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To investigate the existence of higher-order intermodal entanglement, higher-order single-mode
antibunching, higher-order intermodal antibunching and spin squeezing, a first order analytic
operator solution of the Hamiltonian of quadratically-coupled optomechanical system is construct-
ed using short time approximation for different field modes. Temporal variations of these nonclas-
sical properties under different coupling strengths are studied, neglecting the effect of optical
losses, environmental effects and also dissipation. With an increasing order number, the depth of
these nonclassical properties is increased. Spin squeezed states are observed in any direction, i.e.,
either in Sx or Sy direction.
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1. Introduction

Nonclassical states of electromagnetic field have been getting much attention for last few
decades both in theory and experiments and now they are playing a major role in quan-
tum computing and quantum information system. Nonclassical properties are basically
quantum mechanical, not described by a classical stochastic process within the Glauber
–Sudarshan P representation, i.e. a state is nonclassical if its Glauber–Sudarshan P rep-
resentation is negative or more singular than δ-function, or in other words if it is only
a nontrivial superposition of classical states according to a superposition principle.
Such properties are characterized by Mandel Q-parameter, Fano factor, Wigner func-
tion, etc. These properties have potential applications in quantum teleportation [1],
quantum cryptography [2], quantum dense coding [3], etc. There are several possibilities
of different nonclassical features which are observed in the dynamics of optomechanical
systems (OMSs), which can be exploited in different ways [4–8]. For long distance com-
munication, OMSs can play the role of a transducer [4]. For implementation of a mi-
crowave sensor at the sub-photon level using OMSs, a scheme has been proposed [5].
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In the study of optomechanically induced transparency [6], for detection of weak force
such as a gravitational wave [8], an OMS plays an important role. An OMS represents
a quantum hybrid system which will be useful in quantum information processing.
Some systems are coherent which can be useful in long-term storage, some are strongly
interacting which can be used in computation and others are easily transported over
long distances to provide good communication. Again, the OMS provides a good plat-
form to explore quantum effects of macroscopic or mesoscopic objects in the mechanical
system [9]. Inspired by these facts, we decided to investigate the nonclassical properties
in the quadratically coupled OMS. In our work, a group of nonclassical criteria are used
to characterize a set of nonclassical properties such as intermodal entanglement, single
-mode antibunching, compound mode antibunching, spin squeezing, etc. Recently, a the-
oretical study of higher-order nonclassicalities has been done by NGUYEN BA AN [10]
and to observe higher-order nonclassical effects several experimental studies have also
been carried out in different quantum optical systems [11, 12]. From these studies ob-
viously it can be said that it is easy to characterize nonclassical properties by means
of higher-order studies. However, no serious effort has been made to study the possi-
bility of higher-order nonclassical properties in the quadratically coupled OMS. So,
the possibility of higher-order intermodal entanglement, higher-order single-mode
antibunching and higher-order compound mode antibunching in the quadratically cou-
pled OMS, has been studied by us. These nonclassical properties are useful in quantum
computation and quantum information processing, e.g. entangled states are necessary
for quantum key distribution, teleportation of qubits, superdense coding, quantum me-
trology, etc. Antibunching is useful for a single photon source [13], a squeezed state is
useful for teleportation of the wave function of a single-mode electromagnetic field [14]
and reduction of noise in an optical signal [15], etc. Spin squeezed states [16] have
been prepared experimentally [17] and are useful because of their connection with en-
tanglement [18], squeezing of coupled radiation [19] and enhancement of the precision
of atomic interferometers [20]. So, because of a large variety of possible applications
of these nonclassical properties, we have investigated the possibility of finding nonclas-
sicalities in quadratically coupled OMS. A current interest in different OMSs is realized
both experimentally and theoretically: the entanglement between the cavity field mode
and the mechanical mode for strong coupling has been analyzed for continuous-vari-
able systems [21], a mechanical squeezing of the cavity with two beams [22], squeezing
and entanglement of a generic quadratic coupled OMS [23]. All these studies have been
carried out in a lower order, and the depth of nonclassical properties is weak. Motivated
by these facts, we decided to investigate the depth of nonclassical properties in a high-
er-order. In our study it is assumed that optical losses inside the cavity are negligible,
considering the fact that the quantum system is closed. Recent studies [24, 25] reveal
that in OMSs the effect of the environment is considerably reduced. The Hamiltonian
of a quadratically coupled OMS can be solved by employing different methods such as
a numerical solution using a master equation approach, short-time approximation, the
Langevin technique, etc. In our work, we have taken the first order analytical operator
solution of the generalized Hamiltonian using short-time dynamics. Solutions of dif-
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ferent field modes have been used for investigating higher-order nonclassical proper-
ties in quadratically coupled OMSs.

