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INNOVATIVE ADVANTAGES RANKING. A NEW APPROACH 

Assessing/ranking the innovative advantages of countries is a problem of current interest. How-
ever, the set of tools used for this purpose are very narrow and often prone to criticism. The aim of this 
study is to somewhat extend the arsenal of methods used to this end. For this purpose, based on a data 
set from the Global Innovation Index, this study develops a special multi-objective decision-making 
problem, the aim of which is to identify the “best countries” in the sense of their innovative advantage. 
Moreover, applying ranking methods (in our case the Markov-chain method and analytic hierarchy 
process) to this multi-objective decision-making problem, we obtain new alternative ratings/rankings 
of the innovative advantages of countries. 

Keywords: global innovation index, Markov chain, analytic hierarchy process, multi-objective decision 
making problem 

1. Introduction 

In the modern economy, scientific innovation is recognised as an important component 
in the economic growth and competitiveness of countries, see, e.g., [1, 9, 21–23]. 
Correspondingly, assessing/ranking the innovative advantages of countries is crucial for 
policy makers. Various organisations and researchers have recently accumulated a large 
amount of experience in constructing different indexes/measures of the innovative 
advantages of countries, see, e.g., [3, 4, 8, 14]. 

In this study, we use data from the Global Innovation Index (GII). Note that the 
construction of the GII reflects the extensive experience of previous studies and the 
current understanding of the innovation process and its determinants. Moreover, the GII 
is regularly published and contains detailed data on more than 100 countries. In addition, 
the GII uses well-defined measurement tools and both the primary data and final 
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indicators of the GII are subject to multiple external and internal tests (for details see [14]). 
Note also that the ranking of countries by the GII methodology (as well as by other 
innovation indexes) is implemented by ordering countries with the help of aggregated 
index scores (e.g., by the GII value, which is obtained as a weighted average of so called 
pillars). 

In this study, we have shown that there are also other ways of ranking the innovative 
advantages of countries and two of them have been considered here. Based on the GII 
data at the pillar level, we construct a special multi-objective decision making (MODM) 
problem, the aim of which is to identify the “best countries” in the sense of their 
innovative advantage rating/ranking (hereinafter abbreviated to CIAR). 

In this sense, our approach corresponds to the current trend in the development of 
composite indicators (see, e.g., [8]) using a multi-objective optimisation technique. 
However, the novelty that we are introducing here is that instead of using a traditional 
set of methods, we use specialized methods of ranking. Particularly, we have shown that 
two well-known ranking methods in the literature can be applied to the MODM problem: 
the Markov-chain method [5], and the analytic hierarchy process (AHP) [18–20]. Note also 
that two versions of the AHP will be considered here – the eigenvalue method 
(EV method) and the geometric mean method (GM method). 

A distinctive feature of the approach we propose is that we have not used any 
preliminary assessments of the transition probability matrix or a pair-wise comparison 
matrix defined by external experts. The results obtained show that the new ratings are 
highly correlated with the GII and can provide quite a competitive ranking of the 
innovative advantages of countries. 

The rest of the paper is organised as follows: In section 2, we describe our dataset 
(subsection 2.1), recall the basics of a MODM problem and introduce some related 
matrices (subsection 2.2), recall the main concepts of the Markov-chain/AHP ranking 
methods and introduce their connection to a MODM problem (subsection 2.3) and 
describe the corresponding application to the CIAR-problem (subsection 2.3). In 
section 3, we briefly present the results of our calculations (the results of these calcula- 
tions are presented in detail in the supplement dataset [10]) and finally, section 4 gives 
a conclusion. 

2. Materials and methods 

2.1. Data 

This study used the GII data for the period 2011–2015 at the pillar level as the 
primary dataset. For the convenience of the reader, we recall here the main features of 
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this dataset. The GII [14] is built on a hierarchical basis and includes the following two 
subindices: Innovation Input, which is a composite of five input indexes (pillars), and 
Innovation Output, which is a composite of two output indexes (pillars). Each pillar is 
divided into subpillars, each of which is built using a number of relevant individual 
indicators. 

Table 1. Short description of the GII pillars 

Pillar Description 
I11 institutions (political environment, regulatory environment, business environment) 
I12 human capital and research (education, tertiary education, R&D)
I13 infrastructure (ICT, general infrastructure, ecological sustainability)
I14 market sophistication (credit, investment, trade and competition)
I15 business sophistication (knowledge workers, innovation linkages, knowledge absorption) 
I21 knowledge and technology outputs (knowledge creation, knowledge impact, knowledge diffusion) 
I22  creative outputs (intangible assets, creative goods and services, online creativity)  

The underlying subpillars are indicated in parentheses. Pillar I21 knowledge and technology outputs, 
and the subpillar ecological sustainability were called scientific outputs and energy, respectively, in the 
2011 GII. The subpillar online creativity was absent in the 2011 GII. 

