCos 86.22 92.39 92.03 48.96

LOFEuc 86.08 91.81 90.71 45.64

LOF_DCos 86.24 92.05 88.28 34.79

LOF_DEuc 86.10 91.60 87.28 36.98

Mahalanobis 87.66 93.91 93.73 57.87

MDistanceCos 81.28 86.53 84.34 25.30

MDistanceEuc 80.06 84.71 81.72 19.15

OSNNCos 84.06 89.77 88.78 32.37

OSNNEuc 84.16 89.69 88.56 31.59

3.4 the influence of features on ood detection 97

Table 3.16: Compare different level of features reduction with using L2 normalization -> PCA into n
dimensional with whitening -> L2 normalization – based on the ResNet-101 fitted on the
CIFAR-10 and the CIFAR-100 as OoD.

Feature

modification
Method DTACC AUC AUPR

TNR at

TPR 95%

PCA n=3 LOFCos 69.78 73.92 71.73 28.35

LOFEuc 69.68 73.76 71.60 28.16

LOF_DCos 74.03 78.52 75.04 32.60

LOF_DEuc 73.91 78.36 74.88 33.29

Mahalanobis 71.62 77.45 75.47 25.86

MDistanceCos 71.30 77.78 76.15 24.64

MDistanceEuc 71.94 78.50 76.96 26.35

OSNNCos 65.33 69.19 66.78 11.44

OSNNEuc 65.33 69.19 66.78 11.44

PCA n=64 LOFCos 81.74 88.02 86.62 38.74

LOFEuc 81.77 88.05 86.65 38.74

LOF_DCos 82.46 87.77 84.34 30.89

LOF_DEuc 82.46 87.79 84.36 30.95

Mahalanobis 78.95 84.31 82.27 22.22

MDistanceCos 71.84 75.06 70.50 12.53

MDistanceEuc 71.73 75.17 70.59 12.99

OSNNCos 78.63 84.39 82.59 24.24

OSNNEuc 78.63 84.39 82.59 24.24

PCA n=128 LOFCos 80.61 86.82 84.93 34.95

LOFEuc 80.56 86.83 84.95 34.99

LOF_DCos 80.76 86.09 82.52 28.80

LOF_DEuc 80.74 86.10 82.56 28.67

Mahalanobis 80.30 86.15 84.44 26.93

MDistanceCos 71.43 74.77 70.32 12.98

MDistanceEuc 72.34 75.96 71.74 14.81

OSNNCos 79.63 85.21 83.40 25.85

OSNNEuc 79.63 85.21 83.40 25.85

PCA n=512 LOFCos 71.09 77.62 75.73 23.84

LOFEuc 71.09 77.62 75.73 23.78

LOF_DCos 74.66 80.97 77.73 28.18

LOF_DEuc 74.64 80.96 77.74 28.10

Mahalanobis 79.57 85.39 83.98 27.85

MDistanceCos 72.60 75.58 70.98 8.77

MDistanceEuc 72.17 74.98 70.23 8.04

98 research

Table 3.16: Compare different level of features reduction with using L2 normalization -> PCA into n
dimensional with whitening -> L2 normalization – based on the ResNet-101 fitted on the
CIFAR-10 and the CIFAR-100 as OoD.

Feature

modification
Method DTACC AUC AUPR

TNR at

TPR 95%

OSNNCos 74.83 80.75 78.82 23.41

OSNNEuc 74.83 80.75 78.82 23.41

RAW n=2048 LOFCos 82.31 88.96 88.45 37.07

LOFEuc 81.69 88.07 86.81 34.31

LOF_DCos 82.23 88.77 85.28 26.35

LOF_DEuc 81.63 87.94 83.99 27.75

Mahalanobis 84.47 91.21 90.97 46.03

MDistanceCos 77.66 82.87 80.10 22.05

MDistanceEuc 77.38 82.68 80.14 23.71

OSNNCos 79.81 86.02 84.92 26.17

OSNNEuc 79.56 85.72 84.46 25.73

Section Summary The feature reduction is successfully used in many image retrieval
solutions and can be applied in OoD problems when using LOF-based methods. However,
it should be avoided for other OoD methods. Our experiments suggest using reduction to
around 128 components. We did not make performance tests, but we expected to reduce
training and usage time and memory – with 128 components, the reduction was 16 times.

3.4.3 An Impact of Data Augmentation Techniques on the Robustness and OoD Detection

Section Objectives Images augmentation is the technique of changing training data to
increase their diversity. The various strategies allow networks to learn different patterns
and, consequently, different features. We hypothesize that by choosing the proper strategy,
the networks can increase the robustness and capabilities of OoD detection. Both are
strongly correlated due to robust models generating robust features allowing for better
distinction between known and unknown samples. We trained CNNs models with 21
different augmentations to verify the above statement. For checking robustness, we pre-
pared 10 types of distortions for the same test subset, and we checked the influence of the
models on the final accuracy. For checking the OoD we performed classic tests described
in previous sections by using the models with diverse augmentations. Part of this research
focused on robustness is based on one of our papers[239].

Augmentation[219] is a popular technique in deep learning to increase training data
diversity. There are many different approaches. The typical ones are, among others,
changing the brightness, rotation, or applying horizontal flip. However, there are
also specific applications for instance, in [65] authors focus on the influence of color

3.4 the influence of features on ood detection 99

augmentation for skin image analysis, in [237] on the influence of the images color spaces,
in [63] on using GAN to modify the image, or in [45] on automatically search proper
augmentation policies.

First, we have checked the influence of the augmentation of the robustness of the models.
The input data significantly influence the final shape of the features obtained by CNNs.
There are papers[185][76], which deal with similar problems too. However, we focused on
different type of distortions (described below), and they focused on distortions based on
the ℓ2- and ℓ∞-norm-bounded perturbations[44].

We trained CNN models, the ResNet-101 on the CIFAR-10 and the MobileNet v2 on the
CIFAR-100 datasets. We set the same hyperparameters for all models except the augmenta-
tion strategy. We normalized all images to a uniform mean of 0 and a standard deviation
of 1. We tried the following augmentation techniques (mostly we used Albumentations[28]
library): None, Affine, CLAHE, CoarseDropout, ColorJitter, CropAndPad, CutMix[279],
FancyPCA, GaussNoise, GridDistortion, HorizontalFlip, HueSaturationValue, MedianBlur,
MixUp[284], RandomBrightnessContrast, RandomGridShuffle, RandomShadow, Solarize,
VerticalFlip, Complex 1 (mix of HorizontalFlip, RandomBrightnessContrastm, ShiftScaleRo-
tate, ImageCompression, HueSaturationValue), and Complex 2 (mix of HorizontalFlip,
ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue). See the
details of each method in the library documentation 1.

Detailed parameters for each augmentation are presented below. For CropAndPad, we
used px = (−3, 3), for CoarseDropout max_holes = 5, max_height = 3, and max_width =

3, for GaussNoise var_limit = (15.0, 80.0), for MedianBlur blur_limit = 3, for Complex
1 ShiftScaleRotate with rotate_limit = 15, scale_limit = 0.10, ImageCompression with
value 80, and for Complex 2 ShiftScaleRotate with shi f t_limit = 0.05, scale_limit = 0.05,
and rotate_limit = 5, Blur with blur_limit = 3. For all others approaches, we used
Albumentations’s default parameters. For MixUp, we used the publicly available code from
the authors of [284] with default configuration, and for CutMix this code2 with followig
parameters beta = 1.0 and num_mix = 6.

Figure 3.9 showed the proposed augmentations for the CIFAR-10. By default, the
augmentation is applied with 50% probability for most methods, but the image showed
examples with artificially increased that probability to 1.0. The above augmentation
methods can be grouped in many ways. For instance, by spatial-level transforms (i.e.,
Affine, CropAndPad, VerticalFlip), by color manipulations (i.e., ColorJitter, GaussNoise,
RandomBrightnessContrast, HueSaturationValue), by adding minor distortion (i.e.,
CoarseDropout, GridDistortion, GaussNoise, GridDistortion, RandomGridShuffle), by
mixing different images (CutMix and MixUp), by "weather" augmentation (i.e.,
RandomShadow, Solarize), by complexity (Complex 1, Complex 2).

Overall, we had 21 CNN models for the ResNet-101 fitted on the CIFAR-10 and 21
MobileNet v2 models fitted on the CIFAR-100.

We measured robustness as the accuracy of the test subset with applied variety
distortions. By distortions, we mean applying strong augmentation so that humans could
mostly recognize objects on the images, despite adding severe distortion. We tested the
following methods: GaussNoise, Rotate, Blur, Downscale, Cutout, Hue, RandomBrightness,
OverlayImage, ToGray. See the examples of the above in figure 3.10. The experiments of
checking robustness consisted of testing the accuracy of the data entirely modified by the
above strong augmentation. We tested all 21 models for ResNet-101 and MobileNet v2.

1https://albumentations.ai/docs/api_reference/full_reference/
2https://github.com/ildoonet/cutmix

https://albumentations.ai/docs/api_reference/full_reference/
https://github.com/ildoonet/cutmix

100 research

Figure 3.9: The examples of augmentations that we used. By default, we applied the augmentation
with 50% probability.

Detailed parameters for the Albumentations library for each strong augmenta-
tion(distortions) are presented below. For GaussNoise var_limit = (0.035, 0.035), for
Rotate one of the limit = [90, 90] or limit = [270, 270], for Blur blur_limit = [4, 4], for
Downscale scale_min = 0.4 and scale_max = 0.4, for Cutout we used twice Cutout meth-
ods with diffrents configurations num_holes = 5, max_h_size = 10, max_w_size = 3 and
num_holes = 5, max_h_size = 3, max_w_size = 10 for Hue one of the

3.4 the influence of features on ood detection 101

hue_shi f t_limit = (20, 20) or hue_shi f t_limit = (−20,−20) both with
at_shi f t_limit = 0 and val_shi f t_limit = 0, for RandomBrightness one of the limit =

(0.5, 0.5) or limit = (−0.5,−0.5). For OverlayImage, one of the five emoticons 12px by 12px
image was overlaid (about 14% of the image area). For all complex images, the probability
of applied augumentation was set to 1.0. Others parameters were set as default.

The results of our robustness test are shown in table 3.17. The column None presents the
classic test accuracy without any images transformations. All augmentation techniques for
the ResNet-101 fitted on the CIFAR-10 significantly increase the final results from the 75%
(no augmentation) up to 85% (least MedianBlur) or 94% (most Affine and CropAndPad).
The MobileNet v2 fitted on the CIFAR-100 model achieved 64% without augmentation. Up
to 9 methods did not improve results. The best method achieved up to 9p.p. better results
(Affine).

We can see that generally, CropAndPad with Affine returned the best results. The above
suggests that essential augmentation is changing the object’s position. HorizontalFlip (92%
for the CIFAR-10 and 69% for the CIFAR-100) achieved a similarly good result, which
confirms above. The methods that change a single pixel’s colors did not achieve the best
results - see, i.e., ColorJitter, FancyPCA, HSV, or RandomBrightnessConstrast. It suggests
that images are varied naturally enough, and only minor changes in pixels may be applied.
The distortion and mixing of the two images group achieved not bad results.

In the rest of the columns of table 3.17, we presented the results of robustness analysis
based on the final accuracy on distorted images.

The Hue was the least effective approach - the networks seemed to be relatively robust
on it. We hypothesize the same as above: the objects in both datasets are varied on
pixel-level naturally enough. A similar case was for another pixel-level change as ToGray.
Downscale was the more complex distortion for the humans and CNN models. The
well-known fact that the networks are not robust for rotation[133] was also observable
in our experiments. All augmentation methods nearly equally failed. The most variation
distractions were Cutout and Blur. The good augmentations were similar to this distortion,
so CoarseDropout and CutMix for Cutout and Complex 2 and MedianBlur for Blur. The
Affine or CropAndPad were good alternative methods.

There are other notable results. For Downscale, the no augmentation achieved the best
results for CIFAR-10 ResNet-101. The RandomBrightnessContrast worked well only for
RandomBrightness distortion. CutMix generally worked well for all distortions, especially
for OverlayImage. Complex augmentation is a good direction for increasing robustness –
however, they were not as significant as we expected. A simple and popular approach -
CropAndPad - achieved outstanding results.

102 research

Figure 3.10: The example of distorted images used for robustness evaluation. We set parameters so
that humans could recognize the correct class of the image in most cases.

Table 3.17: The robustness analysis based on non-modified and strongly distorted images for the
CIFAR-10 and the CIFAR-100 datasets. We presented an evaluation of two different CNN
models.

A
ug

M
od

el

N
on

e

Bl
ur

C
ut

ou
t

D
ow

ns
ca

le

G
au

ss
N

oi
se

H
ue

O
ve

rl
ay

Im
ag

e

R
an

do
m

Br
ig

ht
ne

ss

R
ot

at
e

To
G

ra
y

A
vg

The ResNet-101 on the CIFAR-10

3.4 the influence of features on ood detection 103

Table 3.17: The robustness analysis based on non-modified and strongly distorted images for the
CIFAR-10 and the CIFAR-100 datasets. We presented an evaluation of two different CNN
models.