Our article is organized as follows: at first we introduce the model Hamiltonian
which describes the quadratically coupled OMS. Using short-time dynamics, we find
out perturbative solutions for different field modes by the corresponding Heisenberg
equations of motion. Then, we introduce the Hillery–Zubairy criterion to investigate
into the higher order intermodal entanglement, the Lee criterion for both single-mode
and compound mode antibunching, the possibility of spin squeezing and also to study
temporal variation of these nonclassical properties.

2. The model and its solution 

The Hamiltonian for a quadratically coupled OMS may be written as

H = Hs + HI + Hd (1)

where Hs = ωca†a + ωmb†b describes the system with a mechanical resonator (dielectric
membrane such as made by Si3N4) and an optical mode, the single-mode cavity field is
characterized by the annihilation (creation) operators a (a†) and the field operators b (b†)
correspond to the mechanical motion of the membrane, having resonant frequencies ωc
and frequency of the mechanical mode ωm, respectively. These operators satisfy the
bosonic commutation relation [a, a†] = [b, b†] = 1. HI = λa†a(b† + b)2 represents the
interaction Hamiltonian, where λ is the coupling strength between the cavity field and
the membrane. Recent studies revealed that the value of λ may be of the order of several
kilohertz [26, 27] and also it has been proposed, that for near-field optomechanical sys-
tem, the coupling strength can be estimated as being of the order of few megahertz [28].
Hd = iE[a†exp(–iωdt) – aexp(iωdt)] describes the external driving term where E is the
external driving parameter which drives the system at the frequency ωd. The Hamiltonian
for such a system is given by (ħ = 1) [29, 30]

H = ωca†a + ωmb†b + λa†a(b† + b)2 + iE[a†exp(–iωdt) – aexp(iωdt)]  (2)

Here we are to study the system in the absence of driving as some previous studies
[31–33] are done by zero drive Hamiltonian for different OMSs. In the absence of driv-
ing, i.e., E = 0, the Hamiltonian of the system takes the form

H = ωca†a + ωmb†b + λa†a(b† + b)2 (3)

Using Heisenberg equations of motion, we obtain the coupled differential equa-
tions for two different modes. These are as follows:

(4a)

(4b)

da t( )
dt

----------------- i ωca t( ) λa t( ) b†2
t( ) b2 t( ) 2b† t( )b t( ) 1+ + ++

 
 
 

–=

db t( )
dt

----------------- i ωmb t( ) 2λa† t( )a t( ) b† t( ) b t( )++
 
 
 

–=
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To investigate the existence of higher-order entanglement, the higher-order anti-
bunching and the spin squeezing for quadratically coupled OMSs, we use the Heisenberg
equations of motion (4) for different field modes and short-time dynamics. This method
is also employed to determine nonclassicality in couple-cavity OMSs [34]. The n-th
order solutions of the mode a and b is assumed as

(5a)

(5b)

where all the parameters gi and li are functions of time and evaluated from initial bound-
ary conditions g1(0) = l1(0) = 1 and gi(0) = li(0) = 0 (i = 2, …, 5). 

The coefficients, i.e., gi(t ) and li(t ), are given by:

where G(t) = 1 – exp(2iωmt).
According to short-time dynamics, we may expand any operator x(t) in Taylor’s

series as  where  Here we take the
solution up to the first order, i.e., λt < 1, for which perturbation calculations hold good,
so we have neglected the term beyond  To check the validity of the solutions, we
used equal time commutation relation (ETCR) as [a(t), a†(t)] = [b(t), b†(t)] = 1.

