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1. INTRODUCTION 

In price options, a common approach is first and second order Taylor expansions. 

Indeed, given the option price, its delta and range, a financial trader can derive 

a quadratic approximation that is easily computable even for exotic options (which 

can be difficult to evaluate) and “more importantly, it is linear in the underlying price 

change and in its squared value and is thus readily aggregated across instruments, 

portfolios and business units of the firm” (Estrella, 1995). 
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In addition, for the purposes of hedging a portfolio, options are traded in order to 

obtain a neutral delta strategy. However, the measure has a problem in that it 

is computed on past performances, and may have little to do with the current level 

of risk. Within the Black and Scholes (1973) framework, extended by Merton 

(1973), it is possible to identify a relation between the value of an asset and 

the option written on it. 

This is because traders have to evaluate the risk they run in their portfolio. 

However, the fact that this assessment is retrospective poses a problem, as it is 

calculated on past performance and may have little to do with the current level of 

risk. Within the framework of Black and Scholes (1973), expanded by Merton 

(1973), it is possible to identify a relationship between the value of an asset and the 

related option written on it. This has resulted in a connection between the option 

price and certain factors such as time, rates, dividends and, most importantly, actual 

volatility; see Hull (2006). Therefore, in financial markets, options are quoted 

directly in terms of volatility rather than price. Hence, given the importance 

of determining the implied volatility, the research was focused in two directions: 

“one, pragmatic, which aims to provide approximations that can be easily calculated 

in a spreadsheet, and the other, theoretical, which explores the mathematical 

properties of the implied volatility” (Orlando & Taglialatela, 2017). 

Given the structure of the BS formula which cannot be inverted analytically, 

implied volatility can only be found through numerical approximation methods. 

Notwithstanding this, in some cases these methods may also fail for computational 

reasons (Orlando & Taglialatela, 2017). 

In this paper the authors extended some considerations and analyses regarding 

a closed-form formula to approximate the BS formula by means of an appropriate 

parameterization of the hyperbolic tangent, as shown by Mininni et al. (2021). In 

particular, this paper presents further literature, with the purpose of calculating 

implied volatility and its use in decision making, and provides further graphical and 

numerical evidence. This allows to discover both the call value for any changes in 

the key variables and derive the implied volatility at once, for all combinations of 

strike, underlying, time, etc. To obtain this result, the so-called “standardized call 

function”, i.e. a single parameter function representing the general family of calls, 

was employed. 

The structure of the paper is as follows. The first section provides some basic 

information on both the topic and the literature, and sets out the notations. The 

second and third sections illustrate some closed-form approximations of the call 

function, both where the call is deep In-The-Money/Out of the Money, and in the 

case of At-The-Money. The fourth section deals with the derivation of the 

approximations of the implied volatility in the cases mentioned above. In the fifth 

section, some numerical simulations are illustrated and these results are compared 
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with those provided by the literature. The sixth section illustrates the importance of 

implied volatility and stresses how its approximations are useful in the decision- 

-making process, and the last section concludes. 

2. BACKGROUND 

2.1. Market volatility 

Among those who have studied market volatility, there are Mo & Wu (2007) who 

on a sample from 3 January 1996 to 14 August 2002 reported that implied volatility 

for S&P 500 Index, the FTSE 100 Index and the Nikkei-225 Stock Average ranged 

from 15% to 35%. Similarly, Glasserman & Wu (2011), on a sample of currency 

options on EUR/USD, GBP/USD and USD/JPY, reported that implied volatility 

ranged from 5% to 43%. 

Fassas & Siriopoulos (2021) document that “68 publicly available implied 

volatility indices worldwide and 25 indices proposed in an academic context” and 

report their descriptive statistics of realized and implied volatility levels. For 

example, on a sample from July 2011 to December 2019 of monthly observations, 

on average the stock indexes and the volatility indexes (Panel 1) had a mean, median, 

minimum and maximum of 18.80%, 17.22%, 43.98% and 9.75%, respectively. 

Finally, the authors report the data from the VIX Index which is a financial 

benchmark estimating the expected volatility of the S&P 500 index, obtained by 

using the midpoint of the real-time S&P 500 index (SPX) option bid/ask quotes. In 

other terms, the “VIX index measures the level of expected volatility of the S&P 500 

index over the next 30 days that is implied in the bid/ask quotations of SPX options. 

Thus, the VIX index is a forward-looking measure, in contrast to realized (or actual) 

volatility, which measures the variability of historical (or known) prices” (Fassas & 

Siriopoulos, 2021). Table 1 below shows the overall daily distribution of the 

VIX since its inception up to 2021 as displayed in Figure 1. In those years the median 

volatility was ~19.55%, mode ~14.98% and average was ~21.74% and big values 

were uncommon. 

Table 1 

The overall daily distributions of the VIX 

Percentile I II III IV V VI VII VIII IX X 

Vol 11.85 14.50 - 15.38 - 16.40 - 17.87 - 19.59 - 21.18 - 23.51 - 26.41 - 31.72 - 72.98 

Source: Chicago Board Options Exchange (CBOE) and authors’ elaboration. 
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Fig. 1. Chicago Board Options Exchange, CBOE S&P 500 3-Month Volatility Index [VXVCLS]; 

the grey stripes indicate recessions. 

Source: Chicago Board Options Exchange (CBOE) and Federal Reserve Economic Data (FRED), 

St. Louis Fed. 

Table 2 

Stock Options Volume Leaders (Top20) 

Symbol Price Type Strike ExpDate DTE Bid Ask Last Volume OpenInt Vol/OI IV 

AAPL 163.17 Put 150 04/14/22 40 3.15 3.3 3.25 59,136 29,364 2.01 39.61% 

AAPL 163.17 Call 165 03/11/22 7 1.97 2.09 2.09 50,025 17,399 2.88 32.22% 

AAPL 163.17 Put 165 03/04/22 0 1.13 2.01 1.71 49,677 26,785 1.85 22.67% 

AAPL 163.17 Call 170 03/11/22 7 0.45 0.47 0.45 45,580 40,925 1.11 27.43% 

AAPL 163.17 Call 162.5 03/04/22 0 0.5 1.22 1 45,440 7,611 5.97 18.03% 

TSLA 838.29 Put 840 03/04/22 0 0.73 2.5 1.02 41,096 3,249 12.65 8.58% 

SWN 5.38 Call 6 09/16/22 195 0.75 0.88 0.8 40,133 2,977 13.48 65.90% 

ARCC 21.92 Put 20 04/14/22 40 0.4 0.45 0.43 37,979 2,038 18.64 39.53% 

AAPL 163.17 Call 170 03/18/22 13 1.32 1.41 1.38 36,925 76,937 0.48 30.97% 

TSLA 838.29 Call 840 03/04/22 0 0.11 0.48 0.13 34,847 1,523 22.88 3.80% 

CEI 0.78 Call 1 03/11/22 7 0.1 0.11 0.11 34,347 7,260 4.73 416.92% 

AAPL 163.17 Put 162.5 03/11/22 7 2.52 2.75 2.71 30,137 7,896 3.82 33.64% 

AAPL 163.17 Call 167.5 03/11/22 7 0.98 1.04 1.01 29,622 19,969 1.48 28.81% 

NVDA 229.36 Put 230 03/04/22 0 0.25 1.57 0.35 26,647 4,111 6.48 25.69% 

AAL 14.59 Put 10 01/20/23 322 1.32 1.4 1.36 25,719 168,181 0.15 70.10% 

AAPL 163.17 Put 160 03/11/22 7 1.84 1.91 1.8 25,245 6,866 3.68 35.95% 

AAPL 163.17 Call 175 03/11/22 7 0.1 0.11 0.11 24,856 38,791 0.64 28.94% 

TSLA 838.29 Put 835 03/04/22 0 0.03 0.2 0.19 24,518 1,856 13.21 6.72% 

AAL 14.59 Put 12 04/14/22 40 0.54 0.55 0.54 23,759 334 71.13 85.45% 

AMD 108.41 Put 110 03/04/22 0 0.75 1.83 1.47 23,178 6,375 3.64 35.09% 

Note: American Airlines Group (AAL), Apple Inc (AAPL), Adv Micro Devices (AMD), Ares Capital 

Corp (ARCC), Camber Energy Inc (CEI), Nvidia Corp (NVDA), Southwestern Energy Company (SWN), 

Tesla Inc (TSLA).  