A
ug

M
od

el

N
on

e

Bl
ur

C
ut

ou
t

D
ow

ns
ca

le

G
au

ss
N

oi
se

H
ue

O
ve

rl
ay

Im
ag

e

R
an

do
m

Br
ig

ht
ne

ss

R
ot

at
e

To
G

ra
y

A
vg

None 75% 49% 32% 61% 34% 70% 55% 29% 28% 66% 50%

Affine 94% 59% 81% 32% 46% 90% 80% 63% 41% 88% 67%

CLAHE 88% 56% 34% 25% 52% 85% 66% 66% 35% 82% 59%

CoarseDrop 89% 36% 82% 24% 49% 85% 71% 58% 34% 85% 61%

ColorJitter 87% 37% 32% 22% 51% 87% 65% 63% 31% 85% 56%

Crop&Pad 94% 71% 73% 33% 52% 90% 74% 64% 41% 87% 68%

CutMix 92% 27% 81% 24% 29% 87% 87% 62% 39% 84% 61%

FancyPCA 88% 29% 33% 20% 47% 87% 68% 63% 32% 85% 55%

GaussNoise 88% 43% 33% 28% 51% 85% 67% 56% 32% 83% 57%

GridDist 93% 69% 60% 53% 48% 88% 73% 63% 38% 85% 67%

HorizFlip 92% 32% 39% 29% 52% 89% 73% 64% 37% 87% 59%

HSV 87% 29% 32% 21% 44% 87% 64% 61% 32% 85% 54%

MedianBlur 85% 76% 37% 46% 52% 80% 65% 55% 31% 78% 61%

MixUp 87% 49% 37% 37% 43% 84% 69% 61% 31% 77% 58%

RBrighCon 88% 39% 29% 20% 61% 85% 67% 74% 34% 84% 58%

RGridShuf 91% 24% 69% 21% 37% 86% 80% 61% 40% 85% 59%

RShadow 88% 37% 59% 25% 40% 84% 71% 53% 34% 83% 57%

Solarize 88% 37% 48% 21% 41% 84% 71% 53% 34% 83% 56%

VerticalFlip 88% 27% 32% 28% 39% 83% 66% 56% 40% 81% 54%

Complex 1 93% 67% 42% 38% 65% 92% 70% 80% 34% 88% 67%

Complex 2 93% 89% 48% 58% 52% 92% 70% 63% 34% 85% 68%

Avg 89% 47% 48% 32% 47% 86% 70% 60% 35% 83% 60%

The MobileNetV2 on the CIFAR-100

None 64% 23% 11% 8% 19% 53% 25% 32% 24% 44% 30%

Affine 71% 33% 50% 13% 17% 57% 34% 28% 30% 45% 38%

CLAHE 64% 28% 15% 13% 23% 53% 25% 34% 23% 42% 32%

CoarseDrop 66% 23% 55% 11% 20% 54% 27% 32% 24% 44% 36%

ColorJitter 63% 18% 9% 9% 25% 62% 24% 36% 21% 48% 32%

Crop&Pad 70% 43% 43% 13% 18% 57% 31% 32% 29% 45% 38%

CutMix 70% 20% 53% 5% 14% 55% 58% 31% 30% 46% 38%

104 research

Table 3.17: The robustness analysis based on non-modified and strongly distorted images for the
CIFAR-10 and the CIFAR-100 datasets. We presented an evaluation of two different CNN
models.

A
ug

M
od

el

N
on

e

Bl
ur

C
ut

ou
t

D
ow

ns
ca

le

G
au

ss
N

oi
se

H
ue

O
ve

rl
ay

Im
ag

e

R
an

do
m

Br
ig

ht
ne

ss

R
ot

at
e

To
G

ra
y

A
vg

FancyPCA 64% 19% 11% 11% 22% 62% 24% 35% 21% 50% 32%

GaussNoise 62% 28% 12% 17% 28% 52% 25% 29% 22% 42% 32%

GridDist 68% 41% 32% 33% 17% 53% 26% 30% 29% 41% 37%

HorizFlip 69% 23% 14% 11% 20% 57% 30% 34% 27% 47% 33%

HSV 63% 18% 10% 10% 22% 62% 26% 33% 21% 49% 31%

MedianBlur 63% 36% 16% 23% 18% 51% 27% 30% 23% 39% 33%

MixUp 68% 29% 16% 19% 21% 57% 33% 35% 25% 46% 35%

RBrighCon 64% 24% 12% 10% 27% 53% 24% 46% 23% 43% 33%

RGridShuf 67% 16% 28% 7% 14% 54% 39% 28% 28% 42% 32%

RShadow 65% 23% 35% 8% 19% 53% 38% 29% 25% 43% 34%

Solarize 64% 24% 24% 9% 18% 53% 37% 27% 24% 44% 32%

VerticalFlip 64% 20% 12% 9% 16% 51% 22% 29% 29% 43% 29%

Complex 1 67% 40% 13% 17% 32% 66% 28% 44% 24% 49% 38%

Complex 2 66% 60% 20% 36% 19% 63% 24% 30% 23% 42% 38%

Avg 66% 28% 23% 14% 20% 56% 30% 33% 25% 45% 34%

We checked the influence of augmentation for OoD detection – see table table 3.18. We
tested two variants: the MobileNet v2 with the SVHN as the OoD and the ResNet-101 with
the CIFAR-100 as the OoD, both trained on the CIFAR-10. We examined three OoD methods
Mahalanobis, MaxSoftmax, and LOFEuc. We can see that the influence of OoD is significant.
For AUC the differences were up to even 20 p.p. (see ResNet-101 for MaxSoftmax). The
outstanding method is the MixUp. Following the authors of this method[284] "mixup leads
to decision boundaries that transition linearly from class to class, providing a smoother
estimate of uncertainty". Interestingly, the similar method - CutMix was not working so
well. The OoD methods did not influence the results as much as the augmentation strategy,
suggesting that the feature’s shape is more important than the OoD method. However, it
seems, that there were methods that were "designed" for a particular OoD approach, like
Complex ones, which worked better for Mahalanobis. The more general conclusion can
also be that the more robust the model, the better OoD detection. Both are related.

3.4 the influence of features on ood detection 105

Table 3.18: The OoD analysis based on different augumentation startegy. We tested the MobileNet
v2 with the SVHN as the OoD and the ResNet-101 with the CIFAR-100 as the OoD, both
trained on the CIFAR-10.

Model Mahalanobis MaxSoftmax LOFEuc

AUC
TNR at

TPR 95%
AUC

TNR at

TPR 95%
AUC

TNR at

TPR 95%

Model: MobileNetV2 – OoD: SVHN

None 89.2% 37.0% 81.0% 23.8% 83.7% 29.0%

Affine 90.4% 48.2% 85.9% 30.5% 78.7% 25.3%

CLAHE 89.0% 41.0% 83.0% 25.2% 81.2% 26.3%

CoarseDropout 89.6% 43.0% 82.8% 24.8% 82.6% 27.4%

ColorJitter 89.7% 41.6% 83.3% 25.8% 84.8% 30.8%

CropAndPad 90.1% 42.6% 86.5% 32.0% 80.8% 24.7%

CutMix 87.5% 43.9% 79.5% 30.5% 83.3% 29.4%

FancyPCA 90.4% 43.0% 82.4% 24.5% 84.7% 32.1%

GaussNoise 89.1% 40.2% 82.9% 24.8% 83.9% 29.6%

GridDistortion 90.5% 47.1% 86.8% 32.4% 81.0% 27.9%

HorizontalFlip 91.4% 47.3% 84.7% 28.8% 84.5% 32.7%

HSV 89.4% 39.2% 82.7% 25.2% 83.8% 29.4%

MedianBlur 90.2% 43.0% 82.2% 24.2% 83.4% 30.6%

MixUp 96.6% 75.7% 96.3% 69.8% 98.4% 91.1%

RBrightnessContrast 90.3% 44.1% 83.5% 26.5% 84.4% 29.9%

RGridShuffle 87.6% 40.3% 83.6% 25.8% 79.7% 25.5%

RShadow 90.3% 42.6% 83.4% 26.0% 85.5% 33.1%

Solarize 88.6% 38.8% 81.6% 23.2% 79.7% 23.3%

VerticalFlip 88.0% 43.3% 81.8% 23.1% 79.2% 26.7%

Complex 1 91.5% 52.6% 87.8% 35.6% 85.3% 38.0%

Complex 2 91.3% 52.5% 86.8% 31.1% 80.8% 28.6%

Model: ResNet-101 – OoD: CIFAR-100

None 78.2% 30.4% 68.9% 11.9% 68.5% 17.2%

Affine 90.9% 58.3% 83.8% 26.5% 82.9% 34.7%

CLAHE 87.9% 47.8% 77.8% 17.6% 83.2% 35.1%

CoarseDropout 89.7% 51.5% 77.0% 16.2% 83.3% 33.3%

ColorJitter 85.7% 41.1% 76.8% 17.9% 81.5% 29.3%

CropAndPad 92.7% 61.1% 84.3% 27.8% 83.8% 35.1%

CutMix 85.9% 36.3% 82.0% 30.9% 80.5% 20.3%

FancyPCA 87.2% 39.0% 76.8% 16.3% 81.5% 26.8%

GaussNoise 87.5% 41.8% 78.0% 19.4% 82.5% 30.0%

GridDistortion 90.6% 52.2% 84.1% 27.7% 82.9% 33.4%

106 research

Table 3.18: The OoD analysis based on different augumentation startegy. We tested the MobileNet
v2 with the SVHN as the OoD and the ResNet-101 with the CIFAR-100 as the OoD, both
trained on the CIFAR-10.

Model Mahalanobis MaxSoftmax LOFEuc

AUC
TNR at

TPR 95%
AUC

TNR at

TPR 95%
AUC

TNR at

TPR 95%

HorizontalFlip 90.4% 53.0% 82.6% 24.8% 84.5% 36.4%

HSV 85.4% 33.1% 76.3% 15.5% 80.2% 22.6%

MedianBlur 86.3% 39.7% 75.1% 15.1% 80.5% 25.4%

MixUp 88.1% 34.9% 90.9% 38.3% 90.6% 41.4%

RBrightnessContrast 89.2% 49.3% 76.9% 16.7% 83.1% 33.6%

RGridShuffle 88.2% 45.7% 80.4% 21.4% 81.3% 29.4%

RShadow 87.5% 43.2% 76.2% 17.2% 81.9% 30.9%

Solarize 87.9% 44.8% 75.7% 16.3% 80.8% 28.6%

VerticalFlip 86.5% 44.2% 77.1% 17.8% 81.3% 31.2%

Complex 1 91.1% 55.2% 84.4% 28.5% 85.2% 37.5%

Complex 2 91.8% 61.1% 82.6% 26.5% 83.7% 39.4%

Section Summary The most effective augmentation strategy was a modification of the
object’s position. Modification of pixels’ color values did not lead to a significant influence
on the effectiveness of the network. The robustness and OoD detection seemed to be
correlated. The better robustness of the model, the better OoD detection efficiency. The
variety of augmentations may help achieve more stable results. The idea of mixing images
improves robustness, but above all, it is beneficial for OoD detection.

3.4.4 Testing the Sensitivity of the OoD Detection Based on the CNN Model State

Section Objectives We observed some not-intuitive behaviors during our experiments.
CNN models with the same architecture, similar close-set accuracy, but different initial
hyperparameters achieved distinguishable OoD performances. We decided to explore this
phenomenon in detail in this section. Moreover, we tested the stability of OoD detection
during the learning process.

To investigate the phenomenon described above, we trained two ResNet-101 CNN models
(exact same architecture) fitted on the CIFAR-10 dataset. The first model (called A) achieved
94,79% of accuracy. It was fitting for 300 epochs using the MultiStepLR (for epochs: 175, 225,
275, and gamma=0.1) as a learning rate scheduler. The second model (called B) achieved
94,65% of accuracy. It was fitting for 100 epochs and with ReduceLROnPlateau(patience=5,
min_lr=1e-06) as learning rate scheduler. For both we used SGD (lr=0.01, momentum=0.9,
weight_decay=0.0005), the CrossEntropy as loss function, and the same augmentation
strategy. For both, we used the same Python library.

3.4 the influence of features on ood detection 107

In table 3.19 we presented a comparison of OoD results for both models A and B. We
can notice that model B is much more effective in recognizing the Noise. Model A worked
not well here. The best approach, the Mahalanobis, achieved only 94.99% of AUC and
63.06% of TNR at TPR 95%. Notice the simplicity of the above problem. However, for the
SVHN and the CIFAR-100 detection, there was no one better, more suitable model. The
best approach for SVHN for model A was Mahalanobis (93.91% of AUC and 57.87% of
TNR at TPR 95%), and for the model, B was LOFCos (93.00% of AUC and 58.80% of TNR
at TPR 95%). For the CIFAR-100, the best was model A with Mahalanobis(91.21% of AUC
and 58.80% of TNR at TPR 46.03%), the model B achieved (88.03% of AUC and 35.70%
of TNR at TPR 95%) with OSNNEUC. As we can see, the models strongly affect of OoD
methods, especially for far problems.

Table 3.19: Comparison of the OoD based on two models with exactly the same architecture and
comparable accuracy. See the significant differences.

Out-dist Method Model DTACC AUC AUPR
TNR at

TPR 95%

Noise LOFCos A 87.64 93.39 93.00 52.61

LOFCos B 99.30 99.90 99.89 100.00

LOFEuc A 87.77 92.85 91.32 47.71

LOFEuc B 98.51 99.46 99.33 100.00

LOF_DCos A 87.54 93.02 89.13 36.27

LOF_DCos B 99.31 99.70 99.23 100.00

LOF_DEuc A 87.77 92.70 88.24 37.73

LOF_DEuc B 98.56 99.22 98.70 100.00

Mahalanobis A 89.98 94.99 94.47 63.06

Mahalanobis B 100.00 100.00 100.00 100.00

MaxSoftmax A 86.63 91.41 90.08 37.94

MaxSoftmax B 95.14 97.55 97.07 87.14

MDistance Cos A 82.91 88.14 86.15 29.18

MDistance Cos B 93.23 97.17 96.53 84.11

MDistance Euc A 82.69 87.94 85.92 30.31

MDistance Euc B 92.42 96.30 95.47 75.43

OSNNCos A 86.00 91.17 90.21 35.89

OSNNCos B 95.33 97.87 97.49 91.33

OSNNEuc A 86.05 91.03 89.87 35.33

OSNNEuc B 95.95 97.73 97.22 94.06

SVHN LOFCos A 86.22 92.39 92.03 48.96

LOFCos B 86.43 93.00 92.73 57.80

108 research

Table 3.19: Comparison of the OoD based on two models with exactly the same architecture and
comparable accuracy. See the significant differences.