In order to investigate the existence of various higher-order nonclassical properties
and spin squeezing in quadratically coupled OMS, we assume that photon and phonon
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modes are initially coherent. So, the initial state is the product of two coherent states,
i.e.,  where  and  are the eigenkets of field operators a and b,
respectively. If the operator a(t) operates on the state, it gives a complex eigenvalue α,
i.e.,  where  gives the number of photons for the cavity field
mode a. In a similar manner, we obtain the phonon number for the phonon mode b.
For stimulated process, these complex amplitudes are not necessarily zero and it seems
that α > β should be considered.

3. Higher order entanglement

There is a number of inseparability criteria [35–37], out of them here we have used
Hillery–Zubairy criteria to investigate the existence of the entangled state in a quad-
ratically coupled optomechanical system. These conditions are sufficient for charac-
terization of bipartite entanglement but not necessary.

Using quadratic operators L1 = {amb†n + a†mbn} and L2 = –i{amb†n – a†mbn} and
adding up variances and using an uncertainty relation, HILLERY and ZUBAIRY [35, 36]
established the states to be entangled if 

 

Here, we define that condition as (HZ-I criterion) 

(6)

Similarly, using quadratic operators F1 = {ambn + a†mb†n} and F2 = –i{ambn – a†mb†n}
leads to conditions for the product state to be entangled if 

 

is satisfied. We may write this as (HZ-II criterion) 

(7)

where m and n are non-zero positive integers. For the product state (bipartite) the choice
of the integers m, n satisfy the conditions m + n ≥ 3.

Using the above criteria and solutions, we obtain

(8)

(9)
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Figures 1 and 2 show the graphical variation of Eq. (9) for different values of the
order number and also the coupling strength λ. From the result, it is observed that ac-
cording to HZ-I criterion, the result is positive but from HZ-II criterion the result is
always negative, i.e. a bipartite entangled state exists for a higher-order. From figures
it is clear that the degree of entanglement increases with the order number n and also
the coupling strength λ. It is observed that the amount of entanglement increases con-
siderably when the order number changes from n = 2 to n = 3. The amount of entan-
glement changes almost linearly with the coupling strength λ. The parameter mn |α |2m

in Eq. (9) plays the role of an amplification factor. The graphical variation shows that
the entangled state is in a periodic repetition and its time period is determined by the
relation ωmt = sπ where s is an integer. The periodicity of the entangled state is the
same for all orders, i.e. the time period is independent of the value of n.

4. Higher order antibunching 

Antibunching is a nonclassical phenomenon which is observed in different optical and
optomechanical processes. There are different criteria for investigation of the existence
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of higher-order antibunching, but each of them can be explained by the Lee criteria [38].
According to LEE, the criteria for higher-order antibunching for a single-mode are ex-
pressed in terms of a higher-order factorial moment of the number operator and are
defined by the inequality

(10)

where Na is the usual number operator for a mode, n-th factorial moment of the number
operator is  and m, n are integers satisfying m ≥ n ≥ 1. The re-
duced criterion [10] for n-th order single-mode antibunching is 
in which m = 1 is taken. We may define the condition for n-th order single-mode anti-
bunching as

(11)

The smaller is the value of Aa(n), the larger is the antibunching in degree.
 is the measure of n photons of the same mode at the particular point

in space time coordinate. The inequality implies that the probability of detection of
a single photon pulse is greater than that for two photons in a bunch and so on. This
feature is used for quantum cryptography. For n = 1, the condition is referred to lower
order antibunching, while n ≥ 2 is for higher-order antibunching. Again, for the com-
pound mode a, b, the criterion for antibunching according to LEE [38], is expressed by
the inequality

(12)

with l ≥ m ≥ 1. For m = 1 [10], the above condition reduces to 

 

We may define the condition for n-th order compound mode ab antibunching

(13)

Here we discussed a higher-order sub-Poissonian photon statistics in terms of factorial
moment, and as we are working with the quantum mechanical system satisfying com-
mutation relation [a, a†] = 1 so, we use a single time correlation function.