The GII is the simple average of its input and output subindices. Moreover, the 
subindices are the simple average of their underlying pillar scores. Each pillar score is 
calculated as the weighted average of its subpillar scores, and each subpillar score is 
calculated as the weighted average of its individual indicators. Individual indicators 
(their number and composition change yearly, and they totalled between 79 and 84 
during the period of 2011–2015) are obtained from various sources and scaled via 
division by the relevant scaling factor. Individual indicators are also normalised to the 
[0, 100] range, with higher scores representing better outcomes. Details about the 
composition of individual indicators, data sources, processing techniques and methods 
of selecting countries can be obtained in [14]. Table 1 presents a short description of the 
GII pillars. 

Note also that the original dataset of GII pillars has missing values for some 
countries in some years during the time period 2011–2015 (about 6% of country-year 
cases). We conducted data imputation by using the first-last accessible value and 
linear interpolation method. Therefore, we obtained a dataset of seven indicators for 
147 countries for five years. Finally, to ensure the robustness of the estimates, it was 
deemed useful to average these data over time (i.e., on the interval 2011–2015) for 
each country. The set of data obtained by the procedure described above will be called 
the GII-dataset. The GII-dataset is not presented here because of its size, but it can be 
found elsewhere [9]. 
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2.2. The MODM problem 

Let us denote a set of alternatives by  1, ..., mA a a  a set of criteria by 

 1, ..., ,nC c c  where : , 1, ..., ,jc A j n   and consider a MODM problem as an 
ordered pair , .A C   Without loss of generality, we may assume that the criteria are 
normalised so that the lower value is preferable according to each criterion. Thus, the 
goal of the decision making procedure can be formulated as the minimisation of all the 
criteria, simultaneously. Obviously, this is a very ambiguous formulation that requires 
clarification. Due to this reason, the concept of Pareto optimality was introduced and 
considered to be an appropriate concept of a solution to the MODM problem. For details 
see [6, 15, 17]. 

However, generally the set of Pareto-optimal alternatives is “large” and each one of 
these alternatives should be considered as mathematically equal. Hence, further factors 
should be considered to assist a more precise investigation of the alternatives. As 
a clarifying factor, we might consider some ranking method based on the set of alter- 
natives. For this reason, we introduce specific matrices associated with a MODM 
problem, which will be utilised below for describing two special ranking methods. 

For any natural number N, we say that the N N matrix [ ], 1 , ,ijS S i j N    is 
a score-matrix if 1 , .0, 0,ij ii i j NS S     Following [11], for a given score-matrix 

[ ], 1 , ,ijS S i j N    we also introduce the matrix [ ], 1 , ; (( ) ),T
ijG G i j N G S SS      

and define the function 
1

,1 .( )( )
N

ij
j

i G i Ng SS


    

Let us assume that a MODM problem ,A C  (under the standard assumption that 
the criteria are normalised, and according to each criterion a lower value is preferable) 
is given and hence, the decision making goal is simultaneous minimisation of a set of 
values. We propose the following construction of score-matrices for the alternatives SA. 
For any , ,a a A  we define  

( , ) ( , ),A A
c

c C
S a a s a a



    where 1, ( ) ( )
0, ( ) ( )

( , )A
c

c a c a
c C

c a c a
s a a


   

  

Thus, the equality ( , ) 1A
cs a a  means that ( ) ( )c a c a  according to criterion 

c C  and the alternative a receives one point. Obviously, ( , )Am S a a

0, ( , ) 0,AS a a  , ,a a A   and the matrix 
,

( , )A A

a a A
S S a a


     is the score-matrix 

for a set of alternatives (in the sense of the definition given at the beginning of this 
subsection). 
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On the other hand, based on the score-matrix 
,

( , )A A

a a A
S S a a


    , we can also 

introduce the matrix   ,
( , ) ,

a a A
a a 


  where 

( , ) ( , )( , ) ,( , ) , ,2
0,

A A
A m S a a S a aS a a a aa a a a A

a a


        
 

 

2.3. Ranking methods 

In this subsection, we consider two well-known ranking methods – the Markov-chain 
method and the analytic hierarchy process (AHP). As mentioned in the introduction, the 
AHP will be considered here in two versions – the classical version (the EV method) 
and the geometric mean method (GM method). 