Out-dist Method Model DTACC AUC AUPR
TNR at

TPR 95%

LOFEuc A 86.08 91.81 90.71 45.64

LOFEuc B 80.81 87.95 87.24 36.20

LOF_DCos A 86.24 92.05 88.28 34.79

LOF_DCos B 86.30 92.99 92.30 59.97

LOF_DEuc A 86.10 91.60 87.28 36.98

LOF_DEuc B 82.48 89.51 88.43 43.48

Mahalanobis A 87.66 93.91 93.73 57.87

Mahalanobis B 82.25 89.33 88.77 41.34

MaxSoftmax A 83.77 88.93 87.40 32.11

MaxSoftmax B 86.23 91.60 90.81 43.22

MDistanceCos A 81.28 86.53 84.34 25.30

MDistanceCos B 83.79 90.11 89.01 42.25

MDistanceEuc A 80.06 84.71 81.72 19.15

MDistanceEuc B 80.67 86.29 83.41 24.13

OSNNCos A 84.06 89.77 88.78 32.37

OSNNCos B 86.39 91.88 90.86 43.60

OSNNEuc A 84.16 89.69 88.56 31.59

OSNNEuc B 86.21 91.76 90.74 43.73

CIFAR-100 LOFCos A 82.31 88.96 88.45 37.07

LOFCos B 79.48 87.22 86.74 47.84

LOFEuc A 81.69 88.07 86.81 34.31

LOFEuc B 76.59 84.06 83.38 40.78

LOF_DCos A 82.23 88.77 85.28 26.35

LOF_DCos B 79.78 87.34 86.42 47.36

LOF_DEuc A 81.63 87.94 83.99 27.75

LOF_DEuc B 77.55 84.88 83.93 41.41

Mahalanobis A 84.47 91.21 90.97 46.03

Mahalanobis B 78.55 85.91 85.16 37.59

MaxSoftmax A 79.40 84.73 82.58 25.46

MaxSoftmax B 81.69 87.83 86.82 36.98

MDistanceCos A 77.66 82.87 80.10 22.05

3.4 the influence of features on ood detection 109

Table 3.19: Comparison of the OoD based on two models with exactly the same architecture and
comparable accuracy. See the significant differences.

Out-dist Method Model DTACC AUC AUPR
TNR at

TPR 95%

MDistanceCos B 79.59 85.67 83.93 34.36

MDistanceEuc A 77.38 82.68 80.14 23.71

MDistanceEuc B 74.84 79.13 74.91 13.65

OSNNCos A 79.81 86.02 84.92 26.17

OSNNCos B 81.80 88.02 86.85 35.18

OSNNEuc A 79.56 85.72 84.46 25.73

OSNNEuc B 81.95 88.03 86.85 35.70

Based on the above case, we decided to check the results fluctuation during the learning
process. The hypothesis question was that the long-fitting models are more stable in OoD
detection problem. We trained another ResNet-101 model. We fitted it on the CIFAR-10
dataset, and we saved the model states over every 10 epochs during the training phase.
See figure 3.11, where the accuracy over the validation subset is shown. The model nearly
stopped improving its results from 95 epochs. However, the total loss on the training data
was still minimizing so that the features space could be changing – on the other hand,
the learning rate was low, so the changes should not be significant. The learning rate was
changing in the following epochs 0 (lr=0.01), 88 (lr=0.001), 122 (lr=0.0001).

Figure 3.11: Changing the accuracy of the validation set over the epochs during the training process.

See figures 3.12, 3.13 and 3.14, where we presented the dynamic of changes AUC and
TNR at TPR 95% over every 10 epochs. We can notice that the Noise and the SVHN were
much less stable than the CIFAR-100.

For the Noise, there are many phenomena. First, the unfitted model (random weights)
achieved remarkably good results for LOFCos and MDistanceEuc. They worked better than
most methods even after long-term training. However, the MDistanceEuc quickly dropped,
then rose again (around 50 epoch) to drop again. Finally, it established around 50% for
TNR at TPR 95%. The LOFCos, LOF_DEuc and Mahalanobis worked as expected – the
results were rising during training, and they were stable. The unexpected situations were
between 50-70 epochs and 90-110 for OSNNEuc and MaxLogits – they had the highest

110 research

Figure 3.12: Comparison of the OoD approaches over the epochs on the Noise as OoD data.

Figure 3.13: Comparison of the OoD approaches over the epochs on the SVHN as OoD data.

fluctuation. In the second window, the learning rate dropped – it could influence the
network.

For the SVHN the situation was similar – nearly all OoD approaches were not very stable
during training. Again the MDistanceEuc worked well on the untrained model. The LOFCos

achieved the best results overall in around 40 epoch, but next, the result was dropped.
Generally, most of the methods were dropping after 40 epochs. The LOF_DEuc and the
Mahalanobis again were the very stable method

The CIFAR-100 seemed to be the most stable dataset. First of all, the untrained model
did not work. Most methods except MDistanceEuc were stable – the results increased over
time without significant drops. The MaxLogits was achieving the best result (around 90
epoch), but then the results slightly dropped.

3.4 the influence of features on ood detection 111

Figure 3.14: Comparison of the OoD approaches over the epochs on the CIFAR-100 as OoD data.

Section Summary The OoD approaches are very sensitive to network state - indeed,
its weights. The models with the same CNN architecture but with slightly different
hyperparameters can achieve completely different results - especially for more far OoD
distribution problems. The problem is also visible for changing weights over the epochs
during the training process. There were many hard-to-explain cases in our experiments
- like good results on completely untrained models (see the Noise and MDistanceEuc) or
unexpected significant drop (see SVHN and LOFCos). We suggest using Mahalanobis or
LOF_DEuc as the most stable methods. These results may be worrying in the context of
benchmarks – where easily find the state of the model where one method overcomes
another. For example, compare Mahalanobis and MaxLogits in 90 and 130 epoch for the
SVHN and the CIFAR-100, the close-set accuracy was similar – in 90 epoch the MaxLogits
overcome Mahalanobis, and in 130 was otherwise.

3.4.5 Easy and Hard Subsets for OoD Detection

Section Objectives The concept of near and far OoD examples is often used in litera-
ture[61][189]. However, there are no clear guidelines for that categorizing unknown images.
Usually, we humans decide if the unknown classes are close enough (in image space) to
in-distribution data to treat them as near or far. We argued with the above. The network
generates features, and they determine if the specific image is close to others images with
the same class or is not. Because the network can not be fully robust (i.e., by learning
spurious correlations [272][240]), the interpretation of the image can be unstable. This
subsection checked if there is always a connection between image and latent space. We
propose a method to find images that can be far in the image space but close in the feature
space or vice versa. Finally, we discuss if splitting into near and far images is right at all.

The root of our method was observing how different CNN classifiers the same images.
There are many examples where models have misclassified the images in the exact same

112 research

wrong way with high probability. We performed experiments that confirmed the above.
We based on the ImageNet datasets and the following CNNs models: the AlexNet, the
VGG-16, the ResNet-152, the DenseNet-201, the ResNext-101 32x8d, the Wide-ResNext-101,
and the EfficientNet-B3. See some examples in figure 3.15. The experiment provided that
the problem lies in the training data, not the CNN architecture or how the model was
fitted. We suggested that a similar effect exists in the OoD detection problem too. There
should be images for which most CNNs generate the wrong features – i.e., in-distribution
data are far (or OoD examples are near) from the other known images.

(a) Power polisher (b) Breathing timer
(c) Citrus squeezer

Figure 3.15: The OoD examples for the ImageNet, where different models point out the same class.

We proposed a method for finding easy or hard examples. We assumed that the known-
easy images are when any OoD method confidence/openness scores are low, and the
known-easy ones when the score is high – and vice versa for unknown data. See the
example in figure 3.16. If we had known and unknown datasets, we could easily find
them extremely easy(low score for known, and high for unknown) and extremely hard
subsets (high score for known, and low for unknown). Formally, for each x ∈ Xknown and
x ∈ XOoD we need to calculate y = d(x, X), where d is any OoD method which return
confidence/openness score. Next, we need to sort y for Xknown descending/ascending
and for XOoD ascending/descending. We can get extremely easy/hard datasets when
we pick k first examples from each set based on sorted confidence scores. If we want to
generate more robust results, we can calculate y as a mean of different OoD methods
y = 1

Ndlist
∑d∈dlist

d(x, X), where dlist is list of OoD methods and Ndlist number of these.
For instance, we generated easy and hard sets based on the ResNet-101 model and the

CIFAR-10 as known and the SVHN and the CIFAR-100 as OoD data. We used LOFEuc as
the OoD method. Figure 3.17 presents picked examples. As we can see, the difference from
humans perspective, was not significant, so we could easily recognize OoD examples –
especially for the SVHN. In figure 3.18 we can see how the OoD method LOFEuc for the
model SplitNet-PyramidNet-272 (this model was not used for the process of picking the
images) interpreted the classic the CIFAR-10 vs. the CIFAR-100 OoD example and for our
extremely subsets.

We analyzed features for the easy and hard examples. Figure 3.19 presents PCA
projection into 2-dimensional space. We can see that the images from the easy CIFAR-10
and the hard SVHN are inside the known clusters, and hard CIFAR-10 and easy SVHN
are outside. The interesting thing is that specific classes were more willing to "attack".

3.4 the influence of features on ood detection 113

Figure 3.16: Choosing the easy or hard subsets is based on the confidence scores (here, we used
Mahalanobis from DenseNet).

The points focused on the center of these specific classes. We checked which classes were
specific by drawing a histogram of how a close-set model classifies (here by using a
different model than the one used for generating extreme examples - SplitNet-PyramidNet-
272) – see the figure 3.20. We see that "problematic" classes were mainly "cat" and "dog". It
suggested that these classes were likely to be more prone to an OoD attack. See how sure
the CNN model was - figure more than 95% certainty for chosen examples. These images
were natural adversarial images.

We tested our extremely easy and hard OoD subsets and presented results in the table
3.20. Again, we used a different model(SplitNet-PyramidNet-272) than the one used for
generating extreme examples. See that nearly all OoD methods failed for Far problems
and worked perfectly well on Near ones.

Table 3.20: Results for our easy and hard datasets using a different model (SplitNet-PyramidNet-272)
than the one used for choosing examples.

Out-dist Method DTACC AUC AUPR
TNR at

TPR 95%

Easy SVHN LOFCos 100.00 100.00 99.50 100.00

114 research

Table 3.20: Results for our easy and hard datasets using a different model (SplitNet-PyramidNet-272)
than the one used for choosing examples.

Out-dist Method DTACC AUC AUPR
TNR at

TPR 95%

LOFEuc 100.00 100.00 99.50 100.00

LOF_DCos 100.00 100.00 99.50 100.00

LOF_DEuc 100.00 100.00 99.50 100.00

Mahalanobis 100.00 100.00 99.50 100.00

MaxLogits 99.00 99.85 99.35 99.00

MaxSoftmax 100.00 100.00 99.50 100.00

MDistance Cos 92.00 93.14 89.86 69.00

MDistance Euc 90.50 91.99 88.15 59.00

OSNNCos 100.00 100.00 99.50 100.00

OSNNEuc 100.00 100.00 99.50 100.00

Hard SVHN LOFCos 83.00 89.06 86.16 16.00

LOFEuc 83.50 88.56 86.69 21.00

LOF_DCos 84.50 77.27 74.40 0.00

LOF_DEuc 84.00 82.09 78.00 0.00

Mahalanobis 80.00 84.54 82.88 22.00

MaxLogits 80.00 85.16 83.80 57.00

MaxSoftmax 80.50 85.76 83.19 49.00

MDistance Cos 74.00 76.45 70.62 26.00

MDistance Euc 73.50 76.59 71.29 20.00

OSNNCos 83.50 91.24 90.03 60.00

OSNNEuc 82.50 90.18 89.80 48.00

Easy CIFAR-100 LOFCos 99.50 99.97 99.47 100.00

LOFEuc 99.50 99.96 99.46 100.00

LOF_DCos 99.00 99.96 99.46 100.00

LOF_DEuc 99.50 99.96 99.46 100.00

Mahalanobis 99.50 99.97 99.47 100.00

MaxLogits 89.00 89.15 85.31 79.00

MaxSoftmax 94.00 95.61 93.67 90.00

MDistance Cos 90.00 91.97 88.51 70.00

MDistance Euc 88.00 90.20 86.28 54.00

OSNNCos 98.50 99.86 99.36 99.00

OSNNEuc 99.00 99.88 99.38 99.00

Hard CIFAR-100 LOFCos 52.50 42.98 45.23 5.00

LOFEuc 52.00 41.57 44.36 4.00

LOF_DCos 52.00 41.68 43.37 0.00

3.4 the influence of features on ood detection 115

Table 3.20: Results for our easy and hard datasets using a different model (SplitNet-PyramidNet-272)
than the one used for choosing examples.

Out-dist Method DTACC AUC AUPR
TNR at

TPR 95%

LOF_DEuc 51.50 41.22 43.15 0.00

Mahalanobis 50.00 35.97 41.20 2.00

MaxLogits 56.00 54.06 56.47 16.00

MaxSoftmax 55.00 51.55 54.17 14.00

MDistance Cos 52.50 40.53 44.15 7.00

MDistance Euc 53.50 46.07 47.45 7.00

OSNNCos 54.00 47.23 48.95 11.00

OSNNEuc 54.50 45.39 48.23 10.00

Section Summary We showed that there was no clear connection between image and
latent spaces. Based on it, we could propose the procedure of finding extremely hard or
easy OoD subsets. The common usage of near and far definitions is inaccurate. We suggest
that using the near and far should refer to feature space, not image space. For example,
the SVHN set is often used as a far and easy problem, while as we showed that there are
numerous near and hard images in this set too.