Source: Barchart (2022) and authors' elaboration. 
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To complement the analysis at the level of single securities, Table 2 shows the 

highest option volume strikes of the most bought and sold options of the day 

(5 March 2022). In terms of days to expiration (DTE), the median was 7% (average 

35%) and in terms of implied volatility (IV) the median was 32% (average 53%). 

2.2. Literature review 

To calculate both the call price and the implied volatility, numerical algorithms 

can be found in Dura & Moşneagu (2010), Orlando & Taglialatela (2017), Liu et al. 

(2019), and Kim et al. (2022). Still, as mentioned by Manaster & Koehler (1982), 

numerical approaches come at a cost and bring drawbacks that motivate, whenever 

possible, closed-form approximations; see e.g. Manaster & Koehler (1982). An 

example of the aforementioned problems is provided by Estrella (1995) who 

demonstrated that the Taylor series for the BS formula may diverge and “even when 

the series converges, finite approximations of very large order are generally 

necessary to achieve acceptable levels of accuracy”. The alternative of using the 

exact formula while it provides more accurate results, presents some inconvenience 

in terms of calculations and reduced flexibility Estrella (1995). Therefore “simple 

solutions are desirous because they have two very attractive properties. They are 

easy to implement and provide very fast computational algorithms” Hofstetter & 

Selby (2001). Similarly, “despite recent advances in modelling option prices, traders 

and other practitioners have resisted using more complex theoretical formulas. The 

most widely used valuation procedure among practitioners is a variant of the Black-

Scholes framework with ad hoc adjustments and frequent updating” Berkowitz 

(2001). For this reason, the BS model “can be cast as a functional approximation to 

the true but unknown option pricing formula. When fitted to a large number of 

observed prices, the implied volatility surface will exactly price the full cross-

section. If the implied volatility surface is re-calibrated sufficiently frequently, then 

out of sample forecasts of option prices become arbitrarily accurate” Berkowitz 

(2001). For details on more advanced approaches such as stochastic local volatility 

(SLV) models, see Guerrero & Orlando (2022). 

Concerning the delta, finite Taylor expansions of the first and second order of the 

BS formula are generally used for the approximations. In fact, from the price, the 

delta and gamma of the option, it is possible to obtain a quadratic approximation that 

is easily computable even in the case of exotic options whose derivation can be 

unwieldy. Even more importantly, the said approximation “is linear in the 

underlying price change and in its squared value and is thus readily aggregated 

across instruments, portfolios and business units of the firm” Estrella (1995). 

Regarding the vega, between the approximations in closed form based on Taylor 

approximations or on the expansion of the power series of the cumulative normal 
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distribution function (cndf), one can mention Brenner & Subrahmanyam (1988), 

Bharadia et al. (1995), Chance (1996), Corrado & Miller (1996a, 1996b), Liang & 

Tahara (2009), and Li (2005). For a review on the subject see Orlando & Taglialatela 

(2017). Closed-form approximations applicable only in the At-The-Money case were 

reported by the Pólya approximation (Polya (1949), Matic (2017) & Pianca (2005)). 

More recently, the topic of closed form solutions was investigated by Mininni et al. 

(2021) who adopted a single function to approximate the call function, and by 

Orlando & Taglialatela (2021) who, instead, split the approximating function into 

two parts: above and below the inflection point. 

Among the hybrid methods one can mention Hofstetter & Selby (2001) who 

replaced the cndf with the logistic distribution, Li (2008) who used rational functions 

in combination with the Newton-Raphson algorithm, and Orlando & Taglialatela 

(2017) who took the inflection point of the call function as a starting point for 

the Newton-Raphson algorithm. Regarding the pros and cons of the two latter 

solutions, one may refer to Orlando & Taglialatela (2021). Furthermore, Georgiev 

& Vulkov (2021) proposed a robust algorithm determining time-dependent 

volatility, whereas Tae-Kyoung et al. (2022) constructed a network for estimating 

the Black–Scholes implied volatilities through large-scale online learning. Last but 

not least, in case of turbulent markets the reader may refer to the analytical 

approximation of the critical stock price as well as of the implied volatility by Bufalo 

& Orlando (2022). 

3. A GENERALIZED APPROXIMATION OF THE BLACK-SCHOLES 

FORMULA 

3.1. The Black-Scholes formula 

The well-known BS formula for the price of a European call option is 

( ) ( )1 2: ,C SN d XN d= −  

where C is the price of a call option, S the value of the underlying, ( )N x  the 

cumulative distribution function of the standard normal, i.e. 

( )
2 /21

:
2

x

tN x e dt


−

−

=   

r is the interest rate, T the time to maturity in terms of a year,  σ the volatility, 

and K the strike price. rTX Ke−= is the present value of the strike price, 
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( )
1

log /
:

2

S X
d T

T




= + the first parameter of probability, i.e. “the factor by which 

the present value of contingent receipt of the stock, contingent on exercise, exceeds 

the current value of the stock” Nielsen (1993), 
( )

2

log /
:

2

S X
d T

T




= − the second 

parameter of probability which represents the risk-adjusted probability of exercise. 

Note that, given the values ,S  X and T, price C of the call implied volatility is 

obtained by inverting function ( )C C = . 

The objective of the following sections is to obtain a suitable approximation C  

of  C so that the implied volatility is obtained from the inversion of .C  

3.2. The standardized call function 

Mininni et al. (2021) defined the standardized call function, which is a one-

parameter family of functions that allows to describe the whole family of call 

functions in the case S X .  

Let us recall here the definition and the basic properties (the proof can be found 

in Mininni et al. (2021)).  

For 0   let 

( )
2 /21 1

: ,        0.
2 2

x N x e N x x
x x





 


   −   
= − − +       

      
 

The relation between the call function ( )C C =  and the function 
  is given 

for fixed 0S  , 0X   and 0T  , with X S , by the formula 

 ( )

if  ,

if ,

T
S X S

C
T

S X X X S
















  
   

  
= 

 
− +    

 

 (3.1) 

where 

( ): 2 log / .S X =
 

As 

( )
22 1

' exp
82

x x
x



 




 −  
= −  

     
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and 0  , one can see that the function 
  is strictly increasing in ]0,+ [  

with 

( )
0

lim 0
x

x


=  

( )lim 1.
x

x
+

=  

Moreover, as 

( )
23 2 4

3

1 1
exp

84 2

x
x x

x x


 




 − − 
 = −  

   

 

one can see that   has a sigmoidal shape: it is strictly convex in ]0,1] and strictly 

concave in [1,+ [, with a single inflection point at 1x = . 

For further reference, recall also that the equation of the tangent line to 
  at  

x = 1 is 

 ( )( ) ( ) ( ) ( )
2 /21

' 1 1 1 1 .
22

y x x e N

 


  


= − + = − + − −  (3.2) 

Next, we construct an approximation of the function 
 , which gives, thanks to 

Eq. (3.1), an approximation of the call functions C(σ). To simplify the notation, set 

0   so that one can drop index α and denote with   and   the functions 
  

and 
 . 