Note that we can interpret the matrix   ,( , ) a a Aa a  
  as an adjacency matrix 

for the directed graph  (A, C) associated with the MODM problem , .A C     
Moreover, using a well-known method, see, e.g., [5], we can transform the adjacency 
matrix   into the matrix   11 ( ) ( ) T

mP           , where int m   and 

1( ) ( ( ), ..., ( ))m       is the vector defined as follows: 

if th row of is 0
otherwi e

1,
( )

0, s
m

i
i 

 


 


 

The matrix P is of the same form as the transition probability matrix corresponding 
to the MODM problem , .A C   Let us recall that a Markov chain is said to be 
irreducible if all the possible states communicate with each other or, in other words, 
exist in only one communicate class. The vector ,  satisfying ,T T P   is called the 
stationary vector of the matrix P (for details see [5]). Note that we do not use any 
preliminary assessments of such a transition probability matrix conducted by external 
experts, but define it directly from the data. 

In the conclude this subsection, we note that the stationary vector 1( , ..., )m    
of the transition probability matrix P  can be used as a vector rating the Markov chain’s 
states, i.e., the entry i  is defined to be the rating of the state .ia A  In other words, in 
the context of the MODM problem, i  is the rating of the alternative , 1, ..., .ia A i m   

The analytic hierarchy process (AHP) [17–19] has numerous applications in 
a variety of areas. Let us assume that m objects are given and the decision maker must 
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rank them based on the information obtained from pairwise (subjective and/or objective) 
comparison. According to the AHP, the information from pairwise comparison is used 
to create a matrix: , 1, ...,[ ] ,ij i j ma   which has the following properties: 

10, 1, , , 1, ...,ij ii ij
ji

a a a i j m
a

     

Such a matrix is called a positive reciprocal matrix or pairwise comparison matrix. 
A pairwise comparison matrix , 1, ...,[ ]ij i j ma   is called consistent if it satisfies the 
following property: 

, , , 1, ...,ik kj ija a a i j k m   

It was shown that a pairwise comparison matrix is consistent if and only if it is of 
rank one. When a pairwise comparison matrix, , 1, ...,[ ]ij i j ma  is consistent (or almost 
consistent, for details see [2, 11, 16]), the rating vector (AHP Perron–Frobenius rating 
vector), ahpPFr  can be obtained as the unique solution resulting from the adaptation of 
the AHP-method to the MODM problem. We define the pairwise comparison matrix 
for the MODM problem ,A C   as follows: 

exp
2

0

ij
ij

m i j
a

i j


        
 

, 1, ...,i j m  

where  = [tf]t, j = 1, ..., m is the adjacency matrix for the MODM problem ,A C  . 
Note that here we have not used any preliminary assessments of the pairwise 

comparison matrix conducted by external experts, but have defined it directly from the 
data. Note also that pairwise comparison is carried out on the basis of simple cal- 
culations that can be conducted at little cost, even with a large number of alternatives2. 

 _________________________  
2The example considered in Section 3 shows that problems with around 150 alternatives  (and with 

about 10 criteria) can be solved by the proposed method in a few minutes on a standard laptop (ASUS, 
Intel(R)Core(TM)i7-6500U CPU @ 2.5 GHz 2.59 GHz, 8 GB RAM, 64-bit operation system, ×64-based 
processor) without any effort to optimize the code. 
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2.4. Application to the CIAR problem 

In particular, with regard to the CIAR problem which is considered in this study, 
note that we can consider a set of countries as a set of alternatives A (i.e., based on the 
GII-dataset m = 147) and the set of GII pillars as the set of criteria (i.e., based on the 
GII-dataset n = 7). In the case of the CIAR problem, all the criteria are normalised but 
have the “reverse orientation” (i.e., higher scores are preferable). However, using a 
simple transformation, it is easy to restate the CIAR problem so that lower scores will 
be preferable according to the criteria. This is required in order to make the ranking 
procedure uniform and will be used for our calculations. Thus, we obtain the standard 
formulation of a MODM problem and can apply the ranking methods discussed above. 

3. Results 

The decision-making matrix for the MODM problem under consideration is 
presented in [10]. In particular, the best countries in the sense of those possessing 
innovative advantages are represented by the set of Pareto-optimal alternatives of the 
MODM problem  described above (the ISO  alpha-3 country codes were used). These 
are CAN, DNK, FIN, HKG, IRL, ISR, KOR, LUX, NLD, SGP, SWE, CHE, GBR, 
USA. The Pareto-optimal alternatives should be considered as mathematically equal 
and hencethe Pareto-optimal countries listed above should be considered equal in terms 
of their innovative advantages. 