Moreover, our experiments confirmed that the OoD detection results depend on
other factors (like training images that influence how the model generates its decisions
boundaries) than the OoD methods themself. Finally, we showed that the hard OoD
examples often focused on specific classes. We hypothesized that the problematic class
should contain more robust image examples – however, it requires further research.

116 research

(a) Easy In-dist (b) Easy OoD - the SVHN (c) Easy OoD - the CIFAR-100

(d) Hard In-dist (e) Hard OoD - the SVHN (f) Hard OoD - the CIFAR-100

Figure 3.17: Examples of easy and hard exampels

(a) v.s. CIFAR-100 (b) v.s. extremely far OoD

Figure 3.18: Confidence scores for the CIFAR-10 vs. the CIFAR-100(left) and our hard CIFAR-10 vs.
hard CIFAR-100 subsets when used LOFEuc for the model SplitNet-PyramidNet-272
(this model was not used for the process of picking the images).

3.4 the influence of features on ood detection 117

(a) Near

(b) Far

Figure 3.19: PCA projection into 2-dimensional space

(a) Histogram - Hard SVHN (b) Histogram - Hard CIFAR-100

(c) Certainty - Hard SVHN (d) Certainty - Hard CIFAR-100

Figure 3.20: Using the close-set classifier to test unknown hard images: histograms(top) and certainty
(bottom).

118 research

3.4.6 OoD Detection for Adversarial Attacks Protection

Section Objectives The adversarial attacks are a severe threat and challenge to nowadays
networks. This section focused on checking the research question if applying the OoD
methods for close-set classifiers further increases the safety against the networks on these
attacks. We suggested that the features generated by the network might not fit into the
in-distribution data. The attacks focus on close-set classifiers (part of the networks), and
these are based on the GAP features. Therefore, we hypothesized that the distinction
between known data and attacks should be even more evident when changing the fea-
ture representation (by extract features from networks using different approaches). We
performed our experiments using the CW, DeepFool, FGSM, OnePixel, PGD, and Square
attacks on the ResNet-101 model fitted on the CIFAR-10 dataset.

The adversarial attacks are non easily defendable. Usually, the input image has to be
modified, or the whole network retrained for a successful defense[278]. However, by
examining the idea of standing behind these attacks, it was possible to propose another
method. All attacks aim to cross the decision boundaries by a close-set classifier pointing
to another class and minimizing input image changes. The infected images slightly move
closer to another class in the feature space to finally fool the close-set classifier. However,
the decision boundaries for the open-set approach are less vast. So, the shift in feature
space could not be sufficient to cross the OoD’s decision boundaries, thereby should
increasing the safety against the networks on these attacks. In whole this work, we strongly
propose using the OoD methods - so the adversarial attacks protection would be nearly
cost-free. Using the OoD methods for the adversarial attacks is not a new idea, e.g., used
in [132], but still not well studied.

We generated the strong attacks using the following methods: CW, DeepFool, FGSM,
OnePixel, PGD, and Square (see section 2.3.2 for details). All of them were based on
the ResNet-101 model fitted on the CIFAR-10 dataset. The attacks work on the different
principles of operation, allowing for more generalized conclusions. In figure 3.21 was
presented examples of attacks on the CIFAR-10 with showing the incorrect responses from
the ResNet-101.

First, we performed the experiments by using the classic GAP features. See the results
in table 3.21. We formed the rule that given protection against attack is acceptable when
AUC >= 90% and TNR at TPR 95% >= 50%. For the assumed criterion all tests failed.
Usually, the Mahalanobis achieved the best results. The PGD attacks were the most difficult
for detection, and the OnePixel the easiest. We noticed that the close-set classifiers are
usually based on the GAP features. It suggests that the above bad results are because all
attacks target the GAP-generated features. The evaluation metrics should be increased by
replacing the feature extraction method. We tested this hypothesis.

Table 3.21: Comparision of the OoD methods as the defense approach against the adversarial attacks
based on the CIFAR-10 and the ResNet-101.

Attack Method DTACC AUC AUPR
TNR at

TPR 95%

CW LOFCos 81.25 85.78 84.19 22.40

3.4 the influence of features on ood detection 119

Table 3.21: Comparision of the OoD methods as the defense approach against the adversarial attacks
based on the CIFAR-10 and the ResNet-101.

Attack Method DTACC AUC AUPR
TNR at

TPR 95%

LOFEuc 80.95 84.93 82.77 16.80

LOF_DCos 81.35 85.38 82.33 17.40

LOF_DEuc 80.80 84.54 81.15 17.80

Mahalanobis 83.85 88.80 87.71 32.50

MaxLogits 80.65 83.86 81.29 13.10

MaxSoftmax 82.00 86.20 84.15 22.40

MDistance Cos 80.80 84.42 81.18 21.50

MDistance Euc 79.90 83.35 80.22 19.30

OSNNCos 81.30 85.77 84.08 18.80

OSNNEuc 80.40 85.39 83.62 15.80

DeepFool LOFCos 78.35 83.32 81.20 17.90

LOFEuc 78.30 82.78 80.18 16.20

LOF_DCos 78.65 82.92 79.61 13.30

LOF_DEuc 78.55 82.30 78.64 14.40

Mahalanobis 80.95 86.36 85.18 29.10

MaxLogits 77.35 80.96 77.85 10.50

MaxSoftmax 79.10 83.08 80.50 18.50

MDistance Cos 78.65 81.89 77.91 17.00

MDistance Euc 78.20 82.02 78.91 18.90

OSNNCos 78.95 83.51 81.43 16.20

OSNNEuc 78.40 83.13 80.99 14.10

FGSM LOFCos 74.85 80.35 78.66 21.40

LOFEuc 74.40 79.77 77.80 19.70

LOF_DCos 74.75 79.84 76.70 15.70

LOF_DEuc 74.50 79.16 75.71 16.50

Mahalanobis 76.95 82.74 82.00 25.00

MaxLogits 72.90 76.10 72.20 17.00

MaxSoftmax 72.85 75.64 71.93 15.70

MDistance Cos 70.60 73.75 69.96 14.30

MDistance Euc 70.40 73.81 70.56 14.60

OSNNCos 73.15 78.38 76.63 14.00

OSNNEuc 72.55 77.99 76.06 12.40

OnePixel LOFCos 82.25 87.51 86.27 30.40

LOFEuc 81.35 86.60 84.83 26.20

LOF_DCos 82.25 86.67 83.63 19.50

120 research

Table 3.21: Comparision of the OoD methods as the defense approach against the adversarial attacks
based on the CIFAR-10 and the ResNet-101.

Attack Method DTACC AUC AUPR
TNR at

TPR 95%

LOF_DEuc 81.40 85.80 82.40 20.70

Mahalanobis 85.20 90.14 89.63 38.90

MaxLogits 80.20 84.83 82.53 21.00

MaxSoftmax 80.95 85.44 83.30 23.50

MDistance Cos 79.70 84.11 81.38 27.00

MDistance Euc 77.85 81.84 78.75 18.40

OSNNCos 81.75 86.38 85.01 20.50

OSNNEuc 81.15 85.95 84.20 17.30

PGD LOFCos 63.65 65.60 64.42 8.20

LOFEuc 64.60 67.29 65.91 9.40

LOF_DCos 63.65 65.44 63.73 5.40

LOF_DEuc 64.40 66.91 64.57 7.70

Mahalanobis 65.90 66.61 66.14 7.30

MaxLogits 53.80 47.67 48.77 8.60

MaxSoftmax 52.70 46.51 47.46 5.90

MDistance Cos 51.85 50.95 50.26 6.10

MDistance Euc 56.30 55.50 53.43 5.20

OSNNCos 60.05 60.71 60.20 4.30

OSNNEuc 61.10 62.27 61.60 4.60

Square LOFCos 79.70 84.51 82.65 20.10

LOFEuc 78.95 83.62 81.44 17.60

LOF_DCos 79.70 84.10 81.05 14.50

LOF_DEuc 78.90 83.19 79.96 16.00

Mahalanobis 83.80 88.12 86.90 29.30

MaxLogits 79.10 82.85 80.36 14.80

MaxSoftmax 80.45 84.32 82.13 20.20

MDistance Cos 78.80 83.02 79.99 19.90

MDistance Euc 76.30 79.39 75.37 8.20

OSNNCos 79.55 84.61 82.94 17.50

OSNNEuc 78.75 84.13 82.06 15.20

In table 3.22 we presented the best results for the same problem, but with the best-
fitted feature extraction strategy. We tested the following methods: GAP, GMP, GAP_All,
CroW, and SCDA (see datils in section 2.2.8.1). Here, we do not perform MaxSoftmax and
MaxLogits, because these do not depend on features but logits.

3.4 the influence of features on ood detection 121

Figure 3.21: The examples of the attacks on the CIFAR-10. The attacked ResNet-101 model was
fooled on these examples – see the incorrect response below each image.

Our hypothesis that changing the feature extraction strategy should improve
performance on the attacks has been confirmed. The final results increased significantly
by changing the feature extraction approach. The AUC increased compared to the best
OoD method for each attack. Using the assumed criterion, the CW, the OnePixel, and the
Square passed the test. The DeepFool and the PGD nearly passed (TNR at TPR 95% >=
45%), only the FGSM failed. The CW and the Square are well detected on nearly all OoD
methods – only LOFEuc performed good results – any others easily failed. In contrast, the
PGD is still the most challenging task. There is no one leading the OoD method. There are
some not apparent results here like the LOF_DEuc which failed for most attacks. The CroW
seems to be the best feature extraction for the tested task.

122 research

Table 3.22: Comparision of the OoD methods as the defense approach against the adversarial attacks
with best picked feature extraction method.

Attack
Feature

extractor
Method DTACC AUC AUPR

TNR at

TPR 95%

CW CroW LOFCos 89.75 94.44 93.68 73.40

CroW LOFEuc 89.15 93.84 93.21 69.70

CroW LOF_DCos 89.60 92.86 89.12 71.80

CroW LOF_DEuc 89.15 91.62 87.56 0.00

CroW Mahalanobis 89.30 93.70 92.69 52.90

SCDA MDistance Cos 89.10 94.09 92.89 62.60

CroW MDistance Cos 89.75 94.69 93.56 72.80

CroW OSNNCos 89.95 95.24 94.61 72.90

CroW OSNNEuc 89.85 95.16 94.54 74.40

DeepFool CroW LOFCos 82.75 88.86 87.64 45.80

CroW LOFEuc 82.30 88.14 86.90 40.70

CroW LOF_DCos 82.80 87.95 84.39 42.80

CroW LOF_DEuc 82.50 86.91 82.96 0.00

CroW Mahalanobis 83.30 88.89 87.32 34.80

CroW MDistance Cos 84.55 89.82 87.75 46.70

SCDA MDistance Euc 82.60 88.16 86.42 40.40

CroW OSNNCos 84.70 90.52 89.40 44.00

CroW OSNNEuc 84.85 90.38 89.20 45.30

FGSM CroW LOFCos 79.70 85.89 84.87 35.70

CroW LOFEuc 79.50 86.20 85.32 35.00

CroW LOF_DCos 79.60 84.90 81.34 28.80

CroW LOF_DEuc 79.55 84.90 81.04 0.00

CroW Mahalanobis 80.05 86.83 86.12 34.30

CroW MDistance Cos 79.30 84.86 82.38 29.10

CroW MDistance Euc 78.00 83.29 80.75 21.20

CroW OSNNCos 80.20 85.87 84.13 28.30

CroW OSNNEuc 80.55 86.04 84.28 28.70

OnePixel GMP LOFCos 82.50 88.13 87.27 32.90

GMP LOFEuc 82.15 87.77 86.09 28.90

GMP LOF_DCos 82.55 87.34 84.63 25.60

GMP LOF_DEuc 81.95 86.97 83.84 23.50

GMP Mahalanobis 83.95 91.42 91.10 51.30

CroW MDistance Cos 84.00 89.76 88.43 44.60

CroW MDistance Euc 81.65 86.56 84.14 35.50

CroW OSNNCos 83.65 89.73 88.70 40.20

3.4 the influence of features on ood detection 123

Table 3.22: Comparision of the OoD methods as the defense approach against the adversarial attacks
with best picked feature extraction method.

Attack
Feature

extractor
Method DTACC AUC AUPR

TNR at

TPR 95%

CroW OSNNEuc 83.35 89.66 88.55 41.00

PGD CroW LOFCos 71.35 72.70 70.00 3.10

CroW LOFEuc 87.60 92.65 92.12 45.30

CroW LOF_DCos 71.35 72.62 69.77 2.70

CroW LOF_DEuc 87.55 90.82 86.92 0.00

GAP_All Mahalanobis 70.80 70.22 69.27 5.30

CroW MDistance Cos 64.10 61.93 60.39 3.40

CroW MDistance Euc 77.45 80.17 75.43 4.70

GAP_All OSNNCos 61.95 61.71 61.02 4.90

CroW OSNNEuc 80.85 82.05 78.24 2.50

Square CroW LOFCos 91.85 95.66 94.74 78.50

CroW LOFEuc 91.50 95.26 94.48 73.20

CroW LOF_DCos 92.00 94.11 90.39 79.40

CroW LOF_DEuc 91.75 93.09 89.04 0.00

CroW Mahalanobis 92.05 95.10 94.14 58.10

CroW MDistance Cos 91.90 96.40 95.54 82.40

CroW MDistance Euc 90.85 94.43 92.98 64.30

CroW OSNNCos 92.10 96.49 95.89 80.00

CroW OSNNEuc 91.90 96.46 95.92 81.60

Section Summary We tested the performance of adversarial attacks detection by using
OoD methods. We tread the images attack as the unknown data. We generated the CW,
DeepFool, FGSM, OnePixel, PGD, and Square attacks on the ResNet-101 model fitted on
the CIFAR-10 dataset. The above attacks are based on different methodologies, which
allowed for broad analysis. We confirmed that applying the OoD methods for close-set
classifiers further increases the safety of the models against the attacks at no additional
cost. However, to successfully improve it, we need to use other feature extraction methods
than widespread GAP, often used in close-set classifier. Our experiments suggest using
the CroW. There was no one leading OoD method. For most CW and the Square attacks,
nearly all OoD methods worked well. The most problematic ones were the PGD and FGSM
attacks.