3.3. The hyperbolic tangent model 

Since   has a sigmoidal form, let us consider the hyperbolic tangent for its 

approximation 

 ( )tanh :
x x

x x

e e
x

e e

−

−

−
=

+
 (3.3) 

which has a similar shape and moreover has an inverse function expressed in terms 

of elementary functions: 

 ( )
1 1

arctanh log .
2 1

x
x

x

+ 
=  

− 
 (3.4) 

A possible candidate for approximating call function   may be the following 

nonlinear regression model 
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 ( ) ( )( )0

1 1
: tanh

2 2
x x c = + +  (3.5) 

where : ] 0,+ [→R is a strictly increasing function with ( )1 0 = , and moreover 

( ) ( )
0

lim    and   lim ,
x x

x x 
 +

= − = +  

so that 

( ) ( )
0

lim 0   and   lim 1.
x x

x x 
 +

= =
 

3.4. Constraints on the approximating function 

It is required that   has an inflection point coinciding with the inflection point 

of  , and that in such a point the tangents are equal. More precisely, seeking for 

conditions on 

 ( ) ( )0 1 2,     : ' 1 ,     : 1 ,c    = =   (3.6) 

so that (cf. (3.2)) 

 
( ) ( ) ( )

2 /21
1 1 ,

2
e N  = = − −

 (3.7) 

 ( ) ( )' 1 ' 1 ,
2


 


= =  (3.8) 

 ( ) ( )1 1 0.  =  =  (3.9) 

Comparing (3.5) and (3.7) one obtains 

 ( ) ( )0tanh 2 1 1,c = −  (3.10) 

which gives 

 ( )( )
( )

( )
0

11
: arctanh 2 1 1 log .

2 1 1
c






 
= − =   − 

 (3.11) 

As ( ) ( )2tanh' 1 tanhx x= − , we have  

( ) ( )( ) ( )2

0

1
' 1 tanh ' ,

2
x x c x   = − + 

 

then, using (3.10), condition (3.8) becomes 
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( )( ) ( )
2

1

1
1 2 1 1 ' 1

2
   − − =

 
 

hence 

 
( )

( )( )
1 2

2 ' 1
: .

1 2 1 1





=

− −
 (3.12) 

Finally, as 

 
( ) ( )( ) ( ) ( )( ) ( )

22

0 0

1
1 tanh 2tanh ' ,

2
x x c x x c x       = − +  − +        

one can see that (3.9) holds true if 

( )( ) 2

2 12 2 1 1 ,  = −  

that is 

 
( )( ) ( )

( )( )

2

2 2
2

8 2 1 1 ' 1
: .

1 2 1 1

 




−   
=

 − −
 

 (3.13) 

3.5. Alternative specifications of the approximating formula 

Function ( )x  can be defined in many ways, in the following the authors show 

previous approximations and a general formula. 

3.5.1. Previous approximations 

Mininni et al. (2021) considered 

 ( ) ( )1 2

1
: 1 1 .A x c x c

x


 
= − − − 

 
 (3.14) 

As 

( ) ( )2 2
1 2 2

2
'    and    ,A A

c c
x c x

x x
 

−
= +  =  

one finds 

 
1 1 2 2 2

1 1
,    and    ,

2 2
c c  

−
= + =  (3.15) 
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hence one can rewrite (3.14) as 

 ( ) ( )1 2 2

1 1 1
: 1 1 .

2 2
A x x

x
   

   
= + − + −   
   

 (3.16) 

The constant 2  is clearly negative (cf. (3.7) and (3.13)), whereas 
1 2

1
0

2
 +   

is a consequence of the Komatsu (1995) – Pollak (1956) estimate (see Mininni et al. 

(2021) for details). 

3.5.2. A general approximating formula 

In this work the authors also consider the following new specification 

 ( ) ( )2

1 2 2

1
: 1 1 .B x f x f

x


 
= − − − 

 
 (3.17) 

As 

( ) 2
1 3

2
' 2B

f
x f x

x
 = +

 

( ) 2
1 4

6
2B

f
x f

x
  = −

 

in order to satisfy (3.6), one needs to solve the system 

1 2 1

1 2 2

2 2

2 6

f f

f f





+ =


− =
 

which gives 

 

1 2
1

1 2
2

3
: ,

8

: .
8

f

f

 

 

+
=


− =



  (3.18) 

Since 
1 0   and 

2 0  , one immediately obtains that 
2 0f  . Moreover 

1 1
1 ,

4 8

c
f


= +

 

where 1c  is given in (3.15); since 1 0c  , one also finds that 
1 0f  . Thus, we can 

rewrite (3.17) as 
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 ( ) ( )21 2 1 2

2

3 1
: 1 1 .

8 8
B x x

x

   


+ −  
= − − − 

 
 (3.19) 

3.6. The piecewise hyperbolic tangent model 

Instead of Eq. (3.5), one can consider a slightly more general model. As the 

function   has a single inflection at 1x = , the interval ]0,+ [ can be divided into 

two intervals: ]0,1] and [1,+ [, using two different approximating functions for 

each interval 

 ( )
( ) ( )( )

( ) ( )( )

+ + + +

- - - -

: tanh , if ]1, [,

: tanh , if ]0,1].

x a b x x
x

x a b x x

 


 

 = +  +
= 

= + 

 (3.20) 

As before, it is required that   belongs to 2C (]0,+ [) and has the same 

sigmoidal shape as  : 
−
 is an increasing and convex function in ]0,1], whereas 

+  is an increasing and concave function in [1,+ [. In order to obtain 

( )lim 1.
x

x
+

=
 

assume 

( )+lim
x

x
+

= +
 

and 

 
+ + 1;a b+ =   (3.21) 

whereas, in order to obtain 

( )
0

lim 0,
x

x


=
 

assume 

( )
0

lim
x

x −


= −

 

and 

 - - 0.a b− =   (3.22) 

It is required as before that   has an inflection point coinciding with the 

inflection point of  , and that in such point the tangents lines are equal, thus assume 
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 ( )( ) ( )( ) ( )+ + + - - -tanh 1 tanh 1 1 ,a b a b  + = + =  (3.23) 

 ( )( ) ( )( ) ( )+ + - -tanh 1 tanh 1 ' 1 ,
d d

b b
dx dx

  = =  (3.24) 

 ( )( ) ( )( ) ( )
2 2

+ +

2 2
tanh 1 tanh 1 1 0.

d d
b b

dx dx
  − −= =  =  (3.25) 

Note that the piecewise tanh-model (3.20) contains ten parameters to be chosen: 

( ) ( )+ + + + + + +

0 1 2,     ,     ,     : ' 1 ,     : 1 ,a b c    = =   

( ) ( )- - - -

0 1 2,     ,     ,     : ' 1 ,     : 1 ,a b c    − − −= =   

whereas conditions (3.21)–(3.25) form a system of eight equations, thus one has 

2 degrees of freedom in the choice of the parameters and many choices are possible. 

3.7. Derivation of a new piecewise approximation 

We repeat the computations in Section 2.4 for the following function 

 ( ) ( )( )0: tanh ,x a b x c = + +  (3.26) 

with ,a bR. Comparing (3.26) and (3.7), one obtains 

( )
( )

0

1
tanh ,

a
c

b

 −
=  

which gives: 

( )
0

1
arctanh ,

a
c

b

 − 
=  

 
 

hence, according to Eq. (3.4) 

 

( )

( )
( )

( )
0

1
1 11 1

log log .
12 2 1

1

a

b abc
a a b

b




 

 − 
+   − +

= =   
− + −    −

  

 (3.27) 

As ( ) ( )2tanh' 1 tanhx x= − , one obtains 

( ) ( )( ) ( )2

0' 1 tanh ' ,x b x c x   = − +   
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then (3.8) becomes 

( )
( )

2

1

1
1 ' 1

a
b

b


 

  − 
 − = 
   

, 

hence 

 
( )

( )

( )

( )( )
1 2 22

' 1 ' 11
.

11
1

b

b b aa

b

 



= =

− − − 
−  
 

 (3.28) 

Finally, as 

 ( ) ( )( ) ( ) ( )( ) ( )
22

0 01 tanh 2tanh ' ,x b x c x x c x       = − +  − +      
 

one can see that (3.9) holds true if 

( ) 2

2 0 12tanh c =  

that is 

 
( )( ) ( )

( )( )

2

2 2
22

2 1 ' 1
.

1

b a

b a

 




−   
=

 − −
 

 (3.29) 

If 
1

2
a b= = , (3.27), (3.28) and (3.29) reduce respectively to (3.11), (3.12) and 

(3.13). 