The transition probability matrix for the Markov-chain method3 and the pairwise 
comparison matrix for the AHP4 and the full rating/ranking of the countries is also 
presented in [10]5. For illustrative purposes, Table 2 presents the top 30 countries 
(according to GII-ranking). 

The correlation coefficients between the rating vectors obtained in this way are: 
GII-rMch: –0.96579, GII-rPFahp: 0.83641, GII-rGMahp: 0.89130, rMch-rPFahp:  

 _________________________  
3All the necessary calculations related to the Markov chain were performed using the Markov chain 

analytic package available for the R software package (see CRAN: https://cran.r-project.org/package=mar-
kovchain). It was confirmed numerically that transition probability matrix is irreducible. 

4Numerical calculations (using the MATLAB function eig: https://www.mathworks.com/help /matlab 
/ref/eig.html) indicate that for the considered pairwise comparison matrix the largest eigenvalue is given by 
λmax = 273.5918. According to the criterion (see [2]) λmax < m +  (1.7699m – 4.3513), we can accept 
consistency only at the  = 0.5 level. Nevertheless, as we can see from the correlation analysis, the AHP 
generates a competitive ranking. 

5Note that we use the following abbreviations: Markov-chain – rMch, AHP (Perron–Frobenius version) 
– rPFahp, AHP (geometric mean version) – rGMahp, and also note that the ranks take into account the 
direction of the rating vectors. 
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–0.73886, rMch-rGMahp: –0.80304, rPFahp-rGMahp: 0.98423. Note that the GII and 
rMch ratings are highly correlated but have opposite orientations. At the same time, 
the GII, rPFaph, rGMaph ratings are highly correlated and have the same orientation. 
Figures 1–3 represent the interrelation between the considered ratings and the GII index. 

 

 
Fig. 1. rMch rating vs. GII; 

vertical axis: rMch rating score, horizontal axis: GII index 

 
Fig. 2. rPFahp rating vs. GII;  

vertical axis: rPFahp rating score, horizontal axis: GII index 
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Fig. 3. rGMahp rating vs. GII; 

vertical axis: rGMahp rating score, horizontal axis: GII index 

Table 2. Rankings of the top 30 GII-ranked countries  
according to various methods 

Country GII rMch rPFahp rGMahp Country GII rMch rPFahp rGMahp 
CHE 1 3 2 1 ISR 16 13 18 15 
SWE 2 2 1 2 NOR 17 33 31 32 
GBR 3 5 4 4 KOR 18 21 22 21 
SGP 4 11 10 11 AUS 19 22 23 22 
NLD 5 10 8 8 MLT 20 24 25 24 
FIN 6 1 3 3 AUT 21 16 16 18 
USA 7 6 5 5 JPN 22 18 14 17 
HKG 8 8 13 9 EST 23 26 27 27 
DNK 9 4 6 6 FRA 24 20 20 20 
IRL 10 9 7 7 BEL 25 19 19 19 
LUX 11 14 15 13 CZE 26 23 21 23 
CAN 12 7 9 10 ESP 27 40 39 39 
DEU 13 12 11 14 SVN 28 28 24 28 
ISL 14 17 17 16 CYP 29 25 26 25 
NZL 15 15 12 12 CHN 30 34 37 35 

The ISO 3166-1 alpha-3 country codes are used. 

As Table 2 shows, these new rankings (rMch, rPFahp and rGMahp) of countries are 
somewhat different from the GII ranking. For example, CHE (Switzerland) is in first 
position according to the GII and rMahp rankings, but occupies second position 
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according to the rPFahp ranking and third position according to the rMch ranking. At 
the same time (Figs. 1–3), the new rankings preserve the general tendencies of the GII 
ranking and, as we showed, are highly correlated with it. In this sense, it can be said that 
the new rankings are quite competitive with GII. 

4. Conclusion 

In this study, we have proposed new approaches to ranking countries according to 
their innovative advantage. Based on the data set from the Global Innovation Index at 
the pillar level, this study defined an MODM problem, the aim of which is to identify 
the “best country” in terms of innovative advantage. Applying the Markov-chain method 
and the AHP to solve this MODM, we obtained new ratings/rankings of the innovative 
advantages of countries. It must be emphasised that in this study we have not used any 
preliminary assessments of the transition probability matrix or of the pairwise 
comparison matrix made by external experts. 
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