Part III

Summary

4
S u m m a r y

4.1 Summary

One of our goals was to give practical recommendations on applying the Out-of-
Distribution detection problem. Following the literature[4][158][217][59], the detection
of OoD examples is an important component of trustworthy machine learning systems.
However, there are no clear recommendations concerning adopting these approaches
within many state-of-the-art methods.

We focused on analyzing the factors, which have the most significant impact on the
performance of OoD. We showed the complexity of the problem for anyone who wanted to
use it in practice. We showed the importance of decisions that are necessary to undertake
and how they affect final results. First of all, there is no best OoD method, which was
confirmed by our and others’ research. For instance, a recent comprehensive study [243]
showed that none of the SoTA methods consistently outperforms other methods on a set
of 16 commonly used OoD benchmarks of In-distribution and Out-of-Distribution pairs of
datasets. It follows that it is impossible to recommend one OoD approach as a universal
solution. However, our research suggests three promising methods based on logits i.e.,
MaxLogits, parametric Mahalanobis, and density-based methods LOF or LOF_D. They
all work based on different assumptions, suitable for different ID and OoD data pairs.
We cannot suggest one of them - however, in our future work, we would like to test the
ensemble approaches. Moreover, other decisions significantly influence OoD detection
performance, among other: metrics (for example, the AUC does not reflect the results well
because, in practice, we do not know the OoD data, so it is hard to set a final threshold
based on it, or the TNR at TPR 95% which is much more unstable), the feature extraction
method (see subsection 3.4.1), or the feature post-processing (see subsection 3.4.2).

Although the goal is to open some currently used close-set models, we postulated the
research question that the better the close-set model, the better OoD detection efficiency.
We achieved inconclusive results – see the details in subsection 3.2.4. The trend is visible
for methods like Mahalanobis and OSNNs, but there is no direct dependency for other
methods. We also noticed that the state of the model has a significant impact on OoD
detection efficiency – see results presented in subsection 3.4.4. Therefore, looking only at the
model’s accuracy is insufficient. We showed that similar models with the same architecture
and similar close-set accuracy could work entirely differently for the OoD benchmarks.
Moreover, the evaluation metrics are very unstable during the training process, so it is
hard to choose the final epoch for the best performance for open-set detection.

Many papers tried to make data more separable by using special techniques – for
instance, ODIN (it uses the MaxSoftmax with temperature scaling and input pre-processing
- see subsection 2.3.1.9) or Unified Framework (it uses the Mahalanobis with the input
pre-processing and features ensemble - see subsection 2.3.1.10). We showed in subsection
3.3.2, that these techniques play a key role in the Unified Framework method. The results
were the same or even slightly better when we changed the Mahalanobis into LOF. Many
of these techniques do work well only for specific situations. For instance, the best results
were usually achieved in our experiments, when input pre-processing was not applied.
In section 3.3 we focused on Mahalanobis and EVM. The OoD problem generally, is the

127

128 summary

extremely hard due the "curse of dimensionality". We showed the limitations of these
methods, such as the instability of MVN used by Mahalanobis in high-dimensionality or
margin distances in EVM, which often did not follow the Weibull distribution in many
datasets working with CNNs.

We proposed to focus on building solid, robust feature representation with more
attention. As we showed in section 3.4, the features quality significantly influences the
execution of OoD methods. We showed and examined many approaches to affect the
features – among others, changing the feature extraction methods, reducing the features,
or choosing the proper augmentation strategy. Following papers [272] or [240](ours), the
CNN networks can learn the spurious correlations. We suggest (although it requires
further research) that this network property leads to some problems in OoD detection.
For example, in subsection 3.4.5 we showed that there are globally easy or hard samples
in popular datasets - independent of the CNN model or OoD methods. It suggests that
the CNNs can not learn solid and robust features, so some OoD problems are nearly
impossible to solve using some CNN models.

Moreover, we noticed the mismatch between the image and feature space. The hard
subsets presented in subsection 3.4.5 contain examples of images that are distant in the
image space but close in the features space. The one-pixel attack (see subsection 2.3.2.2.7)
is the method that generates opposite samples, which are very close in the images space
and distant in the feature space. As we explained, it can be the property of CNNs, which
cannot build fully robust features. Based on these observations, we propose to clarify the
benchmarks. Usually, scholars (i.e., [61][189][3]) use the "near" or "far" terms to describe
the "difficulty" of OoD detection. The definition is ambiguous, however it is based on
semantic(image) space representation. We suggest focusing on feature space representation
to better describe the complexity of the problem.

Most research focused on low-scale data in the context of OoD detection problems.
Usually, the images are in low resolutions with a small number of known classes. We also
tested the OoD problem on a large-scale – based on the ImageNet datasets as In-distribution
data with 1000 known classes and much more resolution than the popular CIFARs. See the
subsections 3.2.4 and 3.4.1. Our research led to, among others, the following conclusions:
the popular Mahalanobis OoD approach seemed to achieve slightly worse results compared
to other approaches (when working on a large-scale). The methods based on logits did
not seem to work, probably due to the number of known classes. Non-parametric LOF
method achieved stable results.

We also noticed the problems with reproducibility and benchmarking OoD methods.
As we showed in subsection 3.4.4, the OoD results are sensitive to model state. New
state-of-the-art methods often outperform other methods only by a single percentage point.
Meanwhile, the retrained CNN models can significantly differentiate the results from the
OoD methods. As we showed in subsection 3.4.5, there are hard and easy examples in
popular datasets, so when we pick only part of them for evaluation, the results can change
significantly. Moreover, many OoD methods work well only with specific assumptions
(see section 3.3) or for specific OoD distribution (see subsections 3.2.2 and 3.2.3). The
augmentation strategy, which often is overlooked in the papers, is an important factor too
(see subsection 3.4.3). The OoD methods can also work differently in large-scale problems,
which is crucial to usability in modern solutions (see subsection 3.2.4). Therefore, we
encourage broder discussion about stability and reproducibility.

In section 3.4.6, we focused on one of the major issues in safety and trustworthiness in
computer vision, which is the defense against adversarial attacks. We assumed that treating
the adversarial attacks as OoD data is possible, which we confirmed. This approach can be

4.2 conclusions 129

easily adapted and protects from adversarial attacks. The idea is not new – however, we
proposed a new concept: changing the GAP to another extraction technique. In practice,
the attacks focus on fooling the classifier, which is usually based on GAP features, so
changing the extraction strategy should increase OoD efficiency and does not require
retraining the models.

4.2 Conclusions

Conclusions and contributions from our work can be presented in the following points:

1. We showed the limitation of the popular EVM algorithm (see section 3.3.3) - precisely,
the EVM’s theoretical assumptions, in some cases, might not be entirely fulfilled in
the context of CNNs and some popular datasets. The margin distances often do not
follow the Weibull distribution.

2. We showed that the popular methods based on MultiVariate Normal(MVN)
distribution could be unstable in high dimensional data and lead to limitations,
where near OoD samples can not be distinguished from known data (see section
3.3.1). Moreover, we tested different variants of Mahalanobis distance in benchmark
datasets and showed that none of them can be treated as the universal approach.

3. We showed that the nonparametric, density-based LOF approach performs better
than the approaches based on MVN or logits (in many cases). However, this method
is still not commonly used as a benchmark method in the literature. LOF requires
the calculation of the nearest neighbors, which can be computationally intensive
compared to Mahalanobis or MaxSoftmax. The complexity of building the LOF model
is O(d ∗ N2), and OoD detection is O(d ∗ N), where dimensions are denoted as d
and train size as N. However, the performance of this method can be increased (for
a certain distance metric) to O(d ∗ NlogN)(for model building) and O(d ∗ logN)(for
detection) by using the k-d tree (as implemented in scikit-learn1) or R*-tree (as
implemented in the ELKI framework2).

4. We showed the efficiency of the OoD method based on large-scale dataset benchmarks
(see section 3.2.4). We conclude that the OoD methods based on logits work poorly,
and Mahalanobis is slightly worse compared to other methods on a large-scale. The
LOF seems to be the most stable method.

5. We showed that the correctly chosen feature extraction strategy can improve the
efficiency of OoD detection (see section 3.4.1. The literature does not use any other
method than standard Global Average Pooling (GAP). However, various approaches
can focus on different components of images. Changing feature obtaining strategy
into GMP, CroW, or SCADA can boost the OoD detection performance. There are
no clear guidelines on which strategy should be used. We recommend using a new
hyperparameter describing that strategy. It should be chosen for specific pairs of ID
and OoD. One of our future works is the ensemble method using a different feature
extraction strategy.

6. We showed that reducing the size of feature vectors leads to severe efficiency decrease
for many methods (see section 3.4.2). We used the technique known from the image

1https://scikit-learn.org
2https://elki-project.github.io

https://scikit-learn.org
https://elki-project.github.io

130 summary

retrieval problems: the L2 normalization, the PCA with whitening, and again L2
normalization. The LOF-based methods seem to be the only method we recommend
using together with reduction dimensionally.

7. We confirmed that applying the OoD methods for close-set classifiers further increases
the safety of the networks against the attacks at no additional cost (see section 3.4.6).
The adversarial examples focus their attack on the classifier, which is based on the
GAP features. Therefore, we recommend choosing a different feature extraction
strategy than this one.

8. We showed the problem with the instability and repeatability of the OoD detection
methods (see section 3.4.4). We showed that the slightly different model state can
drastically change the OoD method efficiency. The above problems are visible for
changing weights over the epochs during the training process. We conclude that
results presented in the literature should be considered with caution.

9. We showed that there was no clear connection between image and latent spaces.
3.4.5). We conclude that the common usage of near and far OoD examples definitions
is inaccurate. Moreover, we suggest that the problem lies in training data, so no
model can be robust enough to solve the problem completely.

10. We showed there is no best OoD approach and it depends on the tested ID and OoD
pair. We plan to use the ensemble of different OoD methods in our future works.

11. We showed the importance of proper data augmentation techniques in OoD detection
problems (see section 3.4.3). We suggest using the idea of mixing images, such as
MixUp, which improves robustness, but above all, it is beneficial for OoD detection.

4.3 Future Works

This work cannot deal with all issues connected to the vast problem of OoD detection. We
focused only on chosen topics, and further work is needed. In this section, we wanted to
show our ideas for future works.

First of all, we researched the problem of OoD detection in computer vision classification
tasks. However, much of the proposed research should be repeated for other data types,
such as texts, music, or biomedical data and other subproblems in CV, such as object
detecting or image segmentation. Moreover, we focused only on CNNs, but the ViTs
models (see subsection 2.1.1.5) are gaining more and more popularity. There are already
papers focusing on those types of models in the context of OoD - e.g.[61]. However, more
research is needed on the robustness of ViT’s features such as [181].

We have made some assumptions (see subsection 3.1.1) such as not to retrain the models
and not to use external data. However, many popular solutions allow for them. The
retraining of the model allows changing the model’s architecture and adding additional
loss functions during the fitting phase. Contrastive learning (see subsection 2.2.6) is one
of the most popular approaches concerning those changes. Retraining transforms the
model to be dedicated to OoD problems, making the problem easier to solve. The problem
of OoD detection can be further simplified by showing part of the unknown data (see
subsection 2.3.1.11.1). It is called outlier exposure. By using retraining and outlier exposure,
the OoD systems can move the decision boundaries making the data more distinguishable.
On the other hand, the models cannot (or achieve worse results) be used in the close-set
classification task, so it usually requires two systems: for detecting outliers and close-set

4.3 future works 131

classifiers. Nevertheless, such solutions exist[91][50][145][267][214][55]. We plan to repeat
some of the tests for the above methods suspecting that the results will be consistent with
ours.

We noticed that generating robust features is the key to successful OoD detection. The
more robust features are, the better the achieved results are. We noticed the tendency of the
OoD methods to be unstable and sensitive to hyperparameters and model states. Therefore,
we want to test which regularization technique (or propose the new one) can positively
impact the above problems in the context of OoD detection tasks. With a few exceptions,
currently used methods focus only on features from the network’s last layer, i.e. GAP.
Some OoD data should be better separable based on earlier network layers. We showed
some convincing results on this topic, but further research is necessary. We consider
using ensemble methods with different feature extraction strategy and/or different OoD
methods.

Although we showed a positive influence on the safety and trustworthiness of AI models
when applying the OoD detection mechanism, there are still many other methods worth
further research. For instance, many strategies focus only on particular problems like
defense against adversarial examples, increasing the robustness of the models, or allowing
continual learning. One of our further goals is to propose a comprehensive method that
merges the OoD detection with other methods and to see how it affects the final results.

B i b l i o g r a p h y

[1] M. Abbasi and C. Gagné, “Robustness to adversarial examples through an ensemble
of specialists,” arXiv preprint arXiv:1702.06856, 2017.

[2] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for boltzmann
machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[3] F. Ahmed and A. Courville, “Detecting semantic anomalies,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 3154–3162.

[4] D. Amodei et al., “Concrete problems in ai safety,” arXiv preprint arXiv:1606.06565,
2016.

[5] P. Arcaini et al., “Dealing with robustness of convolutional neural networks for
image classification.,” in AITest, 2020, pp. 7–14.

[6] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint
arXiv:1701.07875, 2017.

[7] A. B. Arrieta et al., “Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai,” Information Fusion, vol. 58,
pp. 82–115, 2020.