3.8. A simplified approximating formula 

In order to have simpler and easy to use formulas, using Eq. (3.3), one can 

transform Eq. (3.26) as follows. As 
- -b a=  

( )
( )( ) ( )( )

( )( ) ( )( )

( )( )

( )( ) ( )( ) ( )

0 0 0

00 0 0 0

- -
- - -

22

2 2
.

1

x c x c x c

xcx c x c x c x c

e e a e a
x a a

e ee e e e

  

   


+ − + +

−−+ − + + − +

−
= + = =

++ +
 

From (3.27) one obtains 

( )

( )
0

-

2
2 1

1

c
a

e




−
−

=  
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hence 

 ( )
( )

( ) ( ) ( )

-

-

-

2 1
.

1 2 1 exp 2

a
x

a x




  
=

 + − −   

 (3.30) 

Analogously, as 
+ + 1a b+ = , one obtains 

( ) ( )
( )( ) ( )( )

( )( ) ( )( )

0 0

0 0

+ + +1

x c x c

x c x c

e e
x a a

e e

 

 


+ − +

+ − +

−
= + −

+  

( )
( )( ) ( )( )

( )( ) ( )( )

0 0

0 0

+=1 1 1

x c x c

x c x c

e e
a

e e

 

 

+ − +

+ − +

 −
− − − 

+  

 

( ) ( )( )

( )( ) ( )( )

( )
( )

0

00 0

+ +

22

2 1 2 1
=1 1 ,

1

x c

xcx c x c

a e a

e ee e



 

− +

+ − +

− −
− = −

++  

From (3.27) one obtains 

( )

( )
0

+

2
1 2 1

,
1 1

c
a

e




− +
=

−
 

hence 

 ( )
( ) ( )

( )( ) ( ) ( )

+

+

+

2 1 1 1
1 .

1 2 1 exp 2 1 1

a
x

a x




  

−  −  
= −

− +   + − 

 (3.31) 

If 
1

2
a b= = , (3.30) and (3.31) reduce to 

( )
( )

( ) ( )( ) ( )
-

1

1 1 1 exp 2
x

x




  
=

+ − −  
 

( )
( )

( ) ( ) ( )
+

1 1
1 .

1 exp 2 1 1
x

x




  

−
= −

  + − 
 

3.9. Benchmark formula 

In Orlando & Taglialatela (2021), aiming for simplicity, the authors chose 

( ) ( )+ + 1  x c x = − and +

0 0 c =  for 1x  , 
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( )- - 1
1   x c

x


 
= − 

 
for ]0,1[x . 

From (3.21) and (3.27) derive 

 ( )+ 1  a = and ( )+ 1 1b = − , 

hence, from (3.28) and (3.29) one obtains 

 
( )

( )
1

' 1

1 1





=

−
and 2 0 = . 

Since 

  ( )
-

-

2
'  

c
x

x
 = − and ( )

-
-

3

2c
x

x
  =  

one obtains 

-

1  c − = − and -

2 2c− = , 

hence 

 - -

2 12 . = −   (3.32) 

Combining (3.32) with (3.28), (3.29) and (3.22), one arrives at 

( )( ) ( )

( )( )

( )

( )( )

2- - -

2 2
2 -2 -

-2 -

2 1 ' 1 ' 1
2

11

a a a

a aa a

  



−   
= −

  − −− −
  

 

which gives, after some calculations 

( )
( ) ( )

( ) ( )
-

' 1 1
1 .

' 1 2 1
a

 


 

−
=

−
 

Thus, one obtains 

( ) ( )

( )
-

1

' 1 1
.

1

 




−
=  

Finally, using (3.30) for x]0,1[ and (3.31) for x]1,+ [, one obtains 
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 ( )

( ) ( ) ( )( )

( )
( ) ( )( )
( )

( ) ( )

( )( )
( )
( )

( )

2 1 ' 1 1
if  ]0,1[,

2 ' 1 1 1
' 1 exp 1 ' 1 2 1

1

2 1 1
1 if  [1, [.

2 ' 1
exp 1 1

1 1

x

x
x

x

x

  

 
  










 −


 −  
− + −  

    
= 

−
−  +

  − +   − 

 

3.10. Approximating the call function when =S X  

In the special case S X= , ( )1
2

d T


 =  and ( )2 1
2

d T d



−

= = − , hence one 

can write ( )C   as 

( ) erf ,
8

T
C S 

 
=   

 
 

where erf is the error function defined by 

( )
2

0

2
erf : .

z

tz e dt


−=   

Several numerical approximations of erf(x) are known. In particular, Ingber 

(1982) considered the function 

( )0

2
: tanhz z



 
=  

 
 

which has the same limit at infinity and the same derivative in 0 . 

A more precise approximation of function erf(z), which in any case is still 

constructed starting from the hyperbolic tangent (3.3), can be obtained by 

considering functions of the form 

( ) ( )3: tanh .z az bz = +  

with suitable ,a b . In particular, one can consider 

( ) 3

1
3

2 8 2
: tanh ,

3
z z z




 

 −
= + 

 
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which has the property of possessing the same Taylor expansion of order 3 in 0 of 

the error function. Alternatively, Fairclough (2000) proposed 

( ) ( )3

2 : tanh 1.129324 0.100303 .z z z = +
 

Section 4.2 shows that ( )1 z  and ( )2 z  provide approximations of the same order 

of accuracy. For this reason, ( )C   can be approximated by 

 ( )0 tanh
2

T
C S 



 
=   

 
 (3.33) 

or 

 ( )

3

1

4
tanh ,

2 12 2

T T
C S


  

 

    −
 = +           

 (3.34) 

or 

 ( )

3

2 tanh 1.129324 0.100303 .
8 8

T T
C S  

    
 = +           

 (3.35) 

4. APPROXIMATION OF THE IMPLIED VOLATILITY 

To obtain the implied volatility, it is necessary to solve the equation 

 ( ) .C C =   (4.1) 

If C  is an approximation of C, an approximate solution to (4.1) is found by 

solving the equation 

 ( ) .C C =   (4.2) 

4.1. Inverting the hyperbolic tangent model in the case S X  

According to (3.1), equation (4.2) is equivalent to 

 
* ,

T
C






 
=  

 
  (4.3) 
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where 

( )
*

/ if   ,
:

/ if  .

C S X S
C

C S X X X S


= 

− + 
 

Note that one can write 

 

 

+

*

+
: ,

C S X
C

S S X

− −
=

− −
 

with    ( )
+

max ,0S X S X− = −  denoting the pay-off. According to the tanh-model 

(3.5), Eq. (4.3) is equivalent to 

 ,
T

 


 
=  

 
  (4.4) 

where 

*

0*

1
log .

2 1

C
c

C


 
= − 

− 
 

Note that, using (3.11), one obtains 

 
( )

( )( )

*

*

1 11
log .

2 1 1

C

C






  −   =
 −
 

 (4.5) 

If ( ) ( )Ax x =  (cf. (3.14)), in order to invert (4.4), one has to solve the 

following equation with respect to x  

 ( )1 2

1
1 1 ,c x c

x


 
− − − = 

 
 (4.6) 

Hence Eq. (4.6) is equivalent to 

( )2

1 1 2 2 0,c x c c x c− + − − =  

which has a single positive solution of the form 

( )
2

1 2 1 2 1 2

1

4
,

2

c c c c c c
x

c

 + − + + − +
=  

and one obtains an approximation of the implied volatility by 
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( )

2

1 2 1 2 1 2

1

4
.

2

A
c c c c c c

Tc

 
 

+ − + + − +
=  (4.7) 

Analogously, if ( ) ( )Bx x =  (cf. (3.17)), in order to invert (4.4), one has to 

solve the following equation with respect to x 

 
( )2

1 2 2

1
1 1 ,f x f

x


 
− − − = 

   (4.8) 

where   is defined in (4.5), and 
1f  and 

2f  are defined in (3.18). Thus Eq. (4.8) 

is equivalent to 

 ( )4 2

1 1 2 2 0,f x f f x f− + − − =  (4.9) 

which has a single positive solution of the form 

( )
2

1 2 1 2 1 2

1

4
,

2

f f f f f f
x

f

 + − + + − +
=  

hence one obtains an approximation of the implied volatility by 

 
( )

2

1 2 1 2 1 2

1

4
.