Using solutions and conditions for n-th order single-mode antibunching, we find that

(14)
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shows a positive result. So, higher-order single-mode antibunching is not possible for
quadratically-coupled OMS 

(16)

As the expression obtained in the right-hand side of Eq. (16) is not simple, it may
be plotted to investigate the existence of compound mode antibunching. The variation
of Aab(n) is plotted in Figs. 3–5 with the rescaled time λt. The figure shows that
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Aab(n) is negative, i.e., antibunching exists for the compound mode ab. Figure 3 shows
the variation of depth of antibunching with the cavity photon number |α |2 with the order
number n = 6. As the value of the cavity photon number increases from |α |2 = 9 to
|α |2 = 16, the depth of antibunching increases very rapidly. The degree of antibunching
increases rapidly with the order number as shown in Fig. 4 and also with the coupling
strength. 

5. Spin squeezing

There are several criteria to investigate the spin squeezing; we have used the relations
[19, 39, 40] for spin squeezing existence identification in a quadratically-coupled OMS.
Using concepts of second quantization formalism and the Schwinger bosonic rep-
resentation [41], different spin components may be written in terms of creation and
annihilation operators of two modes a† (b†) and a (b) which are as follows: 

 

 

 

where S+ = b†a and S– = a†b. These three orthogonal spin components obey the com-
mutation relation [Si, Sj] = iεijk Sk  (where εijk  is the Levi–Civita symbol). Therefore,
any pair of spin operators obeys the uncertainty relation for which  and 
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where  is the variance in Sx direction. From this relation it is ob-
served that only one of the components, i.e. Sx or Sy, may be squeezed. So, the criterion
for spin squeezing for Sx and Sy is written as

and (17)

We may define squeezing factors as

and (18)

For n = 1, the solutions of the Hamiltonian of Eqs. (5a) and (5b) give the values of
a(t) and b(t). Using these solutions and criteria of spin squeezing, we obtain 

(19a)
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(19c)

Figure 6 shows the variation of spin components Sx and Sy with ωmt. From the
figure it is evident that any component of the spin, i.e. either Sx and Sy, is always
squeezed due to the energy exchange between one another as one of the squeezing
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factors S(x) or S( y) is always less than 1. The depth of squeezing depends on the cou-
pling strength λ and also on the photon number. Here, the monotonous increase of the
envelope for both the cases is due to the truncation of the perturbation calculation for
the coupling strength λ in the solutions.

6. Conclusions 

In conclusion, we have discussed a higher-order nonclassical correlation such as higher
-order entanglement, higher-order antibunching and spin squeezing in a quadratically
coupled OMS. Higher order effects are more prominent for a higher value of the coupling
strength λ and the cavity photon number. It is observed that the depth of nonclassical
properties increases enormously with the order number. From our study it is clear that
a higher-order entangled state exists for a quadratic OMS, according to HZ-II criterion.
Higher-order single-mode antibunching is not observed as the photon mode shows stat-
ics which is of Poissonian in nature, i.e. coherent, and also the mechanical mode shows
super-Poissonian statistics but a higher order compound mode, i.e. photon-phonon
mode shows sub-Poissonian statistics, which shows the antibunched state. From the
study it is also clear that a spin squeezed state is observed either in Sx or in Sy direction,
which can be useful for the reduction of noise in the optical signal. 

References

[1] FURUSAWA A., SØRENSEN J.L., BRAUNSTEIN S.L., FUCHS C.A., KIMBLE H.J., POLZIK E.S., Uncondi-
tional quantum teleportation, Science 282(5389), 1998, pp. 706–709.

[2] HILLERY M., Quantum cryptography with squeeze state, Physical Review A 61(2), 2000, article
ID 022309.

[3] BRAUNSTEIN S.L., KIMBLE H.J., Dense coding for continuous variables, Physical Review A 61(4), 2000,
article ID 042302.