[8] R. Ayachi et al., “Traffic signs detection for real-world application of an advanced
driving assisting system using deep learning,” Neural Processing Letters, vol. 51,
no. 1, pp. 837–851, 2020.

[9] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[10] A. Babenko and V. Lempitsky, “Aggregating deep convolutional features for image
retrieval,” arXiv preprint arXiv:1510.07493, 2015.

[11] A. Babenko et al., “Neural codes for image retrieval,” in European conference on
computer vision, Springer, 2014, pp. 584–599.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[13] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in
Proceedings of ICML workshop on unsupervised and transfer learning, JMLR Workshop
and Conference Proceedings, 2012, pp. 37–49.

[14] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” arXiv preprint
arXiv:2003.05991, 2020.

[15] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on
reinforcement learning,” in International Conference on Machine Learning, PMLR,
2017, pp. 449–458.

[16] A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp. 1563–1572.

[17] L. Beyer et al., “Are we done with imagenet?” arXiv preprint arXiv:2006.07159, 2020.

[18] D. Blalock et al., “What is the state of neural network pruning?” arXiv preprint
arXiv:2003.03033, 2020.

133

134 bibliography

[19] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[20] F. Bodria et al., “Benchmarking and survey of explanation methods for black box
models,” arXiv preprint arXiv:2102.13076, 2021.

[21] D. Bolya et al., “Yolact: Real-time instance segmentation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 9157–9166.

[22] M. M. Breunig et al., “Lof: Identifying density-based local outliers,” in Proceedings of
the 2000 ACM SIGMOD international conference on Management of data, 2000, pp. 93–
104.

[23] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity
natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[24] T. B. Brown et al., “Adversarial patch,” arXiv preprint arXiv:1712.09665, 2017.

[25] S. Bubeck, “Convex optimization: Algorithms and complexity,” arXiv preprint
arXiv:1405.4980, 2014.

[26] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy disparities
in commercial gender classification,” in Conference on fairness, accountability and
transparency, PMLR, 2018, pp. 77–91.

[27] Y. Burda et al., “Exploration by random network distillation,” arXiv preprint
arXiv:1810.12894, 2018.

[28] A. Buslaev et al., “Albumentations: Fast and flexible image augmentations,”
Information, vol. 11, no. 2, p. 125, 2020.

[29] R. M. Byrne, “Counterfactuals in explainable artificial intelligence (xai): Evidence
from human reasoning.,” in IJCAI, 2019, pp. 6276–6282.

[30] Z. Cao et al., “Openpose: Realtime multi-person 2d pose estimation using part
affinity fields,” IEEE transactions on pattern analysis and machine intelligence, vol. 43,
no. 1, pp. 172–186, 2019.

[31] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in 2017 ieee symposium on security and privacy (sp), IEEE, 2017, pp. 39–57.

[32] A. Chattopadhay et al., “Grad-cam++: Generalized gradient-based visual
explanations for deep convolutional networks,” in 2018 IEEE winter conference
on applications of computer vision (WACV), IEEE, 2018, pp. 839–847.

[33] S. Chaudhari et al., “An attentive survey of attention models,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 12, no. 5, pp. 1–32, 2021.

[34] C. Chen et al., “This looks like that: Deep learning for interpretable image
recognition,” arXiv preprint arXiv:1806.10574, 2018.

[35] T. Chen et al., “A simple framework for contrastive learning of visual
representations,” in International conference on machine learning, PMLR, 2020,
pp. 1597–1607.

[36] W. Chen et al., “Deep image retrieval: A survey,” arXiv preprint arXiv:2101.11282,
2021.

[37] W. Chen et al., “Beyond triplet loss: A deep quadruplet network for person re-
identification,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 403–412.

bibliography 135

[38] Y. Chen et al., “Cascaded pyramid network for multi-person pose estimation,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7103–7112.

[39] Y. Chen et al., “Dual path networks,” in Advances in neural information processing
systems, 2017, pp. 4467–4475.

[40] Z. Chen et al., “Gated square-root pooling for image instance retrieval,” in 2018 25th
IEEE International Conference on Image Processing (ICIP), IEEE, 2018, pp. 1982–1986.

[41] H.-F. Cheng et al., “Explaining decision-making algorithms through ui: Strategies
to help non-expert stakeholders,” in Proceedings of the 2019 chi conference on human
factors in computing systems, 2019, pp. 1–12.

[42] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1251–1258.

[43] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively,
with application to face verification,” in 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), IEEE, vol. 1, 2005, pp. 539–546.

[44] F. Croce et al., “Robustbench: A standardized adversarial robustness benchmark,”
arXiv preprint:2010.09670, 2020.

[45] E. D. Cubuk et al., “Autoaugment: Learning augmentation strategies from data,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 113–123.

[46] W. Dabney et al., “Implicit quantile networks for distributional reinforcement
learning,” in International conference on machine learning, PMLR, 2018, pp. 1096–1105.

[47] Z. Dai et al., “Coatnet: Marrying convolution and attention for all data sizes,” arXiv
preprint arXiv:2106.04803, 2021.

[48] J. Deng et al., “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[49] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[50] T. DeVries and G. W. Taylor, “Learning confidence for out-of-distribution detection
in neural networks,” arXiv preprint arXiv:1802.04865, 2018.

[51] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” arXiv
preprint arXiv:1605.09782, 2016.

[52] J. Donahue and K. Simonyan, “Large scale adversarial representation learning,” in
Advances in Neural Information Processing Systems, 2019, pp. 10 542–10 552.

[53] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine
learning,” arXiv preprint arXiv:1702.08608, 2017.

[54] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[55] X. Du et al., “Vos: Learning what you don’t know by virtual outlier synthesis,” arXiv
preprint arXiv:2202.01197, 2022.

[56] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization.,” Journal of machine learning research, vol. 12,
no. 7, 2011.

136 bibliography

[57] V. Dumoulin et al., “Adversarially learned inference,” arXiv preprint arXiv:1606.00704,
2016.

[58] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of jpg
compression on adversarial images,” arXiv preprint arXiv:1608.00853, 2016.

[59] K. Eykholt et al., “Robust physical-world attacks on deep learning visual
classification,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 1625–1634.

[60] W. Feng et al., “Audio visual speech recognition with multimodal recurrent neural
networks,” in 2017 International Joint Conference on Neural Networks (IJCNN), IEEE,
2017, pp. 681–688.

[61] S. Fort, J. Ren, and B. Lakshminarayanan, “Exploring the limits of out-of-distribution
detection,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[62] J. Frankle, D. J. Schwab, and A. S. Morcos, “Training batchnorm and only
batchnorm: On the expressive power of random features in cnns,” arXiv preprint
arXiv:2003.00152, 2020.

[63] M. Frid-Adar et al., “Gan-based synthetic medical image augmentation for increased
cnn performance in liver lesion classification,” Neurocomputing, vol. 321, pp. 321–331,
2018.

[64] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in
actor-critic methods,” in International Conference on Machine Learning, PMLR, 2018,
pp. 1587–1596.

[65] A. Galdran et al., “Data-driven color augmentation techniques for deep skin image
analysis,” arXiv preprint:1703.03702, 2017.

[66] D. Gaur, J. Folz, and A. Dengel, “Training deep neural networks without batch
normalization,” arXiv preprint arXiv:2008.07970, 2020.

[67] C. Geng, S.-j. Huang, and S. Chen, “Recent advances in open set recognition: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[68] Z. Geng et al., “Bottom-up human pose estimation via disentangled keypoint
regression,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 14 676–14 686.

[69] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1440–1448.

[70] R. Girshick et al., “Rich feature hierarchies for accurate object detection and semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[71] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artificial
intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–
256.

[72] I. Goodfellow et al., “Generative adversarial nets,” in Advances in neural information
processing systems, 2014, pp. 2672–2680.

[73] I. Goodfellow et al., Deep learning, 2. MIT press Cambridge, 2016, vol. 1.

[74] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

bibliography 137

[75] A. Gordo et al., “Deep image retrieval: Learning global representations for image
search,” in European conference on computer vision, Springer, 2016, pp. 241–257.

[76] S. Gowal et al., “Uncovering the limits of adversarial training against norm-bounded
adversarial examples,” arXiv preprint:2010.03593, 2020.

[77] S. Grigorescu et al., “A survey of deep learning techniques for autonomous driving,”
Journal of Field Robotics, vol. 37, no. 3, pp. 362–386, 2020.

[78] J.-B. Grill et al., “Bootstrap your own latent-a new approach to self-supervised
learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 21 271–
21 284, 2020.

[79] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to
adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[80] Y. Gu, C. Li, and Y.-G. Jiang, “Towards optimal cnn descriptors for large-scale image
retrieval,” in Proceedings of the 27th ACM International Conference on Multimedia, 2019,
pp. 1768–1776.

[81] K. S. Gurumoorthy et al., “Efficient data representation by selecting prototypes with
importance weights,” in 2019 IEEE International Conference on Data Mining (ICDM),
IEEE, 2019, pp. 260–269.

[82] T. Haarnoja et al., “Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor,” in International conference on machine learning,
PMLR, 2018, pp. 1861–1870.

[83] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 1025–1035.

[84] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp. 5927–5935.

[85] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable
mdps,” in 2015 aaai fall symposium series, 2015.

[86] K. He et al., “Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1026–1034.

[87] ——, “Deep residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–778.

[88] K. He et al., “Mask r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 2961–2969.

[89] W. He et al., “Adversarial example defense: Ensembles of weak defenses are not
strong,” in 11th {USENIX} workshop on offensive technologies ({WOOT} 17), 2017.

[90] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-
distribution examples in neural networks,” arXiv preprint arXiv:1610.02136, 2016.

[91] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection with outlier
exposure,” arXiv preprint arXiv:1812.04606, 2018.

[92] D. Hendrycks et al., “Natural adversarial examples,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 15 262–15 271.

[93] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

138 bibliography

[94] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities,” Proceedings of the national academy of sciences, vol. 79, no. 8,
pp. 2554–2558, 1982.

[95] R. Houthooft et al., “Vime: Variational information maximizing exploration,” arXiv
preprint arXiv:1605.09674, 2016.

[96] A. Howard et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1314–1324.

[97] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile
vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[98] Y.-C. Hsu et al., “Generalized odin: Detecting out-of-distribution image without
learning from out-of-distribution data,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 10 951–10 960.

[99] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.

[100] G. Huang et al., “Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.

[101] X. Huang et al., “A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability,” Computer
Science Review, vol. 37, p. 100 270, 2020.

[102] Y. Huang et al., “Gpipe: Efficient training of giant neural networks using pipeline
parallelism,” in Advances in neural information processing systems, 2019, pp. 103–112.

[103] R. Imbriaco, C. Sebastian, E. Bondarev, et al., “Aggregated deep local features for
remote sensing image retrieval,” Remote Sensing, vol. 11, no. 5, p. 493, 2019.

[104] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning,
PMLR, 2015, pp. 448–456.

[105] P. Isola et al., “Image-to-image translation with conditional adversarial networks,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1125–1134.

[106] B. Jacob et al., “Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 2704–2713.

[107] M. Jaderberg et al., “Reinforcement learning with unsupervised auxiliary tasks,”
arXiv preprint arXiv:1611.05397, 2016.

[108] H. Jégou and O. Chum, “Negative evidences and co-occurences in image retrieval:
The benefit of pca and whitening,” in European conference on computer vision, Springer,
2012, pp. 774–787.

[109] S. Jégou et al., “The one hundred layers tiramisu: Fully convolutional densenets for
semantic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, 2017, pp. 11–19.

[110] D. Jha et al., “Doubleu-net: A deep convolutional neural network for medical image
segmentation,” in 2020 IEEE 33rd International symposium on computer-based medical
systems (CBMS), IEEE, 2020, pp. 558–564.

bibliography 139

[111] H. Jun et al., “Combination of multiple global descriptors for image retrieval,” arXiv
preprint arXiv:1903.10663, 2019.

[112] Y. Kalantidis, C. Mellina, and S. Osindero, “Cross-dimensional weighting for
aggregated deep convolutional features,” in European conference on computer vision,
Springer, 2016, pp. 685–701.

[113] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2019, pp. 4401–4410.

[114] T. Karras et al., “Progressive growing of gans for improved quality, stability, and
variation,” arXiv preprint arXiv:1710.10196, 2017.

[115] S. Khan et al., “Transformers in vision: A survey,” arXiv preprint arXiv:2101.01169,
2021.

[116] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn to criticize!
criticism for interpretability,” Advances in neural information processing systems, vol. 29,
2016.

[117] B. Kim et al., “Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav),” in International conference on machine learning,
PMLR, 2018, pp. 2668–2677.

[118] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[119] G. Koch, R. Zemel, R. Salakhutdinov, et al., “Siamese neural networks for one-shot
image recognition,” in ICML deep learning workshop, Lille, vol. 2, 2015.

[120] A. Köchling and M. C. Wehner, “Discriminated by an algorithm: A systematic
review of discrimination and fairness by algorithmic decision-making in the context
of hr recruitment and hr development,” Business Research, pp. 1–54, 2020.

[121] T. Kohonen, “Self-organized formation of topologically correct feature maps,”
Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[122] M. A. Kramer, “Nonlinear principal component analysis using autoassociative
neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[123] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[124] A. Kurakin, I. Goodfellow, S. Bengio, et al., Adversarial examples in the physical world,
2016.

[125] T. Kurbiel and S. Khaleghian, “Training of deep neural networks based on distance
measures using rmsprop,” arXiv preprint arXiv:1708.01911, 2017.

[126] T. Kurutach et al., “Model-ensemble trust-region policy optimization,” arXiv preprint
arXiv:1802.10592, 2018.

[127] Z. Lan et al., “Albert: A lite bert for self-supervised learning of language
representations,” arXiv preprint arXiv:1909.11942, 2019.

[128] A. Latif et al., “Content-based image retrieval and feature extraction: A
comprehensive review,” Mathematical Problems in Engineering, vol. 2019, 2019.