2

B
f f f f f f

Tf

 
 

+ − + + − +
=  (4.10) 

This formula, as seen in Section 4.3, provides a correction when the formula 

underestimates the implied volatility. 

4.2. Case =S X  

One can obtain an approximation of σ by solving equations ( )0C C = , 

( )1C C =  or ( )2C C = , where 0C , 1C  and 2C  are defined by (3.33), (3.34) and 

(3.35). Equation ( )0C C =  has the solution 

 0  log ,
2

S C

T S C




+ 
=  

− 
 (4.11) 

which provides a first approximation of σ. Better approximations of σ are obtained 

by solving equations ( )1C C =  and ( )2C C = , that is, by solving the equations 
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3

4 1
log

2 12 2 2

T T S C

S C


 

 

   − + 
+ =         −    

 (4.12) 

and 

 

3

1
log ,

8 8 2

T T S C
a b

S C
 
    + 

+ =         −    
 (4.13) 

respectively. Recall that if 0p  , equation 

3 3 2x px q+ =  

has a single real solution of the form 

3 2 3 23 3 .x p q q p q q= + + − + −
 

Hence Eq. (4.12) has a single real solution of the form 

 3 2 3 23 3
1

2
: ,p q q p q q

T




 
= + + − + −

  
 (4.14) 

with 

4 3
:    and    : log ,

4 4

S C
p q

S C 

+ 
= =  

− − − 
 

whereas the unique real solution of Eq. (4.13) is given by 

 3 2 3 23 3
2

8
: ,p q q p q q

T


 
= + + − + −

  
 (4.15) 

where 

: 3.753041   and    : 2.492448 log .
S C

p q
S C

+ 
= =  

− 
 

Therefore, it can be concluded that 
0 , 

1  and 
2  given by Eq. (4.11), (4.14) 

and (4.15) provide approximations of the implied volatility. 
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5. NUMERICAL FINDINGS 

5.1. Case when S X  

Figure 2 shows that approximation function ( )ˆ x  is very close to function 

( )x , with the exception of the far right part of the inflection where the bending is 

greatest and the volatility is unrealistic. 

 

Fig. 2. Plot of ( )x  and its corresponding approximation ( )ˆ x  for 0.3124 =  i.e. 

/ 1.05S X = .  

Source: authors' elaboration. 

To better see the differences and their magnitude, Tables 3 and 4 present 

a comparison between ( )x  and its approximation ( )ˆ x  in (3.5), with 
A =  

defined in (3.14) and T set to 0.25 being one of the most popular maturities. 
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Table 3 

 ( )x  versus ( )ˆ x , /x T = , case S X  

T=0.25 S/X = 0.75, α = 0.7585 S/X = 0.95, α = 0.3203 

σ x χα(x) χrα(x) Error x χα(x) χrα(x) Error 

0.04 0.026366871 5.17768E-50 0 5.17768E-50 0.062443135 0.000033596 0.000001375 0.000032221 

0.20 0.131834356 0.000067657 0.000115501 -0.000047844 0.312215677 0.019874350 0.015549652 0.004324698 

0.36 0.237301841 0.004836445 0.004452570 0.000383875 0.561988218 0.050243597 0.048846840 0.001396757 

0.52 0.342769326 0.020226530 0.018889540 0.001336990 0.811760759 0.081886706 0.081781602 0.000105103 

0.68 0.448236811 0.043100732 0.041630853 0.001469879 1.061533301 0.113784506 0.113787822 -0.000003316 

0.84 0.553704296 0.070202095 0.069165163 0.001036932 1.311305842 0.145646264 0.146030979 -0.000384715 

1.00 0.659171781 0.099676155 0.099145585 0.000530569 1.561078383 0.177334827 0.179354876 -0.002020048 

MSE    0.000000779    0.000003556 

Std. 

Dev 
   0.000571311    0.001820267 

Source: authors' elaboration. 
 

Table 4 

( )x  versus ( )ˆ x , / ,x T =  case S X  

T=0.25 S/X = 1.05, α = 0.3124 S/X = 1.25, α = 0.6680 

σ x χα(x) χrα(x) Error x χα(x) χrα(x) Error 

0.04 0.064024893 0.000049460 0.000001949 0.000047511 0.029938003 6.51663E-32 1.44329E-15 -1.44329E-15 

0.20 0.320124463 0.020640191 0.016384349 0.004255843 0.149690015 0.000498929 0.000433098 0.000065831 

0.36 0.576224033 0.051181578 0.049930179 0.001251400 0.269442027 0.010373018 0.008784508 0.001588510 

0.52 0.832323603 0.082869729 0.082796995 0.000072734 0.389194039 0.031336390 0.029102580 0.002233810 

0.68 1.088423173 0.114772802 0.114782390 -0.000009588 0.508946051 0.057981031 0.056351416 0.001629616 

0.84 1.344522743 0.146622638 0.147129355 -0.000506718 0.628698063 0.087421802 0.086610435 0.000811367 

1.00 1.600622313 0.178290453 0.180694418 -0.002403965 0.748450075 0.118287072 0.118021973 0.000265100 

MSE    0.000003675    0.000001557 

Std. 

Dev. 

   

0.001877485    0.000818523 

Source: authors' elaboration. 

5.2. Case when =S X  

Figure 3 shows the error function versus its approximations 
0 , 

1  and 
2  as 

defined in Section 2.10 and Table 5 compares them for some significant values. 
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 Fig. 3. A comparison between the error function and different functional forms of the hyperbolic 

tangent  

Note that erf(z) is indistinguishable from both ( )1 z  and ( )2 z , therefore the picture was zoomed 

to show the differences. 

Source: authors' elaboration. 

Table 5 

Comparison between the error function and s functions 
0 , 

1  and 
2  for some values of z 

z erf(z) Θ0(z) Θ1(z) Θ2(z) 

0 0.0 0.0 0.0 0.0 

0.01 0.0112834 0.0112833 0.0112834 0.0112929 

0.10 0.1124629 0.1123614 0.1124629 0.1125538 

0.25 0.2763264 0.2748427 0.2763266 0.2765091 

0.50 0.5204999 0.5110793 0.5205079 0.5206273 

0.60 0.6038561 0.5895836 0.6038765 0.6038978 

0.62 0.6194115 0.6041107 0.6194355 0.6194338 

0.64 0.6345858 0.6182471 0.6346140 0.6345885 

0.66 0.6493767 0.6319946 0.6494096 0.6493596 

0.68 0.6637822 0.6453554 0.6638203 0.6637453 

0.70 0.6778012 0.6583328 0.6778450 0.6777447 

0.80 0.7421010 0.7176116 0.7421834 0.7419549 

0.90 0.7969082 0.7680442 0.7970469 0.7967001 

1.00 0.8427008 0.8104638 0.8429131 0.8424711 

1.02 0.8508380 0.8180675 0.8510668 0.8506094 

1.04 0.8586499 0.8253955 0.8588958 0.8584241 

1.10 0.8802051 0.8458024 0.8805043 0.8799982 

1.50 0.9661051 0.9344736 0.9667097 0.9662538 

2.00 0.9953223 0.9783179 0.9957755 0.9956221 

2.50 0.9995930 0.9929328 0.9997143 0.9996928 

∞ 1.0 1.0 1.0 1.0 

Source: authors' elaboration. 
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Figures 4(a) and 4(b) display the differences between erf(z) and Θ0, Θ1 and 

Θ2,while the numerical values over 10,000 simulations are reported in Tables 6, 7, 

and 8. display the differences between erf(z) and Θ0, Θ1 and Θ2,while the numerical 

values over 10,000 simulations are reported in Tables 6, 7, and 8. 