[4] STANNIGEL K., RABL P., SØRENSEN A.S., ZOLLER P., LUKIN M.D., Optomechanical transducers for
long-distance quantum communication, Physical Review Letters 105(22), 2010, article ID 220501.

[5] KEYE ZHANG, BARIANI F., YING DONG, WEIPING ZHANG, MEYSTRE P., Proposal for an optomechanical
microwave sensor at the subphoton level, Physical Review Letters 114(11), 2015, article ID 113601.

[6] WEIS S., RIVIÈRE R., DELÉGLISE S., GAVARTIN E., ARCIZET O., SCHLIESSER A., KIPPENBERG T.J., Opto-
mechanically induced transparency, Science 330(6010), 2010, pp. 1520–1523.

[7] TEUFEL J.D., DALE LI, ALLMAN M.S., CICAK K., SIROIS A.J., WHITTAKER J.D., SIMMONDS R.W., Circuit
cavity electromechanics in the strong-coupling regime, Nature 471(7337), 2011, pp. 204–208.

[8] CAVES C.M., THORNE K.S., DREVER R.W.P., SANDBERG V.D., ZIMMERMANN M., On the measurement
of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle, Reviews
of Modern Physics 52(2), 1980, p. 341.

[9] ASPELMEYER M., KIPPENBERG T.J., MARQUARDT F., Cavity optomechanics, Reviews of Modern
Physics 86(4), 2014, p. 1391.

[10] NGUYEN BA AN, Multimode higher-order antibunching and squeezing in trio coherent state, Journal
of Optics B: Quantum and Semiclassical Optics 4(3), 2002, pp. 222–227.

[11] AVENHAUS M., LAIHO K., CHEKHOVA M.V., SILBERHORN C., Accessing higher order correlations in
quantum optical states by time multiplexing, Physical Review Letters 104(6), 2010, article ID 063602.



662 K. MUKHERJEE, P.C. JANA

[12] ALLEVI A., OLIVARES S., BONDANI M., Measuring higher-order photon-number correlation in exper-
iments with multimode pulsed quantum states, Physical Review A 85(6), 2012, article ID 063835.

[13] ZHILIANG YUAN, KARDYNAL B.E., STEVENSON R.M., SHIELDS A.J., LOBO C.J., COOPER K., BEATTIE N.S.,
RITCHIE D.A., PEPPER M., Electrically driven single-photon source, Science 295(5552), 2002,
pp. 102–105.

[14] BRAUNSTEIN S.L., KIMBLE H.J., Teleportation of continuous quantum variables, Physical Review
Letters 80(4), 1998, p. 869.

[15] CAVES C.M., Quantum-mechanical noise in an interferometer, Physical Review D 23(8), 1981,
pp. 1693–1708.

[16] JIAN MA, XIAOGUANG WANG, SUN C.P., NORI F., Quantum spin squeezing, Physics Reports 509(2–3),
2011, pp. 89–165.

[17] HALD J., SØRENSEN J.L., SCHORI C., PLOZIK E.S., Spin squeezed atoms: a macroscopic entangled en-
semble created by light, Physical Review Letters 83(7), 1999, p. 1319.

[18] SØRENSEN A., DUAN L.-M., CIRAC J.I., ZOLLER P., Many-particle entanglement with Bose–Einstein
condensates, Nature 409(6816), 2001, pp. 63–66.

[19] WALLS D.F., ZOLLER P., Reduced quantum fluctuations in resonance fluorescence, Physical Review
Letters 47(10), 1981, p. 709.

[20] WINELAND D.J., BOLINGER J.J., ITANO W.M., HEINZEN D.J., Squeezed atomic states and projection
noise in spectroscopy, Physical Review A 50(1), 1994, pp. 67–88.

[21] PATERNOSTRO M., VITALI D., GIGAN S., KIM M.S., BRUKNER C., EISERT J., ASPELMEYER M., Creating
and probing multipartite macroscopic entanglement with light, Physical Review Letters 99(25),
2007, article ID 250401.