[129] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

140 bibliography

[130] Y. LeCun et al., “Gradient-based learning applied to document recognition,”
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[131] C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions in
convolutional neural networks: Mixed, gated, and tree,” in Artificial intelligence
and statistics, 2016, pp. 464–472.

[132] K. Lee et al., “A simple unified framework for detecting out-of-distribution samples
and adversarial attacks,” Advances in neural information processing systems, vol. 31,
2018.

[133] K. Lenc and A. Vedaldi, “Understanding image representations by measuring their
equivariance and equivalence,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 991–999.

[134] M. Lewis et al., “Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension,” arXiv preprint
arXiv:1910.13461, 2019.

[135] Y. Li et al., “Ms-rmac: Multiscale regional maximum activation of convolutions for
image retrieval,” IEEE Signal Processing Letters, vol. 24, no. 5, pp. 609–613, 2017.

[136] Y. Li et al., “Data-driven neuron allocation for scale aggregation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 11 526–11 534.

[137] Z. Li and S. Arora, “An exponential learning rate schedule for deep learning,” arXiv
preprint arXiv:1910.07454, 2019.

[138] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution
image detection in neural networks,” arXiv preprint arXiv:1706.02690, 2017.

[139] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400,
2013.

[140] T.-Y. Lin et al., “Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.

[141] Z. C. Lipton, “The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery.,” Queue, vol. 16, no. 3,
pp. 31–57, 2018.

[142] C. Liu et al., “Progressive neural architecture search,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 19–34.

[143] Q. Liu, M. J. Kusner, and P. Blunsom, “A survey on contextual embeddings,” arXiv
preprint arXiv:2003.07278, 2020.

[144] S. Liu et al., “Path aggregation network for instance segmentation,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 8759–8768.

[145] W. Liu et al., “Energy-based out-of-distribution detection,” Advances in Neural
Information Processing Systems, vol. 33, pp. 21 464–21 475, 2020.

[146] Y. Liu et al., “Roberta: A robustly optimized bert pretraining approach,” arXiv
preprint arXiv:1907.11692, 2019.

[147] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted
windows,” arXiv preprint arXiv:2103.14030, 2021.

bibliography 141

[148] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[149] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adversarial
examples robustly,” in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 446–454.

[150] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, Citeseer, vol. 30, 2013, p. 3.

[151] H. Maciejewski, T. Walkowiak, and K. Szyc, “Out-of-distribution detection in high-
dimensional data using mahalanobis distance - critical analysis,” in International
Conference on Computational Science, https://www.iccs-meeting.org/iccs2022/
https://link.springer.com/conference/iccs-computsci/, Springer, 2022.

[152] A. Madry et al., “Towards deep learning models resistant to adversarial attacks,”
arXiv preprint arXiv:1706.06083, 2017.

[153] D. Mahajan et al., “Exploring the limits of weakly supervised pretraining,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 181–196.

[154] P. C. Mahalanobis, “On the generalized distance in statistics,” National Institute of
Science of India, 1936.

[155] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[156] P. R. Mendes Júnior et al., “Nearest neighbors distance ratio open-set classifier,”
Machine Learning, vol. 106, no. 3, pp. 359–386, 2017.

[157] J. H. Metzen et al., “On detecting adversarial perturbations,” arXiv preprint
arXiv:1702.04267, 2017.

[158] D. Miller et al., “Dropout sampling for robust object detection in open-set
conditions,” in 2018 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2018, pp. 3243–3249.

[159] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[160] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in
International conference on machine learning, PMLR, 2016, pp. 1928–1937.

[161] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and
accurate method to fool deep neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2574–2582.

[162] A. Nagabandi et al., “Neural network dynamics for model-based deep reinforcement
learning with model-free fine-tuning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2018, pp. 7559–7566.

[163] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Icml, 2010.

[164] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose
estimation,” in European conference on computer vision, Springer, 2016, pp. 483–499.

[165] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 427–436.

142 bibliography

[166] H. Noh et al., “Large-scale image retrieval with attentive deep local features,” in
Proceedings of the IEEE international conference on computer vision, 2017, pp. 3456–3465.

[167] N. Papernot et al., “The limitations of deep learning in adversarial settings,” in 2016
IEEE European symposium on security and privacy (EuroS&P), IEEE, 2016, pp. 372–387.

[168] N. Papernot et al., “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, 2017, pp. 506–519.

[169] T. Park et al., “Semantic image synthesis with spatially-adaptive normalization,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 2337–2346.

[170] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification
using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[171] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 701–710.

[172] M. Peters et al., “Deep contextualized word representations,” in Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2018, pp. 2227–
2237.

[173] H. Pham et al., “Meta pseudo labels,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 11 557–11 568.

[174] L. Pishchulin et al., “Deepcut: Joint subset partition and labeling for multi person
pose estimation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4929–4937.

[175] O. Poursaeed et al., “Generative adversarial perturbations,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4422–4431.

[176] T. M. Quan, D. G. Hildebrand, and W.-K. Jeong, “Fusionnet: A deep fully residual
convolutional neural network for image segmentation in connectomics,” arXiv
preprint arXiv:1612.05360, 2016.

[177] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning cnn image retrieval with no
human annotation,” IEEE transactions on pattern analysis and machine intelligence,
vol. 41, no. 7, pp. 1655–1668, 2018.

[178] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[179] A. Radford et al., “Improving language understanding by generative pre-training,”
2018.

[180] A. Radford et al., “Language models are unsupervised multitask learners,” OpenAI
blog, vol. 1, no. 8, p. 9, 2019.

[181] M. Raghu et al., “Do vision transformers see like convolutional neural networks?”
Advances in Neural Information Processing Systems, vol. 34, 2021.

[182] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv
preprint arXiv:1710.05941, 2017.

bibliography 143

[183] P. Ramachandran et al., “Stand-alone self-attention in vision models,” arXiv preprint
arXiv:1906.05909, 2019.

[184] E. Real et al., “Regularized evolution for image classifier architecture search,” in
Proceedings of the aaai conference on artificial intelligence, vol. 33, 2019, pp. 4780–4789.

[185] S.-A. Rebuffi et al., “Data augmentation can improve robustness,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[186] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[187] ——, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.

[188] J. Redmon et al., “You only look once: Unified, real-time object detection,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 779–788.

[189] J. Ren et al., “A simple fix to mahalanobis distance for improving near-ood
detection,” arXiv preprint arXiv:2106.09022, 2021.

[190] S. Ren et al., “Faster r-cnn: Towards real-time object detection with region proposal
networks,” Advances in neural information processing systems, vol. 28, pp. 91–99, 2015.

[191] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[192] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, Springer, 2015, pp. 234–241.

[193] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[194] R. Rothe, M. Guillaumin, and L. Van Gool, “Non-maximum suppression for object
detection by passing messages between windows,” in Asian conference on computer
vision, Springer, 2014, pp. 290–306.

[195] E. M. Rudd et al., “The extreme value machine,” IEEE transactions on pattern analysis
and machine intelligence, vol. 40, no. 3, pp. 762–768, 2017.

[196] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[197] C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1,
no. 5, pp. 206–215, 2019.

[198] C. Rudin, C. Wang, and B. Coker, “The age of secrecy and unfairness in recidivism
prediction,” arXiv preprint arXiv:1811.00731, 2018.

[199] C. Rudin et al., “Interpretable machine learning: Fundamental principles and 10
grand challenges,” arXiv preprint arXiv:2103.11251, 2021.

[200] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[201] A. A. Rusu et al., “Progressive neural networks,” arXiv preprint arXiv:1606.04671,
2016.

[202] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” arXiv
preprint arXiv:1710.09829, 2017.

144 bibliography

[203] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks,” Advances in neural information
processing systems, vol. 29, pp. 901–909, 2016.

[204] W. Samek and K.-R. Müller, “Towards explainable artificial intelligence,” in
Explainable AI: interpreting, explaining and visualizing deep learning, Springer, 2019,
pp. 5–22.

[205] J. Sánchez and F. Perronnin, “High-dimensional signature compression for large-
scale image classification,” in CVPR 2011, IEEE, 2011, pp. 1665–1672.

[206] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottlenecks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 4510–4520.

[207] A. Santoro et al., “Relational recurrent neural networks,” arXiv preprint
arXiv:1806.01822, 2018.

[208] F. Scarselli et al., “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[209] W. J. Scheirer et al., “Meta-recognition: The theory and practice of recognition score
analysis,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 8,
pp. 1689–1695, 2011.

[210] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 815–823.

[211] J. Schulman et al., “High-dimensional continuous control using generalized
advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[212] J. Schulman et al., “Trust region policy optimization,” in International conference on
machine learning, PMLR, 2015, pp. 1889–1897.

[213] J. Schulman et al., “Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[214] V. Sehwag, M. Chiang, and P. Mittal, “Ssd: A unified framework for self-supervised
outlier detection,” arXiv preprint arXiv:2103.12051, 2021.

[215] R. R. Selvaraju et al., “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 618–626.

[216] A. Serban, E. Poll, and J. Visser, “Adversarial examples on object recognition: A
comprehensive survey,” ACM Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–38,
2020.

[217] M. Sharif et al., “Accessorize to a crime: Real and stealthy attacks on state-of-the-art
face recognition,” in Proceedings of the 2016 acm sigsac conference on computer and
communications security, 2016, pp. 1528–1540.

[218] J. Shijie et al., “Research on data augmentation for image classification based on
convolution neural networks,” in 2017 Chinese automation congress (CAC), IEEE, 2017,
pp. 4165–4170.

[219] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for
deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

bibliography 145

[220] D. Silver et al., “Deterministic policy gradient algorithms,” in International conference
on machine learning, PMLR, 2014, pp. 387–395.

[221] D. Silver et al., “Mastering the game of go with deep neural networks and tree
search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[222] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[223] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,”
Advances in neural information processing systems, vol. 29, 2016.

[224] S. Son, S. Nah, and K. M. Lee, “Clustering convolutional kernels to compress
deep neural networks,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 216–232.

[225] Y. Song et al., “Pixeldefend: Leveraging generative models to understand and defend
against adversarial examples,” arXiv preprint arXiv:1710.10766, 2017.

[226] D. Soydaner, “A comparison of optimization algorithms for deep learning,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 34, no. 13,
p. 2 052 013, 2020.

[227] J. T. Springenberg et al., “Striving for simplicity: The all convolutional net,” arXiv
preprint arXiv:1412.6806, 2014.

[228] A. Srinivas et al., “Bottleneck transformers for visual recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 519–
16 529.

[229] N. Srivastava et al., “Dropout: A simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[230] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–841,
2019.

[231] C. Sun et al., “Revisiting unreasonable effectiveness of data in deep learning era,” in
Proceedings of the IEEE international conference on computer vision, 2017, pp. 843–852.

[232] T. Szandała, “Review and comparison of commonly used activation functions for
deep neural networks,” in Bio-inspired Neurocomputing, Springer, 2020, pp. 203–224.

[233] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 1–9.

[234] C. Szegedy et al., “Inception-v4, inception-resnet and the impact of residual
connections on learning,” arXiv preprint arXiv:1602.07261, 2016.

[235] C. Szegedy et al., “Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

[236] K. Szyc, “Comparison of different deep-learning methods for image classification,”
in 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES),
IEEE, 2018, pp. 000 341–000 346.

[237] ——, “An impact of different images color spaces on the efficiency of convolutional
neural networks,” in International Conference on Dependability and Complex Systems,
Springer, 2019, pp. 506–514.

146 bibliography

[238] ——, “Generalized convolution: Replacing the classic convolution operation with
the sub-network,” in International Conference on Dependability and Complex Systems,
Springer, 2021, pp. 437–446.

[239] ——, “An impact of data augmentation techniques on the robustness
of cnns,” in International Conference on Dependability and Complex Sys-
tems, http://depcos.pwr.edu.pl/ https://link.springer.com/conference/depcos/,
Springer, 2022.

[240] K. Szyc, T. Walkowiak, and H. Maciejewski, “Checking robustness of representations
learned by deep neural networks,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer, 2021, pp. 399–414.

[241] ——, “Why out-of-distribution detection in cnns does not like mahalanobis–and
what to use instead,” arXiv preprint arXiv:2110.07043, 2021.

[242] J. Tack et al., “Csi: Novelty detection via contrastive learning on distributionally
shifted instances,” Advances in neural information processing systems, vol. 33,
pp. 11 839–11 852, 2020.

[243] F. Tajwar et al., “No true state-of-the-art? ood detection methods are inconsistent
across datasets,” arXiv preprint arXiv:2109.05554, 2021.

[244] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” arXiv preprint arXiv:1905.11946, 2019.

[245] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 10 781–10 790.

[246] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated surveillance cameras:
Adversarial patches to attack person detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2019.

[247] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval with integral max-
pooling of cnn activations,” arXiv preprint arXiv:1511.05879, 2015.

[248] I. Tolstikhin et al., “Mlp-mixer: An all-mlp architecture for vision,” arXiv preprint
arXiv:2105.01601, 2021.

[249] H. Touvron et al., “Fixing the train-test resolution discrepancy,” in Advances in
Neural Information Processing Systems, 2019, pp. 8252–8262.

[250] ——, “Fixing the train-test resolution discrepancy: Fixefficientnet,” arXiv preprint
arXiv:2003.08237, 2020.

[251] H. Touvron et al., “Training data-efficient image transformers & distillation through
attention,” in International Conference on Machine Learning, PMLR, 2021, pp. 10 347–
10 357.

[252] O. Tursun et al., “Enhancing feature invariance with learned image transformations
for image retrieval,” arXiv e-prints, arXiv–2002, 2020.

[253] J. R. Uijlings et al., “Selective search for object recognition,” International journal of
computer vision, vol. 104, no. 2, pp. 154–171, 2013.