 

 

 

 

 

 

 

(a) erf(z)−Θ0(z). 

   

 

 

 

 

 

 

 

 

(b) erf(z)−Θ1(z) (red) and erf(z)−Θ2(z) (blue). 

Fig. 4. Differences between erf(z) and Θ0, Θ1 and Θ2. 

Source: authors' elaboration. 

Table 6 

Comparison between the erf(z) function and 
0  

Interval 

of z 
Sample Mean Median Maximum Minimum 

Standard 

deviation 

[0.0,2.5] 1:10000 0.00038089 0.00019677 0.00148364 – 0.00042519 

[0.0,0.5] 1:2000 0.00000321 0.00000160 0.00001281 – 0.00000363 

[0.5,1.0] 2001:4000 0.00004775 0.00004305 0.00010147 0.00001281 0.00002561 

[1.0,1.5] 4001:6000 0.00020429 0.00019677 0.00033707 0.00010147 0.00006808 

[1.5,2.0] 6001:8000 0.00053962 0.00052977 0.00078148 0.00033707 0.00012842 

[2.0,2.5] 8001:10000 0.00110945 0.00109787 0.00148364 0.00078148 0.00020290 

Source: authors' elaboration. 
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Table 7 

Comparison between the erf(z) function and 
1  

Interval 

of z 
Sample Mean Median Maximum Minimum 

Standard 

deviation 

[0.0,2.5] 1:10000 -0.00000004 -0.00000001 1.0842E-19 -0.00000022 0.00000006 

[0.0,0.5] 1:2000 -1.0938E-11 -2.0449E-12 1.0842E-19 -6.5625E-11 1.65014E-11 

[0.5,1.0] 2001:4000 -6.94556E-10 -5.00703E-10 -6.5625E-11 -2.12369E-09 5.7812E-10 

[1.0,1.5] 4001:6000 -0.00000001 -0.00000001 -2.12369E-09 -0.00000002 4.08234E-09 

[1.5,2.0] 6001:8000 -0.00000004 -0.00000004 -0.00000002 -0.00000007 0.00000002 

[2.0,2.5] 8001:10000 -0.00000013 -0.00000013 -0.00000007 -0.00000022 0.00000004 

Source: authors' elaboration. 

Table 8 

Comparison between the erf(z) function and 
2  

Interval 

of z 
Sample Mean Median Maximum Minimum 

Standard 

deviation 

[0.0,2.5] 1:10000 -0.00010441 -0.00011106 0.00000000 -0.00018274 0.00005442 

[0.0,0.5] 1:2000 -0.00002351 -0.00002356 0.00000000 -0.00004678 0.00001353 

[0.5,1.0] 2001:4000 -0.00006915 -0.00006932 -0.00004678 -0.00009085 0.00001274 

[1.0,1.5] 4001:6000 -0.00011078 -0.00011106 -0.00009085 -0.00012964 0.00001122 

[1.5,2.0] 6001:8000 -0.00014597 -0.00014633 -0.00012964 -0.00016088 0.00000904 

[2.0,2.5] 8001:10000 -0.00017266 -0.00017308 -0.00016088 -0.00018274 0.00000633 

Source: authors' elaboration. 

Monte Carlo results 

Let us consider lattice L of pairs ( ), T  where 410 j −= , 41, ,10j =  , 

/12T k= , 1, ,24k =  , and extract 10,000 samples randomly in each interval to 

derive z. Tables 9, 10 and 11 report the error, thus confirming the goodness of the 

approximation. 

Table 9 

Comparison between erf(z) and 
0 , 10,000 simulations for each interval of   

Interval 

of σ 
Mean Median Maximum Minimum 

Standard 

deviation 

Root mean 

square error 

[0.0,1.25] 0.00211435 0.00069446 0.01534277 1.62971E-14 0.00299523 0.00366632 

[0.0,0.25] 2.10572E-05 5.81107E-06 0.00019290 1.30375E-16 3.2778E-05 3.8959E-05 

[0.25,0.5] 0.00030507 0.00020905 0.00146955 1.71298E-06 0.00029395 0.00042365 

[0.5,0.75] 0.00124517 0.00104924 0.00451579 1.36411E-05 0.00100080 0.00159751 

[0.75,1.0] 0.00307912 0.00278205 0.00938279 4.58159E-05 0.00225672 0.00381756 

[1.0,1.25] 0.00582032 0.00549259 0.01551613 0.00010793 0.00398289 0.00705262 

Source: authors' elaboration. 
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Table 10 

Comparison between erf(z) and 
1 , 10,000 simulations 

Interval  

of σ 
Mean Median Maximum Minimum 

Standard 

deviation 

Root mean 

square error 

[0.0,1.25] -1.23405E-06 -5.75226E-08 5.42101E-20 -0.00002423 2.95917E-06 3.20618E-06 

[0.0,0.25] -3.31189E-10 -1.75199E-11 1.35525E-20 -6.31596E-09 7.7678E-10 8.44437E-10 

[0.25,0.5] -2.17191E-08 -7.24392E-09 -2.2806E-12 -2.17943E-07 3.36263E-08 4.00306E-08 

[0.5,1.75] -2.41594E-07 -1.19167E-07 -7.29428E-11 -1.78407E-06 3.10627E-07 3.93518E-07 

[0.75,1.0] -1.29135E-06 -7.05183E-07 -5.55995E-10 -7.96528E-06 1.51968E-06 1.99425E-06 

[1.0,1.25] -4.603E-06 -2.62831E-06 -2.35745E-09 -2.48933E-05 5.13655E-06 6.89723E-06 

Source: authors' elaboration. 

Table 11 

Comparison between erf(z) and Θ2, 10,000 simulations 

Interval 

of σ 
Sample Mean Median Maximum Minimum 

Standard 

deviation 

[0.0,1.25] -0.00012639 -0.00014109 -0.00000005 -0.00019525 0.00005936 0.00013964 

[0.0,0.25] -3.99204E-05 -3.60795E-05 -1.02281E-08 -0.00011040 2.69685E-05 4.81761E-05 

[0.25,0.5] -0.00011047 -0.00011305 -2.40804E-05 -0.00018246 3.74627E-05 0.00011665 

[0.5,0.75] -0.00015722 -0.00017151 -4.77618E-05 -0.00019525 3.86779E-05 0.00016191 

[0.75,1.0] -0.00017106 -0.00018247 -7.07184E-05 -0.00019525 2.91314E-05 0.00017352 

[1.0,1.25] -0.00015093 -0.00016262 -1.82918E-05 -0.00019525 4.06153E-05 0.00015630 

Source: authors' elaboration. 

5.3. Findings about the implied volatility 

As illustrated, several methods are available in the literature to derive implied 

volatility through an approximate formula. In Orlando & Taglialatela (2017) 

the results obtained with the Brenner & Subrahmanyam (1998), Corrado 

& Miller (1996a, 1996b),  and Li (2005) formulae are compared. All of them, for 

broad ranges of the parameters, do not provide any value. Moreover, Mininni et al. 

(2021) suggested a more accurate formula that, however, in some instances may 

underestimate the implied volatility. Thanks to Eq. (4.10) this can be corrected by 

averaging out the result of Eq. (4.7). 

5.3.1. Case when S X  

Tables 12 and 13 compare the results obtained by Eq. (4.7) with those obtained 

with formula (4.10) as well as the average between the two. The option prices were 

generated with the BS model and, therefore, the implied volatility was derived using 
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the inversion formulas. Each column provides the results of the said formulae for 

maturities T from 0.1 to 1.5 versus the true volatility. Contrary to some solutions 

provided in the literature, e.g. Li (2005), both 
A  and 

B  are always available for 

all maturities, moneyness and level of σ. However, in some occasions, 
A  may 

underestimate the implied volatility, therefore 
B  could be used as a correction. 