[22] NUNNENKAMP A., BØRKJE K., HARRIS J.G.E., GIRVIN S.M., Colling and squeezing via quadratic opto-
mechanical coupling, Physical Review A 82(2), 2010, article ID 021806(R).

[23] SHI H., BHATTACHARYA M., Quantum mechanical study of a generic quadratically coupled opto-
mechanical system, Physical Review A 87(4), 2013, article ID 043829.

[24] SINGH S., PHELPS G.A., GOLDBAUM D.S., WRIGHT E.M., MEYSTRE P., All-optical optomechanics: an op-
tical spring mirror, Physical Review Letters 105(21), 2010, article ID 213602.

[25] GIESELER J., DEUTSCH B., QUIDANT R., NOVOTNY L., Subkelvin parametric feedback cooling of a laser
-trapped nanoparticle, Physical Review Letters 109(10), 2012, article ID 103603.

[26] SANKEY J.C., YANG C., ZWICKL B.M., JAYICH A.M., HARRIS J.G.E., Strong and tunable nonlinear
optomechanical coupling in a low-loss system, Nature Physics 6(9), 2010, pp. 707–712.

[27] FLOWERS-JACOBS N.E., HOCH S.W., SANKEY J.C., KASHKANOVA A., JAYICH A.M., DEUTSCH C.,
REICHEL J., HARRIS J.G.E., Fiber-cavity-based optomechanical device, Applied Physics Letters
101(22), 2012, article ID 221109.

[28] HAO-KUN LI, YONG-CHUN LIU, XU YI, CHANG-LING ZOU, XUE-XIN REN, YUN-FENG XIAO, Proposal for
a near-field optomechanical system with enhanced linear and quadratic coupling, Physical Review A
85(5), 2012, article ID 053832.

[29] THOMPSON J.D., ZWICKL B.M., JAYICH A.M., MARQUARDT F., GIRVIN S.M., HARRIS J.G.E., Strong
dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183),
2008, pp. 72–75.

[30] CHEUNG H.K., LAW C.K., Nonadiabatic optomechanical Hamiltonian of a moving dielectric mem-
brane in a cavity, Physical Review A 84(2), 2011, article ID 023812.

[31] MUKHERJEE K., JANA P.C., Squeezing and entanglement in quadratically-coupled optomechanical
system, Journal of Physical Sciences 19, 2014, pp. 143–155.

[32] BOSE S., JACOBS K., KNIGHT P.L., Preparation of nonclassical states in cavities with a moving mirror,
Physical Review A 56(5), 1997, p. 4175.

[33] RAI A., AGARWAL G.S., Quantum optical spring, Physical Review A 78(1), 2008, article ID 013831.
[34] MUKHERJEE K., JANA P.C., Nonclassical properties (squeezing, antibunching, entanglement) for

couple-cavity optomechanical system, Journal of Optics 016, 2016, article ID 0339.



Higher-order quantum dynamics... 663

[35] HILLERY M., ZUBAIRY M.S., Entanglement conditions for two-mode states, Physical Review Letters
96(5), 2006, article ID 050503.

[36] HILLERY M., ZUBAIRY M.S., Entanglement conditions for two-mode states: applications, Physical
Review A 74(3), 2006, article ID 032333.

[37] MIRANOWICZ A., BARTKOWIAK M., XIAOGUANG WANG, YU-XI LIU, NORI F., Testing nonclassicality in
multimode fields: a unified derivation of classical inequalities, Physical Review A 82(1), 2010,
article ID 013824.

[38] CHING TSUNG LEE, Higher-order criteria for nonclassical effects in photon statistics, Physical
Review A 41(3), 1990, p. 1721.

[39] KITAGAWA M., UEDA M., Squeezed spin states, Physical Review A 47(6), 1993, p. 5138.
[40] WÓDKIEWICZ K., Reduced quantum fluctuations in the Josephson junction, Physical Review B 32(7),

1985, p. 4750.
[41] SAKURAI J.J., Modern Quantun Mechanics, Pearson, 2013.

Received February 18, 2017
in revised form April 11, 2017