[254] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing
ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[255] A. Vaswani et al., “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

bibliography 147

[256] A. S. Vezhnevets et al., “Feudal networks for hierarchical reinforcement learning,”
in International Conference on Machine Learning, PMLR, 2017, pp. 3540–3549.

[257] O. Vinyals et al., “Grandmaster level in starcraft ii using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[258] T. Walkowiak, K. Szyc, and H. Maciejewski, “On validity of extreme value
theory-based parametric models for out-of-distribution detection,” in International
Conference on Computational Science, Springer, 2021, pp. 142–155.

[259] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-yolov4: Scaling cross stage
partial network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 13 029–13 038.

[260] H. Wang et al., “Score-cam: Score-weighted visual explanations for convolutional
neural networks,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, 2020, pp. 24–25.

[261] J. Wang et al., “Deep metric learning with angular loss,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2593–2601.

[262] J. Wang et al., “Learning fine-grained image similarity with deep ranking,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2014,
pp. 1386–1393.

[263] Y. Wang et al., “Improving adversarial robustness requires revisiting misclassified
examples,” in International Conference on Learning Representations, 2019.

[264] Z. Wang et al., “Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning, PMLR, 2016, pp. 1995–2003.

[265] X.-S. Wei et al., “Selective convolutional descriptor aggregation for fine-grained
image retrieval,” IEEE Transactions on Image Processing, vol. 26, no. 6, pp. 2868–2881,
2017.

[266] A. Weller, “Transparency: Motivations and challenges,” in Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning, Springer, 2019, pp. 23–40.

[267] J. Winkens et al., “Contrastive training for improved out-of-distribution detection,”
arXiv preprint arXiv:2007.05566, 2020.

[268] H. Wu et al., “Cvt: Introducing convolutions to vision transformers,” arXiv preprint
arXiv:2103.15808, 2021.

[269] Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 3–19.

[270] Z. Wu et al., “A comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[271] C. Xiao et al., “Generating adversarial examples with adversarial networks,” arXiv
preprint arXiv:1801.02610, 2018.

[272] K. Xiao et al., “Noise or signal: The role of image backgrounds in object recognition,”
arXiv preprint arXiv:2006.09994, 2020.

[273] Q. Xie et al., “Self-training with noisy student improves imagenet classification,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10 687–10 698.

148 bibliography

[274] S. Xie et al., “Aggregated residual transformations for deep neural networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1492–1500.

[275] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in
deep neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[276] Y.-Y. Yang et al., “A closer look at accuracy vs. robustness,” Advances in neural
information processing systems, vol. 33, pp. 8588–8601, 2020.

[277] Z. Yang et al., “Xlnet: Generalized autoregressive pretraining for language
understanding,” Advances in neural information processing systems, vol. 32, 2019.

[278] X. Yuan et al., “Adversarial examples: Attacks and defenses for deep learning,”
IEEE transactions on neural networks and learning systems, vol. 30, no. 9, pp. 2805–2824,
2019.

[279] S. Yun et al., “Cutmix: Regularization strategy to train strong classifiers with
localizable features,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 6023–6032.

[280] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[281] J. Zbontar et al., “Barlow twins: Self-supervised learning via redundancy reduction,”
in International Conference on Machine Learning, PMLR, 2021, pp. 12 310–12 320.

[282] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[283] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision, Springer, 2014, pp. 818–833.

[284] H. Zhang et al., “Mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[285] X. Zhang et al., “Shufflenet: An extremely efficient convolutional neural network for
mobile devices,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 6848–6856.

[286] X. Zhang et al., “Polynet: A pursuit of structural diversity in very deep networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 718–726.

[287] S. Zhao et al., “Towards better accuracy-efficiency trade-offs: Divide and co-
training,” arXiv preprint arXiv:2011.14660, 2020.

[288] S. Zheng et al., “Improving the robustness of deep neural networks via stability
training,” in Proceedings of the ieee conference on computer vision and pattern recognition,
2016, pp. 4480–4488.

[289] B. Zhou et al., “Places: A 10 million image database for scene recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 6, pp. 1452–1464,
2017.

[290] P. Zhou et al., “Towards theoretically understanding why sgd generalizes better
than adam in deep learning,” arXiv preprint arXiv:2010.05627, 2020.

[291] J.-Y. Zhu et al., “Unpaired image-to-image translation using cycle-consistent
adversarial networks,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 2223–2232.

bibliography 149

[292] Y. Zhu and S. Newsam, “Densenet for dense flow,” in 2017 IEEE international
conference on image processing (ICIP), IEEE, 2017, pp. 790–794.

[293] B. Zoph et al., “Learning transferable architectures for scalable image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 8697–8710.

L i s t o f F i g u r e s

Figure 2.1 . 12
Figure 2.2 . 13
Figure 2.3 . 14
Figure 2.4 . 18
Figure 2.5 . 19
Figure 2.6 . 21
Figure 2.7 . 25
Figure 2.8 . 26
Figure 2.9 . 28
Figure 2.10 . 28
Figure 2.11 . 29
Figure 2.12 . 30
Figure 2.13 . 30
Figure 2.14 . 31
Figure 2.15 . 32
Figure 2.16 . 33
Figure 2.17 . 33
Figure 2.18 . 36
Figure 2.19 . 37
Figure 2.20 . 37
Figure 2.21 . 38
Figure 2.22 . 39
Figure 2.23 . 39
Figure 2.24 . 40
Figure 2.25 . 41
Figure 2.26 . 42
Figure 2.27 . 50
Figure 2.28 . 52
Figure 2.29 . 54
Figure 2.30 . 55
Figure 3.1 . 64
Figure 3.2 . 77
Figure 3.3 . 78
Figure 3.4 . 78
Figure 3.5 . 79
Figure 3.6 . 81
Figure 3.7 . 82
Figure 3.8 . 84
Figure 3.9 . 100
Figure 3.10 . 102
Figure 3.11 . 109
Figure 3.12 . 110
Figure 3.13 . 110
Figure 3.14 . 111

151

Figure 3.15 . 112
Figure 3.16 . 113
Figure 3.17 . 114
Figure 3.18 . 114
Figure 3.19 . 117
Figure 3.20 . 117
Figure 3.21 . 121

L i s t o f Ta b l e s

Table 2.1 . 21
Table 3.1 . 65
Table 3.2 . 66
Table 3.3 . 67
Table 3.3 . 68
Table 3.3 . 69
Table 3.4 . 71
Table 3.5 . 71
Table 3.5 . 72
Table 3.5 . 73
Table 3.5 . 74
Table 3.5 . 75
Table 3.5 . 76
Table 3.6 . 80
Table 3.7 . 83
Table 3.8 . 85
Table 3.9 . 88
Table 3.10 . 89
Table 3.11 . 90
Table 3.12 . 91
Table 3.13 . 92
Table 3.14 . 94
Table 3.14 . 95
Table 3.15 . 95
Table 3.15 . 96
Table 3.16 . 97
Table 3.16 . 98
Table 3.17 . 102
Table 3.17 . 103
Table 3.17 . 104
Table 3.18 . 105
Table 3.18 . 106
Table 3.19 . 107
Table 3.19 . 108
Table 3.19 . 109

152

Table 3.20 . 114
Table 3.20 . 115
Table 3.20 . 116
Table 3.21 . 118
Table 3.21 . 119
Table 3.21 . 120
Table 3.22 . 122
Table 3.22 . 123

153

	Abstract
	Streszczenie
	Contents
	Acronyms
	Part I. Introduction and Background
	1. Introduction
	1.1 Motivation
	1.2 The Research Problems Formulation
	1.3 Document organization

	2. Background
	2.1 Review of Deep Learning
	2.1.1 Types of Deep Architectures
	2.1.1.1 Classic Neural Network
	2.1.1.2 Convolutional Neural Network
	2.1.1.3 Generative Adversarial Network
	2.1.1.4 Recurrent Neural Network
	2.1.1.4.1 Classic RNN
	2.1.1.4.2 LSTM

	2.1.1.5 Transformer
	2.1.1.6 Reinforcement learning
	2.1.1.7 Other Architectures

	2.1.2 Popular Techniques Used in Deep Learning
	2.1.2.1 Optimization Techniques
	2.1.2.1.1 Gradient descent
	2.1.2.1.2 Stochastic gradient descent
	2.1.2.1.3 Modifications of SGD
	2.1.2.1.4 Adaptive gradient descent algorithms

	2.1.2.2 Regularization Techniques
	2.1.2.2. L1 and L2 regularization
	2.1.2.2.2 Dropout
	2.1.2.2.3 Data augmentation
	2.1.2.2.4 Normalization layers

	2.1.2.3 Activation Functions and Weight Initialization
	2.1.2.3.1 Activation functions
	2.1.2.3.2 Weight initialization

	2.2 Convolutional Neural Networks for Computer Vision
	2.2.1 Introduction
	2.2.2 Popular Images Datasets
	2.2.2.0.1 MNIST
	2.2.2.0.2 SVHN
	2.2.2.0.3 CIFAR
	2.2.2.0.4 ImageNet
	2.2.2.0.5 Places365
	2.2.2.0.6 Imagenet-O
	2.2.2.0.7 JFT-300m

	2.2.3 CNN Layers
	2.2.3.1 Convolutional Layer
	2.2.3.2 Pooling Layer
	2.2.3.3 Fully Connected Layer
	2.2.3.4 Global Pooling

	2.2.4 Important CNN models
	2.2.4.1 LeNet-5
	2.2.4.2 AlexNet
	2.2.4.3 ZFNet
	2.2.4.4 Network In Network
	2.2.4.5 VGG
	2.2.4.6 GoogLeNet / Inception
	2.2.4.7 Inception v3
	2.2.4.8 ResNet
	2.2.4.9 Xception
	2.2.4.10 Inception v4
	2.2.4.11 ResNeXt
	2.2.4.12 DenseNet
	2.2.4.13 DPN
	2.2.4.14 PolyNet
	2.2.4.15 SENet
	2.2.4.16 NASNet
	2.2.4.17 AmoebaNet and GPipe
	2.2.4.18 EfficientNet
	2.2.4.19 NoisyStudent
	2.2.4.20 BiT
	2.2.4.21 FixEfficientNet

	2.2.5 Mobile Models
	2.2.5.1 MobileNet
	2.2.5.2 ShuffleNet

	2.2.6 Contrastive Learning
	2.2.7 Detection, Segmentation and Key Points Estimation
	2.2.8 Image Retrieval
	2.2.8.1 Feature Extraction
	2.2.8.1.1 Neural code
	2.2.8.1.2 GAP and GMP
	2.2.8.1.3 Spoc
	2.2.8.1.4 GEM
	2.2.8.1.5 Crow
	2.2.8.1.6 R-MAC
	2.2.8.1.7 DIR
	2.2.8.1.8 DELF
	2.2.8.1.9 MS-RMAC
	2.2.8.1.10 GAP ALL
	2.2.8.1.11 SCDA
	2.2.8.1.12 Other methods

	2.3 Challenges
	2.3.1 Out-of-Distribution Detection
	2.3.1.1 OoD detection methods
	2.3.1.2 MaxSoftmax and MaxLogits
	2.3.1.2.1 MaxSoftmax
	2.3.1.2.2 MaxLogits

	2.3.1.3 Mahalanobis distance based methods
	2.3.1.4 LOF (Local Outlier Factor)
	2.3.1.4.1 LOF
	2.3.1.4.2 LOF_D

	2.3.1.5 Open-Set Nearest Neighbor
	2.3.1.6 MDistance
	2.3.1.7 Extreme Value Machine(EVM)
	2.3.1.8 OpenMax
	2.3.1.9 ODIN
	2.3.1.10 Unified Framework
	2.3.1.11 Other methods
	2.3.1.11.1 Outlier exposure
	2.3.1.11.2 Energy-based OoD detection
	2.3.1.11.3 SSD
	2.3.1.11.4 Generalized ODIN
	2.3.1.11.5 Learning confidence

	2.3.2 Adversarial examples
	2.3.2.1 Introduction
	2.3.2.2 Attack methods
	2.3.2.2.1 Fast gradient SIGN method
	2.3.2.2.2 Basic iterative method
	2.3.2.2.3 Projected gradient descent
	2.3.2.2.4 Carlini wagner attack
	2.3.2.2.5 Jacobian-based saliency map
	2.3.2.2.6 Deep fooled
	2.3.2.2.7 One-pixel attack
	2.3.2.2.8 Other methods

	2.3.2.3 Defenses methods

	2.3.3 Trustworthiness of AI
	2.3.3.1 Robustness

	Part II. Research
	3.1 Introduction and Chapter Plan
	3.1.1 Research Limitations and Assumptions

	3.2 Complexity of the OoD Problem
	3.2.1 Simple Example to Demonstrate the Complexity of OoD Detection Problem
	3.2.2 Extending the Simple Example by Adding New CNNs Models and the Mahalanobis Method
	3.2.3 Comprehensive Comparison of OoD Methods for the Resnet-101
	3.2.4 Applying OoD Methods to Large-Scale Images

	3.3 Analysis of Assumptions of Chosen Ood Methods
	3.3.1 Discussion on the Mahalanobis
	3.3.2 Discussion on A Simple Unified Framework for OoD
	3.3.3 Discussion on Extreme Value Machine(EVM)

	3.4 The Influence of Features on OoD Detection
	3.4.1 Effect of the Feature Extraction Method on OoD Detection
	3.4.2 Effect of the Feature Reduction
	3.4.3 An Impact of Data Augmentation Techniques on the Robustness and OoD Detection
	3.4.4 Testing the Sensitivity of the OoD Detection Based on the CNN Model State
	3.4.5 Easy and Hard Subsets for OoD Detection
	3.4.6 OoD Detection for Adversarial Attacks Protection

	Part III. Summary
	Summary
	4.1 Summary
	4.2 Conclusions
	4.3 Future Works

	Bibliography
	List of Figures
	List of Tables

