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Locally nonlinear planar waveguide with girotropy
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Institute of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00— 662 Warszawa, Poland.

In the paper, some results concerning light propagation in a planar waveguide with a local 
nonlinearity are presented. External magnetic field is assumed as a source of girotropy. A strong 
laser beam perpendicular to the film couples with the transmitted wave via the nonlinear medium. 
Both fields influence the outgoing wave leading to some essential changes in its polarization. The 
parameters characterizing this polarization have been calculated and discussed for several 
interesting reslizations.

1. Physical model and basic equations

In many optoelectronical devices one uses planar waveguides containing regions 
with local nonlinear and/or girotropic sections [1], [2]. A combination of these two 
factors essentially influences the polarization of the outgoing wave which itself is 
formed by nonlinear interactions. In this paper, we report on some results 
concerning light propagation in a waveguide with the third-order nonlinearity 
subjected additionally to an external magnetic field B parallel to the film considered. 
This field is, in fact, the source of the girotropy.

Fig. 1. Geometry of the system

The geometry of our system is presented in Figure 1. A laser beam of the 
frequency Ci2 is reflected by a mirror and these two waves evoke a nonlinear 
behaviour of the film medium. This leads to a nonlinear term in the polarization 
vector, usually denoted by P 1*·. We assume the simplest form of this term, namely

P ^  =  XE2E  (1)
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with constant susceptibility This expression adds to the linear polarization P L, 
given by

P L = (e - l)E = iocB, r\t
L0, 0,

0
0
V+yB2. (2)

where rj, a (the girotropic constant) and y are treated as material constants, 
independent of external fields. Their values will be discussed at the end of the paper. 

The equation for E

d2
rot rot E =  - n 0- ^ D (3)

is normally solved by means of the substitution

E = Y JEje~ia>jt (4)

where j  denotes possible modes of the undisturbed waveguide. The amplitudes Ej 
fulfil the equation

(O2
rot rot Ej -  -4  eEj=  !i0cojx £ '(£ , Em )En. (5)

C Imn

Here the last sum runs over all components satisfying the condition

<0i+o>m+coH = (0j (6)

and the matrix e is given in (2).
In order to solve Eq. (4), we make some additional assumptions. First, we treat 

the amplitude of the wave crossing perpendicularly the film as constant and 
polarized in 0z direction. If we denote its frequency by Q2, then

E 2 =  (0, 0, £ 2). (7)

Secondly, the wave propagating along the layer is supposed to keep its initial 
polarization so that all the time it has two components only

E, = (Ei.Ei.O). (8)

It is commonly accepted that |P A| «  i*y-
Now, we introduce circular quantities EK and Eh (R — right, L — left), according 

to the formulas:

£ R =  i(JS*+i£'). £ l =  (9)

They fulfil the equation

( ^ + ° r) £ * =  - 2 / .0zO J(|£rI2+ 3 |£ l |i)£:11, (10)
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and analogous equation for EL. In these equations

n KL =  ^ O U l  +  n±xB)+2ii0xQVu· (11)

The upper sign relates to R, the lower — to L. Ju denotes the intensity of the wave 
coming from the laser

1« =  \Ei\2. (12)

Both circular waves may be further decomposed into two others: one propaga
ting forwards (index F) and one — backwards (index B). So we put:

£ r = + Erb e«**+k*z\  (13a)
Eh =  EUJew*~^‘)+ E u ,e,(*»+*L‘>. (13b)

All the amplitudes and phases are here real numbers. The phases are meant as samll 
contributions to wave vectors k, corresponding to the linear case. They are given by

** .L  =  io .( l+ 1 ± « B )1/2· (14)

Hence,

Gr,l =  k lx +2n0x n \ I u. (15)

2. Analytical considerations

Equation (10) may be partially solved by applying the slow-varying amplitude 
approximation. It appears (for brevity we omit here the details) that then all the 
amplitudes are constant and equal to their values at z =  0 (index 0 in the following 
text). On the other hand, the phases depend on z and on amplitudes and may be 
written as follows:

<Pf =  vP -S fP , (PB =  (16)

where

Sq> = {Effi2 + 2£j°i2 +  3ES!2 + 3E $2 + /„}. (17)

Similar equations holds for i¡/F B (one needs merely to change R o L ).
It is now necessary to include the boundary conditions. They may be described as 

follows. The wave z =  0 is the sum of two waves: one is coming from external source 
(index “in”) and the other is reflected from the right boundary (z =  l). If the reflection 
coefficient & at both ends of the nonlinear region is the same, then for z =  0+, we 
have

+ V «(E rb e‘̂ 0>+ El ^ )  =

for the Ox direction, and

( 1 8 )
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V I(E 1( вM 0)- £ l в e,*í>0, =  (19)

for the Oy direction. We have assumed here that the incident beam is polarized along 
the Ox axis only.