Specifically, from Table 1it is known that the mode of the volatility is 14.98%  and 

that the average is 21.74% . At the level of single securities, Table 2 shows that 

most traded options are short-term, and that the mode of the implied volatility is 

32%. Consequently, by focusing on the first row of Table 12 (respectively Table 13), 

the closest value to the true implied volatility is 
A  up to 60% (respectively up to 

75%). Beyond that level, the average between 
A  and 

B  should be preferred. 

Table 12 

Comparison of estimated implied volatilities for Out-The-Money calls 

Time  

to expiration 

True volatility 

15% 30% 45% 

σA σB Avg σA σB Avg σA σB Avg 

0.1 12.22% 35.40% 23.81% 29.03% 56.09% 42.56% 43.64% 70.76% 57.20% 

0.2 13.85% 31.90% 22.88% 29.20% 48.26% 38.73% 42.04% 60.39% 51.21% 

0.3 14.46% 29.59% 22.03% 28.69% 43.89% 36.29% 40.66% 55.16% 47.91% 

0.4 14.71% 27.87% 21.29% 28.11% 40.96% 34.54% 39.57% 51.93% 45.75% 

0.5 14.78% 26.50% 20.64% 27.55% 38.82% 33.19% 38.68% 49.75% 44.22% 

0.6 14.76% 25.37% 20.07% 27.03% 37.17% 32.10% 37.93% 48.22% 43.08% 

0.7 14.69% 24.40% 19.55% 26.55% 35.85% 31.20% 37.29% 47.12% 42.21% 

0.8 14.59% 23.56% 19.08% 26.10% 34.77% 30.44% 36.72% 46.34% 41.53% 

0.9 14.46% 22.82% 18.64% 25.69% 33.87% 29.78% 36.21% 45.80% 41.01% 

1 14.32% 22.15% 18.23% 25.29% 33.12% 29.20% 35.74% 45.44% 40.59% 

1.1 14.16% 21.54% 17.85% 24.91% 32.49% 28.70% 35.31% 45.21% 40.26% 

1.2 14.00% 20.99% 17.49% 24.55% 31.96% 28.25% 34.90% 45.08% 39.99% 

1.3 13.83% 20.48% 17.15% 24.20% 31.51% 27.85% 34.51% 45.02% 39.77% 

1.4 13.65% 20.01% 16.83% 23.86% 31.14% 27.50% 34.14% 45.00% 39.57% 

1.5 13.47% 19.57% 16.52% 23.53% 30.83% 27.18% 33.78% 45.00% 39.39% 

Average 

volatility 
14.13% 24.81% 19.47% 26.29% 37.38% 31.83% 37.41% 49.75% 43.58% 

Std. dev. vol. 0.66% 4.51% 2.19% 1.85% 7.00% 4.35% 2.89% 7.09% 4.91% 

Time  

to expiration 

True volatility 

60% 75% 90% 

σA σB Avg σA σB Avg σA σB Avg 

0.1 56.61% 82.98% 69.80% 68.65% 94.19% 81.42% 80.17% 105.11% 92.64% 

0.2 53.71% 71.39% 62.55% 64.91% 82.43% 73.67% 75.96% 94.10% 85.03% 
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0.3 51.84% 66.14% 58.99% 62.82% 77.88% 70.35% 73.87% 90.86% 82.37% 

0.4 50.52% 63.27% 56.89% 61.47% 75.93% 68.70% 72.62% 90.07% 81.34% 

0.5 49.52% 61.63% 55.57% 60.50% 75.20% 67.85% 71.77% 90.00% 80.88% 

0.6 48.72% 60.72% 54.72% 59.77% 75.01% 67.39% 71.13% 89.92% 80.53% 

0.7 48.07% 60.25% 54.16% 59.17% 75.00% 67.08% 70.62% 89.58% 80.10% 

0.8 47.50% 60.06% 53.78% 58.66% 74.95% 66.81% 70.17% 88.94% 79.56% 

0.9 47.00% 60.00% 53.50% 58.21% 74.78% 66.50% 69.76% 88.03% 78.90% 

1 46.55% 60.00% 53.28% 57.80% 74.44% 66.12% 69.37% 86.93% 78.15% 

1.1 46.13% 59.98% 53.06% 57.41% 73.93% 65.67% 68.98% 85.67% 77.32% 

1.2 45.74% 59.91% 52.82% 57.03% 73.28% 65.15% 68.57% 84.32% 76.45% 

1.3 45.36% 59.75% 52.56% 56.65% 72.51% 64.58% 68.16% 82.89% 75.52% 

1.4 44.99% 59.51% 52.25% 56.26% 71.64% 63.95% 67.73% 81.41% 74.57% 

1.5 44.62% 59.17% 51.90% 55.87% 70.69% 63.28% 67.27% 79.91% 73.59% 

Average 

volatility 
48.46% 62.98% 55.72% 59.68% 76.12% 67.90% 71.08% 88.52% 79.80% 

Std. dev. vol. 3.34% 6.20% 4.67% 3.43% 5.50% 4.40% 3.34% 5.80% 4.53% 
 

Notes: S = $100, X = $125, risk-free rate 5% p.a. 

Source: authors' elaboration. 

Table 13 

Comparison of estimated implied volatilities for In-The-Money calls 

Time  

to expiration 

True volatility 

15% 30% 45% 

σA σB Avg σA σB Avg σA σB Avg 

0.1 9.99% 34.12% 22.05% 26.70% 56.86% 41.78% 42.61% 73.43% 58.02% 

0.2 11.78% 31.50% 21.64% 28.19% 50.18% 39.18% 42.77% 63.82% 53.29% 

0.3 12.62% 29.75% 21.18% 28.49% 46.36% 37.43% 42.33% 58.83% 50.58% 

0.4 13.09% 28.44% 20.77% 28.52% 43.80% 36.16% 41.91% 55.69% 48.80% 

0.5 13.39% 27.41% 20.40% 28.45% 41.93% 35.19% 41.57% 53.50% 47.53% 

0.6 13.58% 26.57% 20.08% 28.36% 40.48% 34.42% 41.29% 51.89% 46.59% 

0.7 13.71% 25.87% 19.79% 28.26% 39.33% 33.80% 41.07% 50.67% 45.87% 

0.8 13.80% 25.27% 19.54% 28.18% 38.38% 33.28% 40.90% 49.71% 45.31% 

0.9 13.87% 24.75% 19.31% 28.10% 37.59% 32.84% 40.77% 48.94% 44.85% 

1 13.92% 24.29% 19.11% 28.02% 36.92% 32.47% 40.67% 48.31% 44.49% 

1.1 13.96% 23.89% 18.92% 27.96% 36.34% 32.15% 40.59% 47.80% 44.19% 

1.2 13.98% 23.52% 18.75% 27.91% 35.84% 31.87% 40.53% 47.37% 43.95% 

1.3 14.00% 23.20% 18.60% 27.86% 35.40% 31.63% 40.49% 47.02% 43.75% 

1.4 14.02% 22.90% 18.46% 27.82% 35.01% 31.41% 40.46% 46.72% 43.59% 

1.5 14.03% 22.63% 18.33% 27.79% 34.66% 31.22% 40.44% 46.47% 43.45% 

Average 

volatility 
13.32% 26.27% 19.80% 28.04% 40.61% 34.32% 41.23% 52.68% 46.95% 

Std. dev. vol. 1.08% 3.28% 1.15% 0.43% 6.14% 3.01% 0.79% 7.33% 4.04% 
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Time to 