For z =  1 one has

v £ ( i W (M0' ‘*0±E LF«‘(*F<0~‘L') =  Ei»  (20)

(the upper sign for Ox, lower — for Oy direction).
By introducing two new quantities:

¿<p = 9>f(Q—9>b(0 — <Pf(0) + V bIP),
A\ff =  as above, with ( p = * \ l (21) 

one obtains:

Elr =  j  [ 1 + « 2 -  2«  cos (4 ̂  -  2fcR/)] ' 1 i  (22a)

£ lf =  as above, with R=> L and (p=>\Jf. (22b)

Jta denotes here the intensity of the incident beam.
These equations together with Eqs. (16) and (17) form a closed set of algebraic 

equations for Aq> and A\j/.
The intensity I^  of the wave leaving the film 2 =  1 may be expressed by ■Erf and 

El p as follows:

=  ^ (E rf+ E lf) =  U + IL, ( r  =  1-31)· (23)

Thus,

A<p =  - ( ^ 0xfif/^fcR)(3 (l+ « )(2 /„ t- / R) + 2 ^ U  (24a)
A* =  - ( iloXi2 5 /^ ) (3 ( l+ « ) (2 /out+ /R) + 2 ^ /u). (24b)

The algorithm presented above enables us to calculate numerically all the 
characteristics of the outgoing wave, e.g. its intensity and the polarization. The first 
one is already well examined. On the other hand, the polarization is important in 
many applications and our attention is limited to this aspect only.

A standard quantity describing the elliptic polarization is the coherent matrix 
K  defined as

Tie/ ,  e , e ;

¡e /  _

where —  denotes an average over time. Another way of expressing K  is

(25)

1+ i, i i +i i 2

^2“ _ · (26)

where Stokes parameters £j are connected with the goemetry of the polarization
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ellipse in the following way:

sin2y =  <*2, (27)
tan 25 =  £2/£ lf (28)
V ~  ^1 +  ̂ 2 "b£3· (29)

Here, <5 denotes the angle between the longer axis of the ellipse and the Ox axis, 
tan y =  ±b/a (a,b — half-axes of the ellipse, two signs correspond to two directions 
of circulation on the ellipse). These three parameters are easily expressed through the 
quantities described earlier. For brevity we omit detailed calculations (see work [3] 
on similar problems).

3. Results o f  numerical calculations

Our calculations were performed for two sets of material parameters. The first one 
corresponds to CS2, the second is rather a hypothetical one. In the first case, we have 
put X =  1.06 jim, x =  1.299· 10" 25 and the girotropic constant a =  2.16 *10" 6 T " 1. 
In the second case, X =  0.5 pm, x =  10"23, a =  10" 4 T "x. The incoming wave was 
constant and its intensity was put as I la =  105 W/m2.

Fig. 2. Dependence of tan 5 (a) and tan y (b) on B, for different values ol I ̂  31 = 0.5, / =  1 nun. Physical 
parameters correspond to CS2. 1 — /„ =  0.1, 2 — /„ =  1.0

Fig. 3. Dependence of tan 5 (a) and tan y (b) on Iu for different values of B and for 3t =  0.9 and / =  10 mm 
(CSJ. 1 -  B =  0.1 T, 2 -  B = 1.0 T
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The most interesting results are collected in the figures. We present therein the 
dependence of taná and tany on the intensity Iu of the laser beam for different values 
of B and 0t  and also /. Figures 2 and 3 relate to CS2, Figures 4 and 5 are more 
abstract.

Fig. 4. Dependence of tan 5 (a) and tany (b) on /„  for hypothetical material and for 91 =  02 and l =  1 mm. 
1 -  B -  0.1 T, 2 -  B -  IX) T

Fig. 5. As in Fig. 4, but with 91 =  0.9

It is easy to show that the degree of polarization is — in our system — constant 
and equal to 1. This means that the outgoing beam is fully polarized.

The changes of 5 and y are, for CS2, relatively small. For B of the order 1 T, the 
rotation of polarization is practically negligible. More interesting phenomena appear 
in media with higher values of x and a. Increase of St leads to an increase of the 
degree of ellipticity of the wave. The transparent beam may change the direction of 
the rotation of E. The last effect depends periodically on Iu. It is also worth noticing 
that parameters St, l, and X have essential influence on processes considered but the 
most important are their simultaneous changes.
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