expiration 

True volatility 

60% 75% 90% 

σA σB Avg σA σB Avg σA σB Avg 

0.1 57.14% 86.99% 72.07% 70.63% 99.08% 84.85% 83.45% 110.46% 96.96% 

0.2 56.02% 75.59% 65.80% 68.54% 86.79% 77.66% 80.71% 98.09% 89.40% 

0.3 55.06% 70.13% 62.59% 67.29% 81.44% 74.36% 79.36% 93.40% 86.38% 

0.4 54.39% 66.91% 60.65% 66.54% 78.61% 72.57% 78.66% 91.34% 85.00% 

0.5 53.92% 64.83% 59.38% 66.08% 77.00% 71.54% 78.30% 90.45% 84.38% 

0.6 53.60% 63.42% 58.51% 65.80% 76.07% 70.94% 78.13% 90.11% 84.12% 

0.7 53.37% 62.42% 57.90% 65.64% 75.54% 70.59% 78.08% 90.01% 84.05% 

0.8 53.21% 61.71% 57.46% 65.56% 75.25% 70.40% 78.10% 90.00% 84.05% 

0.9 53.11% 61.21% 57.16% 65.53% 75.10% 70.31% 78.16% 90.00% 84.08% 

1 53.04% 60.84% 56.94% 65.54% 75.03% 70.28% 78.26% 89.96% 84.11% 

1.1 53.01% 60.57% 56.79% 65.58% 75.01% 70.29% 78.38% 89.89% 84.13% 

1.2 52.99% 60.39% 56.69% 65.63% 75.00% 70.32% 78.51% 89.78% 84.14% 

1.3 53.00% 60.25% 56.62% 65.70% 75.00% 70.35% 78.65% 89.63% 84.14% 

1.4 53.01% 60.16% 56.59% 65.78% 75.00% 70.39% 78.79% 89.45% 84.12% 

1.5 53.04% 60.10% 56.57% 65.87% 74.98% 70.43% 78.94% 89.25% 84.09% 

Average 

volatility 
53.86% 65.03% 59.45% 66.38% 78.33% 72.35% 78.97% 92.12% 85.54% 

Std. dev. 

vol. 
1.23% 7.25% 4.23% 1.39% 6.39% 3.89% 1.36% 5.36% 3.35% 

Note: S = $100, X = $75, risk-free rate 5% p.a. 

Source: authors' elaboration. 

5.3.2. Case when =S X  

For the At-The-Money case, Table 14 provides a comparison between the implied 

volatilities ˆ
L , 

1̂  and 
2̂  as derived with the Li formula (2008), Eq. (4.14) and 

Eq. (4.15), respectively. The prices of all options were generated with the BS model 

for volatilities between 15% and 125% and maturity between 0.1 and 1.5 years. 

Table 14 

 Estimation error for At-The-Money options 

 True volatility 

15% 35% 55% 75% 95% 125% 

Statistics Implied volatility estimation error for ˆ
L , 

Mean 0.00000983% 0.00068779% 0.00672967% 0.03275487% 0.11169245% 0.48689149% 

Median 0.00000761% 0.00053019% 0.00515269% 0.02481224% 0.08326543% 0.34881310% 

Minimum 0.00000012% 0.00000822% 0.00007887% 0.00037279% 0.00121955% 0.00484083% 

Maximum 0.00002678% 0.00187959% 0.01850733% 0.09098208% 0.31488411% 1.42410046% 

StdDev 0.00000846% 0.00059359% 0.00584033% 0.02867370% 0.09902358% 0.44499502% 
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 Implied volatility estimation error for 
1̂  

Mean -0.00000002% -0.00000131% -0.00001338% -0.00006825% -0.00024386% -0.00111527% 

Median -0.00000001% -0.00000100% -0.00001004% -0.00005016% -0.00017529% -0.00077766% 

Minimum -0.00000005% -0.00000362% -0.00003744% -0.00019455% -0.00070786% -0.00331424% 

Maximum 0.00000000% -0.00000002% -0.00000015% -0.00000070% -0.00000231% -0.00000928% 

StdDev 0.00000002% 0.00000114% 0.00001180% 0.00006121% 0.00022249% 0.00104102% 

 Implied volatility estimation error for 
2̂  

Mean -0.01246830% -0.02825481% -0.04206067% -0.05284303% -0.05968480% -0.06101872% 

Median -0.01246828% -0.02825352% -0.04204815% -0.05278248% -0.05948135% -0.06017472% 

Minimum -0.01253937% -0.02915319% -0.04551451% -0.06148010% -0.07690809% -0.09873650% 

Maximum -0.01239728% -0.02736060% -0.03864751% -0.04440268% -0.04312244% -0.02604073% 

StdDev 0.00004385% 0.00055321% 0.00211929% 0.00527096% 0.01043041% 0.02246108% 

Note: S = $100, X = $100, time to expiration T = 0.1, 0.2, ...,1.5; risk-free rate 5% p.a. 

Source: authors' elaboration. 

6. APPROXIMATIONS OF THE IMPLIED VOLATILITY 

AND IMPLICATIONS 

As mentioned by Malliaris & Salchenberger (1996), “the implied volatility, 

calculated using the Black-Scholes model, is currently the most popular method of 

estimating volatility and is considered by traders to be a significant factor in 

signalling price movements in the underlying market”. 

In terms of the use of implied volatility, Jeon & Taylor (2013) applied it into the 

CAViaR models and found that the results are “comparable or superior to individual 

methods, such as the standard CAViaR models and quantiles constructed from 

implied volatility and the empirical distribution of standardised residuals”. 

Moreover, they provide evidence that the “implied volatility has more explanatory 

power as the focus moves further out into the left tail of the conditional distribution 

of S&P 500 daily returns”. According to Han (2008), investor sentiment affects the 

implied volatility smile on S&P 500 options. Ramos & Righi (2020) and Bufalo & 

Orlando (2022) showed that increases in implied volatility are positively linked to 

illiquidity and turmoil. 

Park et al. (2017) affirmed that the implied volatility “captures investor 

sentiments, market expectations, and future prospects”. For this reason, it can be 

considered as a proxy of the asset price dynamics, and thus of the market risk. In 

fact, as reported by Giot (2005), “there is a negative and statistically significant 

relationship between the returns of the S&P 100 and the Nasdaq 100 stock indexes 

and their corresponding implied volatility indexes, VIX and VXN”. 
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Bekiros et al. (2017) investigated the asymmetric relationship between returns 

and implied volatility for twenty developed and emerging international markets, 

using quantile regression and found “evidence of an asymmetric and reverse return-

volatility relationship”. 

Concerning the decision-making process, “even though software is available for 

computing the implied volatility numerically, among practitioners it is common to 

use spreadsheets with approximated solutions which are good enough”, observe 

Orlando & Taglialatela (2021). Such approximations also avoid “the inconvenience 

of setting up iterating routines and macros that should run permanently to keep up 

with price changes in the market”, as noticed by Orlando & Taglialatela (2021). In 

terms of computational performance, as reported in Mininni et al. (2021), the 

suggested approximation is about 300% better performing than one of the fastest 

algorithms available in the literature as reported by Orlando & Taglialatela (2017). 

CONCLUSION 

First of all, recall the importance of calculating the value of the call for pricing as 

well as for inferring the implied volatility. “In many respects the story of the 

establishment of the Black-Scholes-Merton model simply marks the emergence of 

contemporary financial risk management” (Millo & MacKenzie, 2009). 

In a thorough review of potential alternatives, such as the deterministic volatility 

function (DVF) option valuation proposed by Derman & Kani (1994), Dupire 

(1994), Rubinstein (1994), Dumas et al. (1998) concluded that the predictive and 

hedging performance of these was no better than an ad hoc procedure that merely 

smooths BS-implied volatilities across exercise prices and times to expiration. 

This study expanded the work of Mininni et al. (2021), in which a standardized 

option function (representing the whole family of calls) was introduced to simplify 

the calculations. The authors complemented this by suggesting that a correction for 

those cases in which the formula by Mininni et al. (2021) underestimates the implied 

volatility. Hence, it is shown how the approximation of the above-mentioned 

standardized call can be performed by means of hyperbolic tangents instead of the 

commonly used Taylor truncation. The higher precision for extreme values of σ 

makes this approach specifically suitable for hedging and stress testing. Hence, the 

study derived some closed-form formulas for the approximation of the implied 

volatility that seems to be more accurate than those proposed in the literature so far, 

and which are valid regardless of moneyness. This was proved by additional 

simulations, graphical and numerical evidence. Finally, the authors provided further 

literature and the rationale for the reasons why implied volatility is used in decision 

making. 
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